1932

Abstract

The trophic cascade has emerged as a key paradigm in ecology. Although ecologists have made progress in understanding spatial variation in the strength of trophic cascades, temporal variation remains relatively unexplored. Our review suggests that strong trophic cascades are often transient, appearing when ecological conditions support high consumer abundance and rapidly growing, highly edible prey. Persistent top-down control is expected to decay over time in the absence of external drivers, as strong top-down control favors the emergence of better-defended resources. Temporal shifts in cascade strength—including those driven by contemporary global change—can either stabilize or destabilize ecological communities. We suggest that a more temporally explicit approach can improve our ability to explain the drivers of trophic cascades and predict the impact of changing cascade strength on community dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-121415-032246
2017-11-02
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/48/1/annurev-ecolsys-121415-032246.html?itemId=/content/journals/10.1146/annurev-ecolsys-121415-032246&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott KL. 2005. Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on an oceanic island: forager activity patterns, density and biomass. Insectes Soc 52:3266–73 [Google Scholar]
  2. Abrams PA. 1995. Implications of dynamically variable traits for identifying, classifying, and measuring direct and indirect effects in ecological communities. Am. Nat. 146:1112–34 [Google Scholar]
  3. Abrams PA, Menge BA, Mittelbach GG, Spiller DA, Yodzis P. 1996. The role of indirect effects in food webs. Food Webs: Integration of Pattern and Dynamics GA Polis, KO Winemiller 371–95 New York: Chapman and Hall [Google Scholar]
  4. Allan BJM, Domenici P, McCormick MI, Watson S-A, Munday PL. 2013. Elevated CO2 affects predator-prey interactions through altered performance. PLOS ONE 8:3e58520 [Google Scholar]
  5. Amaral V, Cabral H, Bishop M. 2012. Effects of estuarine acidification on predator–prey interactions. Mar. Ecol. Prog. Ser. 445:117–27 [Google Scholar]
  6. Barton BT, Beckerman AP, Schmitz OJ. 2009. Climate warming strengthens indirect interactions in an old-field food web. Ecology 90:92346–51 [Google Scholar]
  7. Baum JK, Worm B. 2009. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78:4699–714 [Google Scholar]
  8. Berlow EL, Navarrete SA, Briggs CJ, Power ME, Menge BA. 1999. Quantifying variation in the strengths of species interactions. Ecology 80:72206–24 [Google Scholar]
  9. Bollens SM, Rollwagen-Bollens G, Quenette JA, Bochdansky AB. 2010. Cascading migrations and implications for vertical fluxes in pelagic ecosystems. J. Plankton Res. 33:349–55 [Google Scholar]
  10. Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA. et al. 2005. What determines the strength of a trophic cascade?. Ecology 86:2528–37Meta-analysis examining factors contributing to variation in trophic cascade strength. [Google Scholar]
  11. Both C, Van Asch M, Bijlsma RG, Van Den Burg AB, Visser ME. 2009. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations. J. Anim. Ecol. 78:173–83 [Google Scholar]
  12. Brett MT, Goldman CR. 1996. A meta-analysis of the freshwater trophic cascade. PNAS 93:157723–26 [Google Scholar]
  13. Bridgeland WT, Beier P, Kolb T, Whitham TG. 2010. A conditional trophic cascade: Birds benefit faster growing trees with strong links between predators and plants. Ecology 91:173–84 [Google Scholar]
  14. Brodersen J, Nicolle A, Nilsson PA, Skov C, Brönmark C, Hansson L-A. 2011. Interplay between temperature, fish partial migration and trophic dynamics. Oikos 120:121838–46 [Google Scholar]
  15. Carpenter SR, Kitchell JF. 1993. The Trophic Cascade in Lakes Cambridge, UK: Cambridge Univ. Press
  16. Casini M, Hjelm J, Molinero J-C, Lövgren J, Cardinale M. et al. 2009. Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. PNAS 106:1197–202 [Google Scholar]
