1932

Abstract

Sustainable production of healthy food for a growing global population, in the face of the uncertainties of climate change, represents a major challenge for the coming decade. Livestock provide food with high nutritional value but are frequently fed on human-edible crops and are associated with significant production of greenhouse gases. Recent years have seen increasing interest in the farming of insects as a sustainable source of human food, or as a replacement of ingredients such as soya or fishmeal in the feeds of terrestrial livestock or fish. This review provides an overview of insect physiology and growth regulation, considers the requirements for insect farming and mass production, and summarizes the nutritional value of the 10 most commonly studied insect species, before reviewing the literature on the use of insects as feed and food. We highlight the challenges required to develop a sustainable, safe, and affordable insect farming industry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-083930
2021-02-15
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/animal/9/1/annurev-animal-021419-083930.html?itemId=/content/journals/10.1146/annurev-animal-021419-083930&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Food Agric. Organ. 2013. The state of food and agriculture Exec. Summ., Food Agric. Organ. Rome:
  2. 2. 
    Willett W, Rockström J, Loken B, Springmann M, Lang T et al. 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393:447–92
    [Google Scholar]
  3. 3. 
    World Health Organ. 2018. Global Nutrition Policy Review 20162017 Geneva: World Health Organ.
    [Google Scholar]
  4. 4. 
    Oonincx DGAB, de Boer IJM. 2012. Environmental impact of the production of mealworms as a protein source for humans—a life cycle assessment. PLOS ONE 7:12e51145
    [Google Scholar]
  5. 5. 
    Speedy AW. 2003. Global production and consumption of animal source foods. J. Nutr. 133:114048–53
    [Google Scholar]
  6. 6. 
    van Huis A. 2016. Edible insects are the future?. Proc. Nutr. Soc. 75:294–305
    [Google Scholar]
  7. 7. 
    van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A et al. 2013. See Reference 8 67–80
  8. 8. 
    van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A et al. 2013. Edible insects: future prospects for food and feed security For. Pap. 171, Food Agric. Organ., Rome
  9. 9. 
    Gasco L, Biancarosa I, Liland NS 2020. From waste to feed: a review of recent knowledge on insects as producers of protein and fat for animal feeds. Curr. Opin. Green Sustain. Chem. 23:67–79
    [Google Scholar]
  10. 10. 
    Chapman RF. 2013. The Insects: Structure and Function Cambridge, UK: Cambridge Univ. Press 5th ed.
  11. 11. 
    Reynolds S. 2013. Postembryonic development. See Reference 10 399–455
  12. 12. 
    Chapman RF, de Boer G 1995. Regulatory Mechanisms in Insect Feeding Dordrecht, Neth.: Springer Sci. Bus. Media 1st ed.
  13. 13. 
    Douglas A. 2013. Alimentary canal, digestion and absorption. See Reference 10 46–80
  14. 14. 
    Tokuda G, Watanabe H. 2007. Hidden cellulases in termites: revision of an old hypothesis. Biol. Lett. 3:3336–39
    [Google Scholar]
  15. 15. 
    Li L, Zhao Z, Liu H 2013. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronaut 92:1103–9
    [Google Scholar]
  16. 16. 
    Bozek M, Hanus-Lorenz B, Rybak J 2017. The studies on waste biodegradation by Tenebrio molitor. E3S Web Conf 17:00011
    [Google Scholar]
  17. 17. 
    Mirth CK, Riddiford LM. 2007. Size assessment and growth control: how adult size is determined in insects. BioEssays 29:4344–55
    [Google Scholar]
  18. 18. 
    Koyama T, Mirth CK. 2018. Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. Curr. Opin. Insect Sci. 25:1–8
    [Google Scholar]
  19. 19. 
    Dabour N, Bando T, Nakamura T, Miyawaki K, Mito T et al. 2011. Cricket body size is altered by systemic RNAi against insulin signaling components and epidermal growth factor receptor. Dev. Growth Differ. 53:7857–69
    [Google Scholar]
  20. 20. 
