1932

Abstract

Arctic sea ice has declined precipitously in both extent and thickness over the past four decades; by contrast, Antarctic sea ice has shown little overall change, but this masks large regional variability. Climate models have not captured these changes. But these differences do not represent a paradox. The processes governing, and impacts of, natural variability and human-induced changes differ markedly at the poles largely because of the ways in which differences in geography control the properties of and interactions among the atmosphere, ice, and ocean. The impact of natural variability on the ice cover is large at both poles, so modeled ice trends are not entirely inconsistent with contributions from both natural variability and anthropogenic forcing. Despite this concurrence, the coupling of natural climate variability, climate feedbacks, and sea ice is not well understood, and significant biases remain in model representations of the ice cover and the processes that drive it.

Keyword(s): AntarcticArcticclimatesatellitesea ice
Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010816-060610
2019-01-03
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-010816-060610.html?itemId=/content/journals/10.1146/annurev-marine-010816-060610&mimeType=html&fmt=ahah

Literature Cited

  1. Abram NJ, Thomas ER, McConnell JR, Mulvaney R, Bracegirdle TJ et al. 2010. Ice core evidence for a 20th century decline of sea ice in the Bellingshausen Sea, Antarctica. J. Geophys. Res. Atmos. 115:D23101
    [Google Scholar]
  2. Armour KC, Marshall J, Scott JR, Donohoe A, Newsom ER 2016. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9:549–54
    [Google Scholar]
  3. Arndt S, Willmes S, Dierking W, Nicolaus M 2016. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations. J. Geophys. Res. Oceans 121:5916–30
    [Google Scholar]
  4. Arzel O, Fichefet T, Goosse H 2006. Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Model 12:401–15
    [Google Scholar]
  5. Bintanja R, Graversen RG, Hazeleger W 2011. Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat. Geosci. 4:758–61
    [Google Scholar]
  6. Bintanja R, van Oldenborgh GJ, Drijfhout SS, Wouters B, Katsman CA 2013. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6:376–79
    [Google Scholar]
  7. Bitz CM, Roe GH 2004. A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Clim. 17:3623–32
    [Google Scholar]
  8. Boe JL, Hall A, Qu X 2009. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci. 2:341–43
    [Google Scholar]
  9. Bracegirdle TJ, Connolley WM, Turner J 2008. Antarctic climate change over the twenty first century. J. Geophys. Res. Atmos. 113:D03103
    [Google Scholar]
  10. Cao YF, Liang SL, Chen XN, He T, Wang DD, Cheng X 2017. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting. Sci. Rep. 7:8462
    [Google Scholar]
  11. Carmack E, Polyakov I, Padman L, Fer I, Hunke E et al. 2015. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Am. Meteorol. Soc. 96:2079–105
    [Google Scholar]
  12. Cavalieri DJ, Parkinson CL 2008. Antarctic sea ice variability and trends, 1979–2006. J. Geophys. Res. Oceans 113:C07004
    [Google Scholar]
  13. Cavalieri DJ, Parkinson CL, Vinnikov KY 2003. 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett. 30:1970
    [Google Scholar]
  14. Comiso JC 2017. Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 3 Data Set NSIDC-0079, NASA Natl. Snow Ice Data Cent Distrib. Act. Arch. Cent Boulder, CO: Accessed July 2018. https://doi.org/10.5067/7Q8HCCWS4I0R
    [Crossref]
  15. Comiso JC, Gersten RA, Stock LV, Turner J, Perez GJ, Cho K 2017. Positive trend in the Antarctic sea ice cover and associated changes in surface temperature. J. Clim. 30:2251–67
    [Google Scholar]
  16. Comiso JC, Nishio F 2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Oceans 113:C02S07
    [Google Scholar]
  17. Comiso JC, Parkinson CL, Gersten R, Stock L 2008. Accelerated decline in the Arctic Sea ice cover. Geophys. Res. Lett. 35:L01703
    [Google Scholar]
  18. Curran MAJ, van Ommen TD, Morgan VI, Phillips KL, Palmer AS 2003. Ice core evidence for Antarctic sea ice decline since the 1950s. Science 302:1203–6
    [Google Scholar]
  19. de la Mare WK 2009. Changes in Antarctic sea-ice extent from direct historical observations and whaling records. Clim. Change 92:461–93