  17. Cherry MJ, Warren RJ, Conner LM. 2016. Fear, fire, and behaviorally mediated trophic cascades in a frequently burned savanna. For. Ecol. Manag. 368:133–39 [Google Scholar]
  18. Coley PD, Bryant JP, Chapin FS III. 1985. Resource availability and plant antiherbivore defense. Science 230:895–900 [Google Scholar]
  19. Cooling M, Hoffmann BD. 2015. Here today, gone tomorrow: declines and local extinctions of invasive ant populations in the absence of intervention. Biol. Invasions 17:123351–57 [Google Scholar]
  20. Daly M, Behrends PR, Wilson MI, Jacobs LF. 1992. Behavioural modulation of predation risk: moonlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami. Anim. Behav. 44:11–9 [Google Scholar]
  21. Daskalov GM, Grishin AN, Rodionov S, Mihneva V. 2007. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. PNAS 104:2510518–23 [Google Scholar]
  22. Dell AI, Pawar S, Savage VM. 2014. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83:170–84 [Google Scholar]
  23. Dini ML, Carpenter SR. 1991. The effect of whole-lake fish community manipulations on Daphnia migratory behavior. Limnol. Oceanogr. 36:2370–77 [Google Scholar]
  24. Dixson DL, Munday PL, Jones GP. 2010. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13:168–75 [Google Scholar]
  25. Doherty TS, Dickman CR, Nimmo DG, Ritchie EG. 2015. Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biol. Conserv. 190:60–68 [Google Scholar]
  26. Duffy JE. 2002. Biodiversity and ecosystem function: the consumer connection. Oikos 99:2201–19 [Google Scholar]
  27. Duffy JE. 2003. Biodiversity loss, trophic skew and ecosystem functioning. Ecol. Lett. 6:8680–87 [Google Scholar]
  28. Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thébault E, Loreau M. 2007. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10:6522–38 [Google Scholar]
  29. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:4586–608 [Google Scholar]
  30. Ellis BK, Stanford JA, Goodman D, Stafford CP, Gustafson DL. et al. 2011. Long-term effects of a trophic cascade in a large lake ecosystem. PNAS 108:31070–75 [Google Scholar]
  31. Estes JA. 1995. Top-level carnivores and ecosystem effects: questions and approaches. Linking Species and Ecosystems CG Jones, JH Lawton 151–59 New York: Chapman and Hall [Google Scholar]
  32. Estes JA, Palmisano JF. 1974. Sea otters: their role in structuring nearshore communities. Science 185:41561058–60 [Google Scholar]
  33. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J. et al. 2011. Trophic downgrading of planet Earth. Science 333:6040301–6 [Google Scholar]
  34. Estes JA, Tinker MT, Williams TM, Doak DF. 1998. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:5388473–76 [Google Scholar]
  35. Fahimipour AK, Anderson KE. 2015. Colonisation rate and adaptive foraging control the emergence of trophic cascades. Ecol. Lett. 18:8826–33 [Google Scholar]
  36. Feehan CJ, Scheibling RE. 2014. Effects of sea urchin disease on coastal marine ecosystems. Mar. Biol. 161:71467–85 [Google Scholar]
  37. Filbee-Dexter K, Scheibling RE. 2014. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495:1–25 [Google Scholar]
  38. Finke DL, Denno RF. 2004. Predator diversity dampens trophic cascades. Nature 429:6990407–10 [Google Scholar]
  39. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T. et al. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35:557–81 [Google Scholar]
  40. Fox JW. 2007. The dynamics of top-down and bottom-up effects in food webs of varying prey diversity, composition, and productivity. Oikos 116:2189–200 [Google Scholar]
  41. Frank KT, Petrie B, Choi JS, Leggett WC. 2005. Trophic cascades in a formerly cod-dominated ecosystem. Science 308:57281621–23 [Google Scholar]
  42. Gilbert B, Tunney TD, McCann KS, DeLong JP, Vasseur DA. et al. 2014. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17:8902–14 [Google Scholar]