    Oldham S, Hafen E. 2003. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol 13:279–85
    [Google Scholar]
  21. 21. 
    Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK 2009. The TOR pathway comes of age. Biochim. Biophys. Acta 1790:101067–74
    [Google Scholar]
  22. 22. 
    Hyun S. 2018. Body size regulation by maturation steroid hormones: a Drosophila perspective. Front. Zool. 15:44
    [Google Scholar]
  23. 23. 
    Nijhout HF, Williams CM. 1974. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): cessation of juvenile hormone secretion as a trigger for pupation. J. Exp. Biol. 61:493–501
    [Google Scholar]
  24. 24. 
    Li K, Jia QQ, Li S 2019. Juvenile hormone signaling—a mini review. Insect Sci 26:4600–6
    [Google Scholar]
  25. 25. 
    Riddiford LM. 2009. Molting. Encyclopedia of Insects V Resh, R Cardé 649–54 San Diego: Academic
    [Google Scholar]
  26. 26. 
    Korb J, Belles X. 2017. Juvenile hormone and hemimetabolan. Curr. Opin. Insect Sci. 22:109–16
    [Google Scholar]
  27. 27. 
    Steiger S, Stökl J. 2018. Pheromones regulating reproduction in subsocial beetles: insights with references to eusocial insects. J. Chem. Ecol. 44:9785–95
    [Google Scholar]
  28. 28. 
    Chole H, Woodard SH, Bloch G 2019. Body size variation in bees: regulation, mechanisms, and relationship to social organization. Curr. Opin. Insect Sci. 35:77–87
    [Google Scholar]
  29. 29. 
    Jindra M, Bittova L. 2020. The juvenile hormone receptor as a target of juvenoid “insect growth regulators. .” Arch. Insect Biochem. Physiol. 103:3e21615
    [Google Scholar]
  30. 30. 
    Li S, Yu X, Feng Q 2019. Fat body biology in the last decade. Annu. Rev. Entomol. 64:315–33
    [Google Scholar]
  31. 31. 
    Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y et al. 2007. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. PNAS 104:177128–33
    [Google Scholar]
  32. 32. 
    Tang B, Wang S, Wang S-G, Wang H-J, Zhang J-Y, Cui S-Y 2018. Invertebrate trehalose-6-phosphate synthase gene: genetic architecture, biochemistry, physiological function, and potential applications. Front. Physiol. 9:30
    [Google Scholar]
  33. 33. 
    Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI, Tedders WL 2010. Developmental plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): analysis of instar variation in number and development time under different diets. J. Entomol. Sci. 45:275–90
    [Google Scholar]
  34. 34. 
    Shelton AM, Long SJ, Walker AS, Bolton M, Collins HL et al. 2020. First field release of a genetically engineered, self-limiting agricultural pest insect: evaluating its potential for future crop protection. Front. Bioeng. Biotechnol. 7:482
    [Google Scholar]
  35. 35. 
    IPIFF. 2019. The European insect sector today: challenges, opportunities and regulatory landscape: IPIFF vision paper on the future of the insect sector towards 2030 Vis. Pap., IPIFF, Brussels. https://ipiff.org/wp-content/uploads/2019/12/2019IPIFF_VisionPaper_updated.pdf
  36. 36. 
    Oonincx DGAB van Itterbeeck J, Heetkamp MJW, van den Brand H, van Loon JJA, van Huis A 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLOS One 5:12 e14445
    [Google Scholar]
  37. 37. 
    Gahukar RT. 2016. Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. Insects as Sustainable Food Ingredients: Production, Processing and Food Applications AT Dossey, JA Morales-Ramos, MG Rojas 85–111 Cambridge, MA: Academic
    [Google Scholar]
  38. 38. 
    van Huis A, Oonincx DGAB 2017. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 37:43
    [Google Scholar]
  39. 39. 