    [Google Scholar]
  20. Ding QH, Schweiger A, L'Heureux M, Battisti DS, Po-Chedley S et al. 2017. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Change 7:289–95
    [Google Scholar]
  21. Edinburgh T, Day JJ 2016. Estimating the extent of Antarctic summer sea ice during the Heroic Age of Antarctic Exploration. Cryosphere 10:2721–30
    [Google Scholar]
  22. Eisenman I, Schneider T, Battisti DS, Bitz CM 2011. Consistent changes in the sea ice seasonal cycle in response to global warming. J. Clim. 24:5325–35
    [Google Scholar]
  23. Fan TT, Deser C, Schneider DP 2014. Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett. 41:2419–26
    [Google Scholar]
  24. Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A 2015. Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28:1206–26
    [Google Scholar]
  25. Fichefet T, Maqueda MAM 1999. Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim. Dyn. 15:251–68
    [Google Scholar]
  26. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC et al. 2013. Evaluation of climate models. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.741–866 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  27. Francis JA, Hunter E 2006. New insight into the disappearing Arctic sea ice. Eos Trans. AGU 87:509–11
    [Google Scholar]
  28. Frey KE, Moore GWK, Cooper LW, Grebmeier JM 2015. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region. Prog. Oceanogr. 136:32–49
    [Google Scholar]
  29. Gallaher DW, Campbell GG, Meier WN 2014. Anomalous variability in Antarctic sea ice extents during the 1960s with the use of Nimbus data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7:881–87
    [Google Scholar]
  30. Gong TT, Feldstein S, Lee S 2017. The role of downward infrared radiation in the recent Arctic winter warming trend. J. Clim. 30:4937–49
    [Google Scholar]
  31. Goosse H, Kay JE, Armour KC, Bodas-Salcedo A, Chepfer H et al. 2018. Quantifying climate feedbacks in polar regions. Nat. Commun. 9:1919
    [Google Scholar]
  32. Goosse H, Zunz V 2014. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback. Cryosphere 8:453–70
    [Google Scholar]
  33. Graham RM, Cohen L, Petty AA, Boisvert LN, Rinke A et al. 2017. Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett. 44:6974–83
    [Google Scholar]
  34. Gregory JM, Stott PA, Cresswell DJ, Rayner NA, Gordon C, Sexton DMH 2002. Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett. 29:28–14
    [Google Scholar]
  35. Haumann FA, Gruber N, Munnich M, Frenger I, Kern S 2016. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537:89–92
    [Google Scholar]
  36. Hobbs WR, Massom R, Stammerjohn SE, Reid P, Williams G, Meier W 2016. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Change 143:228–50
    [Google Scholar]
  37. Holland MM 2013. The great sea-ice dwindle. Nat. Geosci. 6:10–11
    [Google Scholar]
  38. Holland MM, Bitz CM, Tremblay B 2006. Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett. 33:L23503
    [Google Scholar]
  39. Holland MM, Landrum L, Raphael M, Stammerjohn SE 2017. Springtime winds drive Ross Sea ice variability and change in the following autumn. Nat. Commun. 8:731
    [Google Scholar]
  40. Holland PR 2014. The seasonality of Antarctic sea ice trends. Geophys. Res. Lett. 41:4230–37
    [Google Scholar]
  41. Holland PR, Bruneau N, Enright C, Losch M, Kurtz NT, Kwok R 2014. Modeled trends in Antarctic sea ice thickness. J. Clim. 27:3784–801
    [Google Scholar]
  42. Holland PR, Kwok R 2012. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 5:872–75
    [Google Scholar]
  43. Hosking JS, Orr A, Marshall GJ, Turner J, Phillips T 2013. The influence of the Amundsen-Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26:6633–48
    [Google Scholar]
  44. Ivanov V, Alexeev V, Koldunov NV, Repina I, Sando AB et al. 2016. Arctic Ocean heat impact on regional ice decay: a suggested positive feedback. J. Phys. Oceanogr. 46:1437–56
    [Google Scholar]
  45. Ivanova N, Pedersen LT, Tonboe RT, Kern S, Heygster G et al. 2015. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere 9:1797–817
    [Google Scholar]
  46. Jackson JM, Williams WJ, Carmack EC 2012. Winter sea-ice melt in the Canada Basin, Arctic Ocean. Geophys. Res. Lett. 39:L03603