  43. Haavisto F, Jormalainen V. 2014. Seasonality elicits herbivores’ escape from trophic control and favors induced resistance in a temperate macroalga. Ecology 95:113035–45 [Google Scholar]
  44. Hairston NG, Smith FE, Slobodkin LB. 1960. Community structure, population control, and competition. Am. Nat. 94:879421–25 [Google Scholar]
  45. Halaj J, Wise DH. 2001. Terrestrial trophic cascades: how much do they trickle?. Am. Nat. 157:3262–81 [Google Scholar]
  46. Halpern BS, Borer ET, Seabloom EW, Shurin JB. 2005. Predator effects on herbivore and plant stability. Ecol. Lett. 8:2189–94 [Google Scholar]
  47. Heath MR, Speirs DC, Steele JH. 2014. Understanding patterns and processes in models of trophic cascades. Ecol. Lett. 17:1101–14 [Google Scholar]
  48. Holdo RM, Sinclair ARE, Dobson AP, Metzger KL, Bolker BM. et al. 2009. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLOS Biol 7:9e1000210 [Google Scholar]
  49. Holt RD, Grover H, Tilman D. 1994. Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am. Nat. 144:5741–71 [Google Scholar]
  50. Hunter MD, Price PW. 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:3724–32 [Google Scholar]
  51. Ingram T, Svanbäck R, Kraft NJB, Kratina P, Southcott L, Schluter D. 2012. Intraguild predation drives evolutionary niche shift in threespine stickleback. Evolution 66:61819–32 [Google Scholar]
  52. Jellison BM, Ninokawa AT, Hill TM, Sanford E, Gaylord B. 2016. Ocean acidification alters the response of intertidal snails to a key sea star predator. Proc. R. Soc. B. 283:183320160890 [Google Scholar]
  53. Kalka MB, Smith AR, Kalko EKV. 2008. Bats limit arthropods and herbivory in a tropical forest. Science 320:587271 [Google Scholar]
  54. Katano O, Natsumeda T, Suguro N. 2013. Diurnal bottom feeding of predator fish strengthens trophic cascades to benthic algae in experimental flow-through pools. Ecol. Res. 28:5907–18 [Google Scholar]
  55. Kerr PJ. 2012. Myxomatosis in Australia and Europe: a model for emerging infectious diseases. Antivir. Res. 93:3387–415 [Google Scholar]
  56. Kishi D, Murakami M, Nakano S, Maekawa K. 2005. Water temperature determines strength of top-down control in a stream food web. Freshw. Biol. 50:81315–22 [Google Scholar]
  57. Kratina P, Greig HS, Thompson PL, Carvalho-Pereira TSA, Shurin JB. 2012. Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93:61421–30 [Google Scholar]
  58. Krebs CJ, Boonstra R, Boutin S, Sinclair ARE. 2001a. What drives the 10-year cycle of snowshoe hares?. BioScience 51:125–35 [Google Scholar]
  59. Krebs CJ, Boutin S, Boonstra R, Sinclair ARE, Smith JNM. et al. 1995. Impact of food and predation on the snowshoe hare cycle. Science 269:52271112–15 [Google Scholar]
  60. Krebs CJ, Dale MRT, Nams VO, Sinclair ARE, O'Donoghue M. 2001b. Shrubs. Ecosystem Dynamics of the Boreal Forest: The Kluane Project CJ Krebs, S Boutin, R Boonstra 92–115 Oxford, UK: Oxford Univ. Press [Google Scholar]
  61. Kurle CM, Croll DA, Tershy BR. 2008. Introduced rats indirectly change marine rocky intertidal communities from algae- to invertebrate-dominated. PNAS 105:103800–4 [Google Scholar]
  62. Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G. et al. 2008. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11:6533–46 [Google Scholar]
  63. Leibold MA. 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134:922–49 [Google Scholar]
  64. Leibold MA. 1996. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am. Nat. 147:5784–812 [Google Scholar]
  65. Leibold MA, Chase JM, Shurin JB, Downing AL. 1997. Species turnover and the regulation of trophic structure. Annu. Rev. Ecol. Syst. 28:467–94 [Google Scholar]
  66. Leroux SJ, Loreau M. 2008. Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecol. Lett. 11:111147–56 [Google Scholar]
  67. Lessios HA. 1988. Mass mortality of Diadema antillarum in the Caribbean: What have we learned?. Annu. Rev. Ecol. Syst. 19:371–93 [Google Scholar]
  68. Lessios HA. 2016. The great Diadema antillarum die-off: 30 years later. Annu. Rev. Mar. Sci. 8:267–83 [Google Scholar]