    Fanzo J, Davis C, McLaren R, Choufani J 2018. The effect of climate change across food systems: implications for nutrition outcomes. Glob. Food Secur. 18:12–19
    [Google Scholar]
  40. 40. 
    Ortiz JAC, Ruiz AT, Thomas M, Rojas MG, Tomberlin JK et al. 2016. Insect mass production technologies. Insects as Sustainable Food Ingredients: Production, Processing and Food Applications AT Dossey, JA Morales-Ramos, MG Rojas 153–201 Cambridge, MA: Academic
    [Google Scholar]
  41. 41. 
    Melgar-Lalanne G, Hernández-Álvarez AJ, Salinas-Castro A 2019. Edible insects processing: traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 18:1166–91
    [Google Scholar]
  42. 42. 
    Rumpold BA, Schlüter OK. 2013. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 57:5802–23
    [Google Scholar]
  43. 43. 
    Shockley M, Dossey AT. 2014. Insects for human consumption. Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens JA Morales-Ramos, M Guadalupe Rojas, DI Shapiro-Ilan 617–52 Cambridge, MA: Academic
    [Google Scholar]
  44. 44. 
    Klunder HC, Wolkers-Rooijackers J, Korpela JM, Nout MJR 2012. Microbiological aspects of processing and storage of edible insects. Food Control 26:2628–31
    [Google Scholar]
  45. 45. 
    Miglietta PP, de Leo F, Ruberti M, Massari S 2015. Mealworms for food: a water footprint perspective. Water 7:6190–203
    [Google Scholar]
  46. 46. 
    Maddrell SHP. 1981. The functional design of the insect excretory system. J. Exp. Biol. 90:11–15
    [Google Scholar]
  47. 47. 
    Fraenkel G, Blewett M. 1944. The utilisation of metabolic water in insects. Bull. Entomol. Res. 35:2127–39
    [Google Scholar]
  48. 48. 
    Aguilar-Miranda ED, López MG, Escamilla-Santana C, Barba de la Rosa AP 2002. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. J. Agric. Food Chem. 50:1192–95
    [Google Scholar]
  49. 49. 
    Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI, Tedders WL 2011. Self-selection of two diet components by Tenebrio molitor (Coleoptera: Tenebrionidae) larvae and its impact on fitness. Environ. Entomol. 40:51285–94
    [Google Scholar]
  50. 50. 
    Weaver DK, McFarlane JE. 1990. The effect of larval density on growth and development of Tenebrio molitor. J. Insect Physiol 36:7531–36
    [Google Scholar]
  51. 51. 
    Bjørge JD, Overgaard J, Malte H, Gianotten N, Heckmann L-H 2018. Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor. J. Insect Physiol 107:89–96
    [Google Scholar]
  52. 52. 
    Makkar HPS, Tran G, Heuzé V, Ankers P 2014. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 197:1–33
    [Google Scholar]
  53. 53. 
    Dossey AT, Tatum JT, McGill WL 2016. Modern insect-based food industry: current status, insect processing technology, and recommendations moving forward. Insects as Sustainable Food Ingredients: Production, Processing and Food Applications AT Dossey, JA Morales-Ramos, MG Rojas 113–52 Cambridge, MA: Academic
    [Google Scholar]
  54. 54. 
    Kouřimská L, Adámková A. 2016. Nutritional and sensory quality of edible insects. NFS J 4:22–26
    [Google Scholar]
  55. 55. 
    Williams JP, Williams JR, Kirabo A, Chester D, Peterson M 2016. Nutrient content and health benefits of insects. Insects as Sustainable Food Ingredients: Production, Processing and Food Applications AT Dossey, JA Morales-Ramos, MG Rojas 61–84 Cambridge, MA: Academic
    [Google Scholar]
  56. 56. 