    [Google Scholar]
  47. Jacobs SS, Comiso JC 1997. Climate variability in the Amundsen and Bellingshausen Seas. J. Clim. 10:697–709
    [Google Scholar]
  48. Jacobs SS, Giulivi CF 2010. Large multidecadal salinity trends near the Pacific-Antarctic continental margin. J. Clim. 23:4508–24
    [Google Scholar]
  49. Jahn A, Kay JE, Holland MM, Hall DM 2016. How predictable is the timing of a summer ice-free Arctic. Geophys. Res. Lett. 43:9113–20
    [Google Scholar]
  50. Jeffries MO, Krouse HR, Hurst-Cushing B, Maksym T 2001. Snow-ice accretion and snow-cover depletion on Antarctic first-year sea-ice floes. Ann. Glaciol. 33:51–60
    [Google Scholar]
  51. Kashiwase H, Ohshima KI, Nihashi S, Eicken H 2017. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. Sci. Rep. 7:8170
    [Google Scholar]
  52. Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS et al. 2009. Recent warming reverses long-term arctic cooling. Science 325:1236–39
    [Google Scholar]
  53. Kay JE, Holland MM, Jahn A 2011. Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett. 38:L15708
    [Google Scholar]
  54. Kinnard C, Zdanowicz CM, Fisher DA, Isaksson E, de Vernal A, Thompson LG 2011. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479:509–12
    [Google Scholar]
  55. Kohout AL, Williams MJM, Dean SM, Meylan MH 2014. Storm-induced sea-ice breakup and the implications for ice extent. Nature 509:604–7
    [Google Scholar]
  56. Kohyama T, Hartmann DL 2016. Antarctic sea ice response to weather and climate modes of variability. J. Clim. 29:721–41
    [Google Scholar]
  57. Kwok R 2011. Observational assessment of Arctic Ocean sea ice motion, export, and thickness in CMIP3 climate simulations. J. Geophys. Res. Oceans 116:C00D05
    [Google Scholar]
  58. Kwok R, Comiso JC, Lee T, Holland PR 2016. Linked trends in the South Pacific sea ice edge and Southern Oscillation Index. Geophys. Res. Lett. 43:10295–302
    [Google Scholar]
  59. Kwok R, Cunningham GF 2015. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. A 373:20140157
    [Google Scholar]
  60. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res. Oceans 114:C07005
    [Google Scholar]
  61. Kwok R, Rothrock DA 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett. 36:L15501
    [Google Scholar]
  62. Kwok R, Spreen G, Pang S 2013. Arctic sea ice circulation and drift speed: decadal trends and ocean currents. J. Geophys. Res. Oceans 118:2408–25
    [Google Scholar]
  63. Lecomte O, Goosse H, Fichefet T, de Lavergne C, Barthelemy A, Zunz V 2017. Vertical ocean heat redistribution sustaining sea-ice concentration trends in the Ross Sea. Nat. Commun. 8:258
    [Google Scholar]
  64. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W et al. 2008. Tipping elements in the Earth's climate system. PNAS 105:1786–93
    [Google Scholar]
  65. Li XL, Holland DM, Gerber EP, Yoo C 2014. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 505:538–42
    [Google Scholar]
  66. Liu JP, Curry JA 2010. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. PNAS 107:14987–92
    [Google Scholar]
  67. Maksym T, Markus T 2008. Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. J. Geophys. Res. Oceans 113:C02S12
    [Google Scholar]
  68. Maksym T, Stammerjohn SE, Ackley S, Massom R 2012. Antarctic sea ice—a polar opposite. Oceanography 25:3140–51
    [Google Scholar]
  69. Martinson DG 2012. Antarctic circumpolar current's role in the Antarctic ice system: an overview. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335:71–74
    [Google Scholar]
  70. Martinson DG, Iannuzzi RA 1998. Antarctic ocean-ice interaction: implications from ocean bulk property distributions in the Weddell gyre. Antarctic Sea Ice: Physical Processes, Interactions, and Variability MO Jeffries 243–71 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  71. Maslanik J, Stroeve J, Fowler C, Emery W 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett. 38:L13502
    [Google Scholar]
  72. Maslowski W, Kinney JC, Higgins M, Roberts A 2012. The future of Arctic sea ice. Annu. Rev. Earth Planet. Sci. 40:625–54
    [Google Scholar]