  69. Liere H, Kim TN, Werling BP, Meehan TD, Landis DA, Gratton C. 2015. Trophic cascades in agricultural landscapes: indirect effects of landscape composition on crop yield. Ecol. Appl. 25:3652–61 [Google Scholar]
  70. McCann KS, Hastings A, Strong DR. 1998. Trophic cascades and trophic trickles in pelagic food webs. Proc. R. Soc. B 265:1392205–9 [Google Scholar]
  71. McCann KS, Rasmussen JB, Umbanhowar J. 2005. The dynamics of spatially coupled food webs. Ecol. Lett. 8:5513–23 [Google Scholar]
  72. McCauley DJ, Young HS, Dunbar RB, Estes JA, Semmens BX, Micheli F. 2012. Assessing the effects of large mobile predators on ecosystem connectivity. Ecol. Appl. 22:61711–17 [Google Scholar]
  73. McQueen DJ, Post JR. 1988. Cascading trophic interactions: uncoupling at the zooplankton-phytoplankton link. Hydrobiologia 159:3277–96 [Google Scholar]
  74. Menge BA. 1995. Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Ecol. Monogr. 65:121–74 [Google Scholar]
  75. Menge BA, Sutherland JP. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130:5730–57 [Google Scholar]
  76. Micheli F. 1999. Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 285:54321396–98 [Google Scholar]
  77. Mittelbach G, Turner A, Hall D, Rettig J, Osenberg C. 1995. Perturbation and resilience: a long-term, whole-lake study of predator extinction and reintroduction. Ecology 76:82347–60 [Google Scholar]
  78. Moran MD, Hurd LE. 1998. A trophic cascade in a diverse arthropod community caused by a generalist arthropod predator. Oecologia 113:1126–32 [Google Scholar]
  79. Myers RA, Worm B. 2003. Rapid worldwide depletion of predatory fish communities. Nature 423:6937280–83 [Google Scholar]
  80. Norrdahl K, Klemola T, Korpimäki E, Koivula M. 2002. Strong seasonality may attenuate trophic cascades: vertebrate predator exclusion in boreal grassland. Oikos 99:3419–30 [Google Scholar]
  81. Novak M, Wootton JT. 2010. Using experimental indices to quantify the strength of species interactions. Oikos 119:71057–63 [Google Scholar]
  82. O'Dowd DJ, Green PT, Lake PS. 2003. Invasional “meltdown” on an oceanic island. Ecol. Lett. 6:9812–17 [Google Scholar]
  83. Oksanen L, Fretwell SD, Arruda J, Niemela P. 1981. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118:240–61 [Google Scholar]
  84. Paine RT. 1980. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49:3667–85Introduces the term trophic cascade. [Google Scholar]
  85. Paine RT. 1988. Food webs: road maps of interactions or grist for theoretical development?. Ecology 69:61648–54 [Google Scholar]
  86. Parmesan C. 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13:91860–72 [Google Scholar]
  87. Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:691837–42 [Google Scholar]
  88. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F. 1998. Fishing down marine food webs. Science 279:5352860–63 [Google Scholar]
  89. Penteriani V, Kuparinen A, del Mar Delgado M, Palomares F, Vicente Lopez-Bao J. et al. 2013. Responses of a top and a meso predator and their prey to moon phases. Oecologia 173:3753–66 [Google Scholar]
  90. Peterson RO, Vucetich JA, Bump JM, Smith DW. 2014. Trophic cascades in a multicausal world: Isle Royale and Yellowstone. Annu. Rev. Ecol. Evol. Syst. 45:325–45 [Google Scholar]
  91. Pimm S. 1982. Food Webs Chicago: Univ. Chicago Press
  92. Polis GA. 1999. Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86:13–15Conceptual synthesis exploring why trophic cascades are expected to be rare and variable. [Google Scholar]
  93. Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28:289–316 [Google Scholar]
  94. Polis GA, Strong DR. 1996. Food web complexity and community dynamics. Am. Nat. 147:5813–46 [Google Scholar]
  95. Post E. 2013. Ecology of Climate Change: The Importance of Biotic Interactions Princeton, NJ: Princeton Univ. Press
  96. Post E, Peterson RO, Stenseth NC, McLaren BE. 1999. Ecosystem consequences of wolf behavioural response to climate. Nature 401:6756905–7 [Google Scholar]