    Barker D, Fitzpatrick MP, Dierenfeld ES 1998. Nutrient composition of selected whole invertebrates. Zoo Biol 17:2123–34
    [Google Scholar]
  57. 57. 
    Jonas-Levi A, Martinez J-JI. 2017. The high level of protein content reported in insects for food and feed is overestimated. J. Food Compos. Anal. 62:184–88
    [Google Scholar]
  58. 58. 
    Janssen RH, Vincken JP, Van Den Broek LAM, Fogliano V, Lakemond CMM 2017. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem 65:112275–78
    [Google Scholar]
  59. 59. 
    Ramos-Elorduy J, Pino Moreno JM, Escamilla Prado E, Alvarado Perez M, Lagunez Otero J, Ladron de Guevara O 1997. Nutritional value of edible insects from the state of Oaxaca, Mexico. J. Food Compos. Anal. 10:2142–57
    [Google Scholar]
  60. 60. 
    De Marco M, Martínez S, Hernandez F, Madrid J, Gai F et al. 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 209:211–18
    [Google Scholar]
  61. 61. 
    Marono S, Piccolo G, Loponte R, Di Meo C, Attia YA et al. 2016. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci. 14:33889
    [Google Scholar]
  62. 62. 
    Pretorius Q. 2011. The evaluation of larvae of Musca domestica (common house fly) as protein source for broiler production. Master's Thesis, Stellenbosch Univ., Stellenbosch, S. Afr.
  63. 63. 
    Fasel NJ, Méne-Saffrané L, Ruczyński I, Komar E, Christe P 2017. Diet induced modifications of fatty-acid composition in mealworm larvae (Tenebrio molitor). J. Food Res. 6:522–31
    [Google Scholar]
  64. 64. 
    Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S et al. 2017. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 97:2594–600
    [Google Scholar]
  65. 65. 
    Zielinska E, Baraniak B, Karas M, Rybczynska K, Jakubczyk A 2015. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 77:3460–66
    [Google Scholar]
  66. 66. 
    Finke MD. 2002. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol 21:3269–85
    [Google Scholar]
  67. 67. 
    Belluco S, Losasso C, Maggioletti M, Alonzi CC, Paoletti MG, Ricci A 2013. Edible insects in a food safety and nutritional perspective: a critical review. Compr. Rev. Food Sci. Food Saf. 12:3296–313
    [Google Scholar]
  68. 68. 
    Finke M. 2007. Estimate of chitin in raw whole insects. Zoo Biol 26:105–15
    [Google Scholar]
  69. 69. 
    Park BK, Kim M. 2010. Applications of chitin and its derivatives in biological medicine. Int. J. Mol. Sci. 11:5152–64
    [Google Scholar]
  70. 70. 
    All About Feed. 2018. Compound feed statistics from around the world Accessed July 29, 2020. https://www.allaboutfeed.net/Compound-Feed/Production/?types=compound%2Cpoultry&region=europe&subregion=total&start=2009&end=2018
  71. 71. 
    Henchion M, Hayes M, Mullen AM, Fenelon M, Tiwari B 2017. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods 6:753
    [Google Scholar]
  72. 72. 
    Beski SSM, Swick RA, Iji PA 2015. Specialized protein products in broiler chicken nutrition: a review. Anim. Nutr. 1:247–53
    [Google Scholar]
  73. 73. 
    de Visser C. 2014. The EU's dependence on soya bean import for the animal feed industry and potential EU produced alternatives. Oilseeds Fats Crops Lipids 21:4D407
    [Google Scholar]
  74. 74. 
    Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F 2014. Insect meal as renewable source of food for animal feeding: a review. J. Clean. Prod. 65:16–27
    [Google Scholar]
  75. 75. 
    Herrero M, Thornton PK. 2013. Livestock and global change: emerging issues for sustainable food systems. PNAS 110:5220878–81
    [Google Scholar]
  76. 76. 