  73. Massom RA, Stammerjohn SE, Smith RC, Pook MJ, Iannuzzi RA et al. 2006. Extreme anomalous atmospheric circulation in the West Antarctic Peninsula region in austral spring and summer 2001/02, and its profound impact on sea ice and biota. J. Clim. 19:3544–71
    [Google Scholar]
  74. Massonnet F, Fichefet T, Goosse H, Bitz CM, Philippon-Berthier G et al. 2012. Constraining projections of summer Arctic sea ice. Cryosphere 6:1383–94
    [Google Scholar]
  75. Massonnet F, Mathiot P, Fichefet T, Goosse H, Beatty CK et al. 2013. A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980–2008 using data assimilation. Ocean Model 64:67–75
    [Google Scholar]
  76. Matear RJ, O'Kane TJ, Risbey JS, Chamberlain M 2015. Sources of heterogeneous variability and trends in Antarctic sea-ice. Nat. Commun. 6:8656
    [Google Scholar]
  77. Maykut GA, Untersteiner N 1971. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 76:1550–75
    [Google Scholar]
  78. Meehl GA, Arblaster JM, Bitz CM, Chung CTY, Teng HY 2016. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 9:590–95
    [Google Scholar]
  79. Meier WN 2017. Losing Arctic sea ice: observations of the recent decline and the long-term context. Sea Ice, ed. DN Thomas 290–303 Chichester, UK: Wiley & Sons
  80. Meier WN, Gallaher D, Campbell GG 2013. New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere 7:699–705
    [Google Scholar]
  81. Meier WN, Hovelsrud GK, van Oort BEH, Key JR, Kovacs KM et al. 2014. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52:185–217
    [Google Scholar]
  82. Meredith MP, King JC 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32:L19604
    [Google Scholar]
  83. Min SK, Zhang XB, Zwiers FW, Agnew T 2008. Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett. 35:L21701
    [Google Scholar]
  84. Notz D, Marotzke J 2012. Observations reveal external driver for Arctic sea-ice retreat. Geophys. Res. Lett. 39:L08502
    [Google Scholar]
  85. Notz D, Stroeve J 2016. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354:747–50
    [Google Scholar]
  86. Ogi M, Yamazaki K, Wallace JM 2010. Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett. 37:L07701
    [Google Scholar]
  87. Overland JE, Wang MY 2013. When will the summer Arctic be nearly sea ice free. Geophys. Res. Lett. 40:2097–101
    [Google Scholar]
  88. Park HS, Lee S, Son SW, Feldstein SB, Kosaka Y 2015. The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. J. Clim. 28:5030–40
    [Google Scholar]
  89. Parkinson CL, Cavalieri DJ 2008. Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. Oceans 113:C07003
    [Google Scholar]
  90. Parkinson CL, Comiso JC 2013. On the 2012 record low Arctic sea ice cover: combined impact of preconditioning and an August storm. Geophys. Res. Lett. 40:1356–61
    [Google Scholar]
  91. Peralta-Ferriz C, Woodgate RA 2017. The dominant role of the East Siberian Sea in driving the oceanic flow through the Bering Strait—conclusions from GRACE ocean mass satellite data and in situ mooring observations between 2002 and 2016. Geophys. Res. Lett. 44:11472–81
    [Google Scholar]
  92. Perovich DK, Grenfell TC, Light B, Hobbs PV 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res. Oceans 107:8044
    [Google Scholar]
  93. Perovich DK, Jones KF, Light B, Eicken H, Markus T et al. 2011. Solar partitioning in a changing Arctic sea-ice cover. Ann. Glaciol. 52:192–96
    [Google Scholar]
  94. Perovich DK, Polashenski C 2012. Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett. 39:L08501
    [Google Scholar]
  95. Perovich DK, Richter-Menge JA 2015. Regional variability in sea ice melt in a changing Arctic. Philos. Trans. R. Soc. A 373:20140165
    [Google Scholar]
  96. Perovich DK, Richter-Menge JA, Jones KF, Light B 2008. Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett. 35:L11501
    [Google Scholar]
  97. Pithan F, Mauritsen T 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7:181–84
    [Google Scholar]
  98. Polvani LM, Smith KL 2013. Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett. 40:3195–99
    [Google Scholar]
  99. Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356:285–91
    [Google Scholar]
  100. Polyakov IV, Pnyushkov AV, Timokhov LA 2012. Warming of the intermediate Atlantic water of the Arctic Ocean in the 2000s. J. Clim. 25:8362–70
    [Google Scholar]