  97. Power ME. 1992. Top-down and bottom-up forces in food webs: Do plants have primacy?. Ecology 73:3733–46 [Google Scholar]
  98. Power ME, Matthews WJ, Stewart AJ. 1985. Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology 66:51448–56 [Google Scholar]
  99. Power ME, Parker MS, Dietrich WE. 2008. Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecol. Monogr. 78:2263–82 [Google Scholar]
  100. Power ME, Parker MS, Wootton JT. 1996. Disturbance and food chain length in rivers. Food Webs: Integration of Patterns and Dynamics GA Polis, KO Winemiller 286–97 New York: Chapman and Hall [Google Scholar]
  101. Preisser EL, Strong DR. 2004. Climate affects predator control of an herbivore outbreak. Am. Nat. 163:5754–62 [Google Scholar]
  102. Preston DL, Mischler JA, Townsend AR, Johnson PTJ. 2016. Disease ecology meets ecosystem science. Ecosystems 19:4737–48 [Google Scholar]
  103. Prugh LR, Golden CD. 2014. Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J. Anim. Ecol. 83:2504–14 [Google Scholar]
  104. Reeve J, Turchin P. 2002. Evidence for predator-prey cycles in a bark beetle. Population Cycles: The Case for Trophic Interactions A Berryman 92–108 Oxford, UK: Oxford Univ. Press [Google Scholar]
  105. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG. et al. 2014. Status and ecological effects of the world's largest carnivores. Science 343:61671241484 [Google Scholar]
  106. Ripple WJ, Estes JA, Schmitz OJ, Constant V, Kaylor MJ. et al. 2016. What is a trophic cascade. Trends Ecol. Evol. 31:11842–49Clarifies and defines the term trophic cascade. [Google Scholar]
  107. Rogers H, Hille Ris Lambers J, Miller R, Tewksbury JJ. 2012. “Natural experiment” demonstrates top-down control of spiders by birds on a landscape level. PLOS ONE 7:9e43446 [Google Scholar]
  108. Rudolf VHW, Rasmussen NL. 2013. Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94:51046–56 [Google Scholar]
  109. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J. et al. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305–32 [Google Scholar]
  110. Schmitz OJ. 1998. Direct and indirect effects of predation and predation risk in old-field interaction webs. Am. Nat. 151:4327–42 [Google Scholar]
  111. Schmitz OJ, Hambäck PA, Beckerman AP. 2000. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am. Nat. 155:2141–53 [Google Scholar]
  112. Schoener TW. 1993. On the relative importance of direct versus indirect effects in ecological communities. Mutualism and Community Organization: Behavioral, Theoretical and Food Web Approaches H Kawanabe, JE Cohen, K Iwasaki 365–411 Oxford, UK: Oxford Univ. Press [Google Scholar]
  113. Schoenly K, Cohen JE. 1991. Temporal variation in food web structure: 16 empirical cases. Ecol. Monogr. 61:3267–98 [Google Scholar]
  114. Schultz JA, Cloutier RN, Côté IM. 2016. Evidence for a trophic cascade on rocky reefs following sea star mass mortality in British Columbia. PeerJ 4:e1980 [Google Scholar]
  115. Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA. et al. 2002. A cross-ecosystem comparison of the strength of trophic cascades. Ecol. Lett. 5:6785–91 [Google Scholar]
  116. Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL. 2012. Warming shifts top-down and bottom-up control of pond food web structure and function. Philos. Trans. R. Soc. B 367:16053008–17 [Google Scholar]
  117. Shurin JB, Gruner DS, Hillebrand H. 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc. R. Soc. B 273:15821–9Mechanistic perspective on differences in cascade strength between ecosystems. [Google Scholar]
  118. Shurin JB, Seabloom EW. 2005. The strength of trophic cascades across ecosystems: predictions from allometry and energetics. J. Anim. Ecol. 74:61029–38 [Google Scholar]
  119. Spiller DA, Schoener TW. 2007. Alteration of island food-web dynamics following major disturbance by hurricanes. Ecology 88:137–41 [Google Scholar]