    Biasato I, De Marco M, Rotolo L, Renna M, Lussiana C et al. 2016. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr. 100:61104–12
    [Google Scholar]
  77. 77. 
    Ramos-Elorduy J, González EA, Pino JM, Hernández AR, Pino JM 2002. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 95:1214–20
    [Google Scholar]
  78. 78. 
    Oluokun J. 2000. Upgrading the nutritive value of full-fat soyabeans meal for broiler production with either fishmeal or black solider fly larvae meal (Hermetia illucens). Niger. J. Anim. Sci. 3:2 https://doi.org/10.4314/tjas.v3i2.49768
    [Crossref] [Google Scholar]
  79. 79. 
    Bovera F, Piccolo G, Gasco L, Marono S, Loponte R et al. 2015. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br. Poult. Sci. 56:5569–75
    [Google Scholar]
  80. 80. 
    Sánchez-Muros MJ, Barroso FG, de Haro C 2016. Brief summary of insect usage as an industrial animal feed/feed ingredient. Insects as Sustainable Food Ingredients: Production, Processing and Food Applications AT Dossey, JA Morales-Ramos, MG Rojas 273–309 Cambridge, MA: Academic
    [Google Scholar]
  81. 81. 
    Hwangbo J, Hong EC, Jang A, Kang HK, Oh JS et al. 2009. Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J. Environ. Biol. 30:4609–14
    [Google Scholar]
  82. 82. 
    Nakagki BJ, Sunde ML, Defoliart GR 1987. Protein quality of the house cricket, Acheta domesticus, when fed to broiler chicks. Poult. Sci. 66:81367–71
    [Google Scholar]
  83. 83. 
    Cutrignelli M, Messina M, Tulli F, Randazzo B, Olivotto I et al. 2018. Research in veterinary science evaluation of an insect meal of the black soldier fly (Hermetia illucens) as soybean substitute: intestinal morphometry, enzymatic and microbial activity in laying hens. Res. Vet. Sci. 117:209–15
    [Google Scholar]
  84. 84. 
    Borrelli L, Coretti L, Dipineto L, Bovera F, Menna F et al. 2017. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci. Rep. 7:16269
    [Google Scholar]
  85. 85. 
    Spranghers T, Michiels J, Vrancx J, Ovyn A, Eeckhout M et al. 2018. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Technol. 235:33–42
    [Google Scholar]
  86. 86. 
    Biasato I, Renna M, Gai F, Dabbou S, Meneguz M et al. 2019. Partially defatted black soldier fly larva meal inclusion in piglet diets: effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 10:12
    [Google Scholar]
  87. 87. 
    Altmann BA, Neumann C, Rothstein S, Liebert F, Mörlein D 2019. Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into micro-alga and insect protein in swine diets. Meat Sci 153:26–34
    [Google Scholar]
  88. 88. 
    Newton L, Sheppard C, Watson WD, Burtle G, Dove R 2005. Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. J. Korean Entomol. Appl. Sci. 36:1217
    [Google Scholar]
  89. 89. 
    Jin XH, Heo PS, Hong JS, Kim NJ, Kim YY 2016. Supplementation of dried mealworm (Tenebrio molitor larva) on growth performance, nutrient digestibility and blood profiles in weaning pigs. Asian-Australas. J. Anim. Sci. 29:7979–86
    [Google Scholar]
  90. 90. 
    Yoo JS, Cho KH, Hong JS, Jang HS, Chung YH et al. 2019. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas. J. Anim. Sci. 32:3387–94
    [Google Scholar]
  91. 91. 
    Bank W. 2013. Fish to 2030: prospects for fisheries and aquaculture Rep. 83177-GLB, World Bank Washington, DC:
  92. 92. 
    Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M et al. 2009. Feeding aquaculture in an era of finite resources. PNAS 106:3615103–10
    [Google Scholar]
  93. 93. 
    Green K, Pearsall D. 2016. Fishmeal and fish oil facts and figures Publ., Seafish, Edinburgh
  94. 94. 