  101. Pope JO, Holland PR, Orr A, Marshall GJ, Phillips T 2017. The impacts of El Niño on the observed sea ice budget of West Antarctica. Geophys. Res. Lett. 44:6200–8
    [Google Scholar]
  102. Rampal P, Weiss J, Dubois C, Campin JM 2011. IPCC climate models do not capture Arctic sea ice drift acceleration: consequences in terms of projected sea ice thinning and decline. J. Geophys. Res. Oceans 116:C00D07
    [Google Scholar]
  103. Raphael MN, Marshall GJ, Turner J, Fogt RL, Schneider D et al. 2016. The Amundsen Sea low: variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97:111–21
    [Google Scholar]
  104. Reid P, Massom RA 2015. Successive Antarctic sea ice extent records during 2012, 2013, and 2014. Bull. Am. Meteorol. Soc. 96:7S163–64
    [Google Scholar]
  105. Ricker R, Hendricks S, Girard-Ardhuin F, Kaleschke L, Lique C et al. 2017. Satellite-observed drop of Arctic sea ice growth in winter 2015–2016. Geophys. Res. Lett. 44:3236–45
    [Google Scholar]
  106. Rigor IG, Wallace JM 2004. Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett. 31:L09401
    [Google Scholar]
  107. Rigor IG, Wallace JM, Colony RL 2002. Response of sea ice to the Arctic oscillation. J. Clim. 15:2648–63
    [Google Scholar]
  108. Rothrock DA, Percival DB, Wensnahan M 2008. The decline in Arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. J. Geophys. Res. Oceans 113:C05003
    [Google Scholar]
  109. Santer BD, Wigley TML, Gaffen DJ, Bengtsson L, Doutriaux C et al. 2000. Interpreting differential temperature trends at the surface and in the lower troposphere. Science 287:1227–32
    [Google Scholar]
  110. Screen JA, Simmonds I 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–37
    [Google Scholar]
  111. Serreze MC, Barrett AP 2011. Characteristics of the Beaufort Sea High. J. Clim. 24:159–82
    [Google Scholar]
  112. Serreze MC, Barry RG 2011. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77:85–96
    [Google Scholar]
  113. Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E et al. 2006. Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett. 33:L08605
    [Google Scholar]
  114. Simmonds I 2015. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol. 56:18–28
    [Google Scholar]
  115. Simpkins GR 2017. Extreme Arctic heat. Nat. Clim. Change 7:95
    [Google Scholar]
  116. Simpkins GR, Ciasto LM, England MH 2013. Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophys. Res. Lett. 40:3643–48
    [Google Scholar]
  117. Simpkins GR, Ciasto LM, Thompson DWJ, England MH 2012. Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J. Clim. 25:5451–69
    [Google Scholar]
  118. Smedsrud LH, Halvorsen MH, Stroeve JC, Zhang R, Kloster K 2017. Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere 11:65–79
    [Google Scholar]
  119. Stammerjohn SE, Maksym T 2017. Gaining (and losing) Antarctic sea ice: variability, trends and mechanisms. Sea Ice, ed. DN Thomas 261–89 Chichester, UK: Wiley & Sons
  120. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. Oceans 113:C03S90
    [Google Scholar]
  121. Stammerjohn SE, Massom R, Rind D, Martinson D 2012. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39:L06501
    [Google Scholar]
  122. Steele M, Boyd T 1998. Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res. Oceans 103:10419–35
    [Google Scholar]
  123. Stroeve JC, Barrett A, Serreze M, Schweiger A 2014.a Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. Cryosphere 8:1839–54
    [Google Scholar]
  124. Stroeve JC, Holland MM, Meier W, Scambos T, Serreze M 2007. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34:L09501
    [Google Scholar]
  125. Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T et al. 2012.a Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39:L16502
    [Google Scholar]
  126. Stroeve JC, Markus T, Boisvert L, Miller J, Barrett A 2014.b Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett. 41:1216–25
    [Google Scholar]
  127. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP 2012.b The Arctic's rapidly shrinking sea ice cover: a research synthesis. Clim. Change 110:1005–27
    [Google Scholar]
  128. Stuecker MF, Bitz CM, Armour KC 2017. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett. 44:9008–19
    [Google Scholar]
  129. Swart NC 2015. Influence of internal variability on Arctic sea-ice trends. Nat. Clim. Change 5:86–89