  120. Spiller DA, Schoener TW, Piovia-Scott J. 2016. Predators suppress herbivore outbreaks and enhance plant recovery following hurricanes. Ecology 97:102540–46 [Google Scholar]
  121. Springer AM, Estes JA, van Vliet GB, Williams TM, Doak DF. et al. 2003. Sequential megafaunal collapse in the North Pacific Ocean: An ongoing legacy of industrial whaling?. PNAS 100:2112223–28 [Google Scholar]
  122. Stier AC, Samhouri JF, Novak M, Marshall KN, Ward EJ. et al. 2016. Ecosystem context and historical contingency in apex predator recoveries. Sci. Adv. 2:5e1501769 [Google Scholar]
  123. Strong DR. 1992. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73:3747–54Outlines many of the factors driving variation in the strength of trophic cascades. [Google Scholar]
  124. Sumption KJ, Flowerdew JR. 1985. The ecological effects of the decline in rabbits (Oryctolagus cuniculus L.) due to myxomatosis. Mammal Rev 15:4151–86 [Google Scholar]
  125. Svenning J-C, Pedersen PBM, Donlan CJ, Ejrnæs R, Faurby S. et al. 2015. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. PNAS 113:898–906 [Google Scholar]
  126. Takimoto G, Iwata T, Murakami M. 2009. Timescale hierarchy determines the indirect effects of fluctuating subsidy inputs on in situ resources. Am. Nat. 173:2200–11 [Google Scholar]
  127. Terborgh J, Estes JA. 2010. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature Washington, DC: Island Press [Google Scholar]
  128. Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS. et al. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535:7611241–45 [Google Scholar]
  129. Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ. et al. 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16:123304–13 [Google Scholar]
  130. Townsend CR. 2003. Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conserv. Biol. 17:138–47 [Google Scholar]
  131. Turchin P, Taylor AD, Reeve JD. 1999. Dynamical role of predators in population cycles of a forest insect: an experimental test. Science 285:54301068–71 [Google Scholar]
  132. van der Stap I, Vos M, Verschoor AM, Helmsing NR, Mooij WM. 2007. Induced defenses in herbivores and plants differentially modulate a trophic cascade. Ecology 88:102474–81 [Google Scholar]
  133. Vellend M. 2010. Conceptual synthesis in community ecology. Q. Rev. Biol. 85:2183–206 [Google Scholar]
  134. Werner EE, Gilliam JF. 1984. The ontogenetic niche and species interactions in size-structured populations. Annu. Rev. Ecol. Syst. 15:393–425 [Google Scholar]
  135. Werner EE, Peacor SD. 2003. A review of trait-mediated indirect interactions in ecological communities. Ecology 84:51083–1100 [Google Scholar]
  136. Williams JW, Jackson ST. 2007. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5:9475–82 [Google Scholar]
  137. Wood EM, Pidgeon AM. 2015. Extreme variations in spring temperature affect ecosystem regulating services provided by birds during migration. Ecosphere 6:111–16 [Google Scholar]
  138. Wootton JT. 1994. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25:443–66 [Google Scholar]
  139. Wootton JT, Parker MS, Power ME. 1996. Effects of disturbance on river food webs. Science 273:52811558–61 [Google Scholar]
  140. Wootton JT, Pfister CA, Forester JD. 2008. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. PNAS 105:4818848–53 [Google Scholar]
  141. Yang LH, Bastow JL, Spence KO, Wright AN. 2008. What can we learn from resource pulses?. Ecology 89:3621–34 [Google Scholar]
  142. Yang LH, Edwards K, Byrnes JE, Bastow JL, Wright AN, Spence KO. 2010. A meta-analysis of resource pulse-consumer interactions. Ecol. Mon. 80:1125–51 [Google Scholar]
  143. Yang LH, Rudolf VHW. 2010. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13:11–10 [Google Scholar]
  144. Yodzis P, Innes S. 1992. Body size and consumer-resource dynamics. Am. Nat. 139:61151–75 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-121415-032246
Loading
/content/journals/10.1146/annurev-ecolsys-121415-032246
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error