    Renna M, Schiavone A, Gai F, Dabbou S, Lussiana C et al. 2017. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 8:57
    [Google Scholar]
  95. 95. 
    Magalhães R, Sánchez-López A, Silva R, Martínez-Llorens S, Oliva-Teles A, Peres H 2017. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 476:79–85
    [Google Scholar]
  96. 96. 
    Kataya K, Borsra MZS, Ganesan D, Kuppusamy G, Herriman M et al. 2017. Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater. Int. Aquat. Res. 9:4303–12
    [Google Scholar]
  97. 97. 
    Belghit I, Liland NS, Gjesdal P, Biancarosa I, Menchetti E et al. 2019. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 503:609–19
    [Google Scholar]
  98. 98. 
    Belghit I, Liland NS, Waagbø R, Biancarosa I, Pelusio N et al. 2018. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 491:72–81
    [Google Scholar]
  99. 99. 
    Piccolo G, Iaconisi V, Marono S, Gasco L, Loponte R et al. 2017. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim. Feed Sci. Technol. 226:12–20
    [Google Scholar]
  100. 100. 
    Tubin JSB, Paiano D, de Oliveira Hashimoto GS, Furtado WE, Martins ML et al. 2019. Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. Aquaculture 519:734763
    [Google Scholar]
  101. 101. 
    Zhou JS, Chen YS, Ji H, Yu E 2017. The effect of replacing fish meal with fermented meal mixture of silkworm pupae, rapeseed and wheat on growth, body composition and health of mirror carp (Cyprinus carpi var. Specularis). Aquac. Nutr. 23:741–54
    [Google Scholar]
  102. 102. 
    Mlcek J, Rop O, Borkovcova M, Bednarova M 2014. A comprehensive look at the possibilities of edible insects as food in Europe—a review. Pol. J. Food Nutr. Sci. 64:3147–57
    [Google Scholar]
  103. 103. 
    Costa-Neto E, Dunkel FV. 2016. Insects as food: history, culture, and modern use around the world. Insects as Sustainable Food Ingredients: Production, Processing and Food Applications AT Dossey, JA Morales-Ramos, MG Rojas 29–60 Cambridge, MA: Academic
    [Google Scholar]
  104. 104. 
    Looy H, Dunkel FV, Wood JR 2014. How then shall we eat? Insect-eating attitudes and sustainable foodways. Agric. Hum. Values 31:1131–41
    [Google Scholar]
  105. 105. 
    Deroy O, Reade B, Spence C 2015. The insectivore’ s dilemma, and how to take the West out of it. Food Qual. Prefer. 44:44–55
    [Google Scholar]
  106. 106. 
    Berg J, Wendin K, Langton M, Josell A, Davidsson F 2017. State of the art report: insects as food and feed. Ann. Exp. Biol. 5:237–46
    [Google Scholar]
  107. 107. 
    Grau T, Vilcinskas A, Joop G 2017. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Z. Naturforsch. C 72:9–10337–49
    [Google Scholar]
  108. 108. 
    Ahmad A, Nagaraja TG, Zurek L 2007. Transmission of Escherichia coli O157:H7 to cattle by house flies. Prev. Vet. Med. 80:74–81
    [Google Scholar]
  109. 109. 
    Boccazzi IV, Ottoboni M, Martin E, Comandatore F, Vallone L et al. 2017. A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production. PLOS ONE 12:8e0182533
    [Google Scholar]
  110. 110. 
    Genta FA, Dillon RJ, Terra WR, Ferreira C 2006. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J. Insect Physiol. 52:6593–601
    [Google Scholar]
  111. 111. 
    Grabowski NT, Klein G. 2017. Microbiology of processed edible insect products—results of a preliminary survey. Int. J. Food Microbiol. 243:103–7
    [Google Scholar]
  112. 112. 