    [Google Scholar]
  130. Swart NC, Fyfe JC 2013. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett. 40:4328–32
    [Google Scholar]
  131. Thomas ER, Abram NJ 2016. Ice core reconstruction of sea ice change in the Amundsen-Ross Seas since 1702 A.D. Geophys. Res. Lett. 43:5309–17
    [Google Scholar]
  132. Thompson DWJ, Solomon S 2002. Interpretation of recent Southern Hemisphere climate change. Science 296:895–99
    [Google Scholar]
  133. Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4:741–49
    [Google Scholar]
  134. Thompson DWJ, Wallace JM 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25:1297–300
    [Google Scholar]
  135. Tilling RL, Ridout A, Shepherd A, Wingham DJ 2015. Increased Arctic sea ice volume after anomalously low melting in 2013. Nat. Geosci. 8:643–46
    [Google Scholar]
  136. Tschudi M, Fowler C, Maslanik J, Stewart JS, Meier W 2016.a EASE-grid sea ice age, version 3 Data Set NSIDC-0611, NASA Natl. Snow Ice Data Cent. Distrib. Act. Arch. Cent Boulder, CO: Accessed Jan. 2018. https://doi.org/10.5067/PFSVFZA9Y85G
    [Crossref]
  137. Tschudi M, Fowler C, Maslanik J, Stewart JS, Meier W 2016.b Polar Pathfinder daily 25 km EASE-grid sea ice motion vectors, version 3 Data Set NSIDC-0116, NASA Natl. Snow Ice Data Cent. Distrib. Act. Arch. Cent Boulder, CO: Accessed Jan. 2018. https://doi.org/10.5067/O57VAIT2AYYY
    [Crossref]
  138. Turner J, Bracegirdle TJ, Phillips T, Marshall GJ, Hosking JS 2013. An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Clim. 26:1473–84
    [Google Scholar]
  139. Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle T et al. 2009. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 36:L08502
    [Google Scholar]
  140. Uotila P, Vihma T, Pezza AB, Simmonds I, Keay K, Lynch AH 2011. Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data. J. Geophys. Res. Atmos. 116:D07109
    [Google Scholar]
  141. Walsh JE, Fetterer F, Scott SJ, Chapman WL 2017. A database for depicting Arctic sea ice variations back to 1850. Geogr. Rev. 107:89–107
    [Google Scholar]
  142. Wang J, Zhang JL, Watanabe E, Ikeda M, Mizobata K et al. 2009. Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent. Geophys. Res. Lett. 36:L05706
    [Google Scholar]
  143. Watanabe E, Wang J, Sumi A, Hasumi H 2006. Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century. Geophys. Res. Lett. 33:L23703
    [Google Scholar]
  144. Webster MA, Rigor IG, Nghiem SV, Kurtz NT, Farrell SL et al. 2014. Interdecadal changes in snow depth on Arctic sea ice. J. Geophys. Res. Oceans 119:5395–406
    [Google Scholar]
  145. Williams G, Maksym T, Wilkinson J, Kunz C, Murphy C et al. 2015. Thick and deformed Antarctic sea ice mapped with autonomous underwater vehicles. Nat. Geosci. 8:61–67
    [Google Scholar]
  146. Woodgate RA 2018. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog. Oceanogr. 160:124–54
    [Google Scholar]
  147. Woodgate RA, Weingartner TJ, Lindsay R 2012. Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys. Res. Lett. 39:L24603
    [Google Scholar]
  148. Woods C, Caballero R 2016. The role of moist intrusions in winter Arctic warming and sea ice decline. J. Clim. 29:4473–85
    [Google Scholar]
  149. Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL 2008. Thickness distribution of Antarctic sea ice. J. Geophys. Res. Oceans 113:C05S92
    [Google Scholar]
  150. Yuan NM, Ding MH, Ludescher J, Bunde A 2017. Increase of the Antarctic sea ice extent is highly significant only in the Ross Sea. Sci. Rep. 7:41096
    [Google Scholar]
  151. Yuan XJ 2004. ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct. Sci. 16:415–25
    [Google Scholar]
  152. Zhang JL 2007. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J. Clim. 20:2515–29
    [Google Scholar]
  153. Zhang JL 2014. Modeling the impact of wind intensification on Antarctic sea ice volume. J. Clim. 27:202–14
    [Google Scholar]
  154. Zunz V, Goosse H, Massonnet F 2013. How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent?. Cryosphere 7:451–68
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010816-060610
Loading
/content/journals/10.1146/annurev-marine-010816-060610
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error