    Ribeiro C, Cunha LM, Sousa-Pinto B, Fonseca J 2018. Allergic risks of consuming edible insects: a systematic review. Mol. Nutr. Food Res. 62:1 https://doi.org/10.1002/mnfr.201700030
    [Crossref] [Google Scholar]
  113. 113. 
    van Broekhoven S, Bastiaan-Net S, de Jong NW, Wichers HJ 2016. Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chem 196:1075–83
    [Google Scholar]
  114. 114. 
    Srinroch C, Srisomsap C, Chokchaichamnankit D, Punyarit P, Phiriyangkul P 2015. Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem 184:160–66
    [Google Scholar]
  115. 115. 
    Jensen-Jarolim E, Pali-Schöll I, Jensen SAF, Robibaro B, Kinaciyan T 2015. Caution: Reptile pets shuttle grasshopper allergy and asthma into homes. World Allergy Organ. J. 8:124
    [Google Scholar]
  116. 116. 
    Devkota B, Schmidt GH. 2000. Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agric. Ecosyst. Environ. 78:85–91
    [Google Scholar]
  117. 117. 
    Diener S, Zurbrügg C, Tockner K 2015. Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects. J. Insects Food Feed 1:4261–70
    [Google Scholar]
  118. 118. 
    Ping Z, Huiling ZOU, Wensheng SHU 2009. Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: field study. J. Environ. Sci. 21:6849–53
    [Google Scholar]
  119. 119. 
    Poma G, Cuykx M, Amato E, Calaprice C, Focant JF, Covaci A 2017. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem. Toxicol. 100:70–79
    [Google Scholar]
  120. 120. 
    EU Comm. Regul. 2017/2469. 2017. Laying down administrative and scientific requirements for applications referred to in Article 10 of Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods Dec. 30. 2017 O.J. (L351/64) 64–71
  121. 121. 
    EU Comm. Regul. 2015/2283. 2015. On novel foods, amending Regulation (EU) No. 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No. 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No. 1852/2001 Dec. 11. 2015 O.J. (L327) 1–22
  122. 122. 
    Veldkamp T, van Duinkerken G, van Huis A, Lakemond CMM, Ottevanger E et al. 2012. Insects as a sustainable feed ingredient in pig and poultry diets—a feasibility study Rep. 638 Wageningen UR Livest. Res. Wageningen, Neth.:
  123. 123. 
    van Raamsdonk LWD, van der Fels-Klerx HJ, de Jong J 2017. New feed ingredients: the insect opportunity. Food Addit. Contam. A 34:81384–97
    [Google Scholar]
  124. 124. 
    Baiano A. 2020. Edible insects: an overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends Food Sci. Technol. 100:35–50
    [Google Scholar]
  125. 125. 
    EFSA Sci. Comm. 2015. Risk profile related to production and consumption of insects as food and feed. EFSA J 13:104257
    [Google Scholar]
  126. 126. 
    Eur. Comm. Counc. Dir. 98/58/EC. 1998. Council directive concerning the protection of animals kept for farming purposes July 20. 1998 O.J. (L221), 23–27
  127. 127. 
    Ravzanaadii N, Kim S-H, Choi WH, Hong S-J, Kim NJ et al. 2012. Nutritional value of mealworm, Tenebrio molitor as food source. Int. J. Indust. Entomol. 25:193–98
    [Google Scholar]
  128. 128. 
    Oonincx DGAB, van Broekhoven S, van Huis A, van Loon JJA 2015. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLOS ONE 14:10e0222043
    [Google Scholar]
  129. 129. 
    Jones LD, Cooper RW, Harding RS 1972. Composition of mealworm Tenebrio molitor larvae. J. Zoo Anim. Med. 3:434–41
    [Google Scholar]
  130. 130. 
    Araújo RRS, dos Santos Benfica TAR, Ferraz VP, Santos EMS 2019. Nutritional composition of insects Gryllus assimilis and Zophobas morio: potential foods harvested in Brazil. J. Food Compos. Anal. 76:22–26
    [Google Scholar]
  131. 131. 
    Ewald N, Vidakovic A, Langeland M, Kiessling A, Sampels S, Lalander C 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens)—possibilities and limitations for modification through diet. Waste Manag 102:40–47
    [Google Scholar]
  132. 132. 
    Hussein M, Pillai VV, Goddard JM, Park HG, Kothapalli S et al. 2017. Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLOS ONE 12:2e0171708
    [Google Scholar]
  133. 133. 
    Bukkens SGF. 1997. The nutritional value of edible insects. Ecol. Food Nutr. 36:2–4287–319
    [Google Scholar]
  134. 134. 
    Ramos-Elorduy J, Costa-Neto EM, Pino JM, Correa MSC, Garcia-Figueroa J et al. 2007. Knowledge about useful entomofauna in the county of La Purísima Palmar de Bravo, Puebla State, Mexico. Biotemas 20:2121–34
    [Google Scholar]
  135. 135. 
    Udomsil N, Imsoonthornruksa S, Gosalawit C, Ketudat-Cairns M 2019. Nutritional values and functional properties of house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus). Food Sci. Technol. Res. 25:4597–605
    [Google Scholar]
  136. 136. 
    Heuzé V, Tran GKS. 2020. Soybean meal Feedipedia. https://feedipedia.org/node/674
  137. 137. 
    Ritvanen T, Pastell H, Welling A, Raatikainen M 2020. The nitrogen-to-protein conversion factor of two cricket species—Acheta domesticus and Gryllus bimaculatus. Agric. Food Sci 29:11–5
    [Google Scholar]
  138. 138. 
    Zhou J, Han D. 2006. Proximate, amino acid and mineral composition of pupae of the silkworm Antheraea pernyi in China. J. Food Compos. Anal. 19:8850–53
    [Google Scholar]
  139. 139. 
    Schiavone A, De Marco M, Martínez S, Dabbou S, Renna M et al. 2017. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 8:51
    [Google Scholar]
  140. 140. 
    Tomotake H, Katagiri M, Yamato M 2010. Silkworm pupae (Bombyx mori) are new sources of high quality protein and lipid. J. Nutr. Sci. Vitaminol. 56:446–48
    [Google Scholar]
  141. 141. 
    Grapes M, Whiting P, Dinan L 1989. Fatty acid and lipid analysis of the house cricket. Acheta domesticus. Insect Biochem. 19:8767–74
    [Google Scholar]
  142. 142. 
    Sridhara S, Bhat JV. 1965. Lipid composition of the silkworm Bombyx mori L. J. Insect Physiol. 11:4449–62
    [Google Scholar]
  143. 143. 
    Cullere M, Woods MJ, van Emmenes L, Pieterse E, Hoffman LC, Zotte AD 2019. Hermetia illucens larvae reared on different substrates in broiler quail diets: effect on physicochemical and sensory quality of the quail meat. Animals 9:8525
    [Google Scholar]
  144. 144. 
    Pieterse E, Pretorius Q. 2014. Nutritional evaluation of dried larvae and pupae meal of the housefly (Musca domestica) using chemical-and broiler-based biological assays. Anim. Prod. Sci. 54:3347–55
    [Google Scholar]
  145. 145. 
    Alves AV, Sanjinez-Argandoña EJ, Linzmeier AM, Cardoso CAL, Macedo MLR 2016. Food value of mealworm grown on Acrocomia aculeata pulp flour. PLOS ONE 11:3e0151275
    [Google Scholar]
  146. 146. 
    Hutchins RFN, Martin MM. 1968. The lipids of the common house cricket, Acheta domesticus L. I. Lipid classes and fatty acid distribution. Lipids 3:3247–49
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021419-083930
Loading
/content/journals/10.1146/annurev-animal-021419-083930
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error