1932

Abstract

The finding that adaptive evolution can often be substantial enough to alter ecological dynamics challenges traditional views of community ecology that ignore evolution. Here, we propose that evolution might commonly alter both local and regional processes of community assembly. We show how adaptation can substantially affect community assembly and that these effects depend on regional (metacommunity) factors, including environmental heterogeneity and its spatial structure. In particular, early colonists can often arrive from a nearby community, adapt to local conditions, and subsequently alter the establishment or abundance of late-arriving species, often producing an evolutionary priority effect. We also discuss how interaction type and relative rates of colonization, evolution, and community interactions determine divergent community outcomes. We describe new conceptual approaches that provide insights into these dynamics and statistical methods that can better evaluate their importance. Overall, we demonstrate that accounting for adaptation during community assembly opens up novel ways for making progress on fundamental questions in community ecology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102220-024934
2022-11-02
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-102220-024934.html?itemId=/content/journals/10.1146/annurev-ecolsys-102220-024934&mimeType=html&fmt=ahah

Literature Cited

  1. Aarssen LW. 1983. Ecological combining ability and competitive combining ability in plants: toward a general evolutionary theory of coexistence in systems of competition. Am. Nat. 122:6707–31
    [Google Scholar]
  2. Aarssen LW. 1985. Interpretation of the evolutionary consequences of competition in plants: an experimental approach. Oikos 45:199–109
    [Google Scholar]
  3. Aarssen LW. 1989. Competitive ability and species coexistence: a ‘plant's-eye’ view. Oikos 56:3386–401
    [Google Scholar]
  4. Agrawal AA, Zhang X. 2021. The evolution of coevolution in the study of species interactions. Evolution 75:71594–606
    [Google Scholar]
  5. Aiba M, Katabuchi M, Takafumi H, Matsuzaki SIS, Sasaki T, Hiura T. 2013. Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes. Ecology 94:122873–85
    [Google Scholar]
  6. Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C. 2011. When and how should intraspecific variability be considered in trait-based plant ecology?. Perspect. Plant Ecol. Evol. Syst. 13:3217–25
    [Google Scholar]
  7. Alexander JM, Atwater DZ, Colautti RI, Hargreaves AL. 2022. Effects of species interactions on the potential for evolution at species’ range limits. Philos. Trans. R. Soc. B 377:20210020
    [Google Scholar]
  8. Allhoff KT, Weiel EM, Rogge T, Drossel B. 2015. On the interplay of speciation and dispersal: an evolutionary food web model in space. J. Theor. Biol. 366:46–56
    [Google Scholar]
  9. Amarasekare P, Nisbet RM. 2001. Spatial heterogeneity, source-sink dynamics, and the coexistence of competing species. Am. Nat. 158:172–84
    [Google Scholar]
  10. Antonovics J, Thrall PH, Jarosz AM 1997. Genetics and the spatial ecology of species interactions: the Silene-Ustilago system. Spatial Ecology D Tilman, P Kareiva 158–80 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  11. Barraclough TG. 2015. How do species interactions affect evolutionary dynamics across whole communities?. Annu. Rev. Ecol. Evol. Syst. 46:25–48
    [Google Scholar]
  12. Bascompte J, Jordano P, Olesen JM. 2006. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:5772431–33
    [Google Scholar]
  13. Bassar RD, Childs DZ, Rees M, Tuljapurkar S, Reznick DN, Coulson T. 2016. The effects of asymmetric competition on the life history of Trinidadian guppies. Ecol. Lett. 19:3268–78
    [Google Scholar]
  14. Becks L, Ellner SP, Jones LE, Hairston NG Jr. 2012. The functional genomics of an eco-evolutionary feedback loop: linking gene expression, trait evolution, and community dynamics. Ecol. Lett. 15:5492–501
    [Google Scholar]
  15. Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM et al. 2011. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26:4183–92
    [Google Scholar]
  16. Brännström Å, Johansson J, Loeuille N, Kristensen N, Troost TA et al. 2012. Modelling the ecology and evolution of communities: a review of past achievements, current efforts, and future promises. Evol. Ecol. Res. 14:5601–25
    [Google Scholar]
  17. Brans KI, Govaert L, De Meester L 2020. Evolutionary dynamics of urbanized landscapes. Urban Evolutionary Biology M Szulkin, J Munshi-South, A Charmantier 175–96 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  18. Brans KI, Govaert L, Engelen JM, Gianuca AT, Souffreau C, De Meester L. 2017. Eco-evolutionary dynamics in urbanized landscapes: evolution, species sorting and the change in zooplankton body size along urbanization gradients. Philos. Trans. R. Soc. B 372:171220160030
    [Google Scholar]
  19. Capitán JA, Cuesta JA, Bascompte J. 2011. Species assembly in model ecosystems, II: results of the assembly process. J. Theor. Biol. 269:1344–55
    [Google Scholar]
  20. Chalmandrier L, Hartig F, Laughlin DC, Lischke H, Pichler M et al. 2021. Linking functional traits and demography to model species-rich communities. Nat. Commun. 12:12724
    [Google Scholar]
  21. Chase JM, Leibold MA, Downing AL, Shurin JB. 2000. The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology 81:92485–97
    [Google Scholar]
  22. Collins S. 2011. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc. R. Soc. B 278:247–55
    [Google Scholar]
  23. De Mazancourt C, Johnson E, Barraclough TG 2008. Biodiversity inhibits species’ evolutionary responses to changing environments. Ecol. Lett. 11:380–88
    [Google Scholar]
  24. De Mazancourt C, Schwartz MW. 2010. A resource ratio theory of cooperation. Ecol. Lett. 13:3349–59
    [Google Scholar]
  25. De Meester L, Brans KI, Govaert L, Souffreau C, Mukherjee S et al. 2019. Analysing eco-evolutionary dynamics—The challenging complexity of the real world. Funct. Ecol. 33:143–59
    [Google Scholar]
  26. De Meester L, Gómez A, Okamura B, Schwenk K. 2002. The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecol 23:3121–35
    [Google Scholar]
  27. De Meester L, Vanoverbeke J, Kilsdonk LJ, Urban MC. 2016. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 31:2136–46
    [Google Scholar]
  28. Dercole F, Ferrière R, Rinaldi S. 2002. Ecological bistability and evolutionary reversals under asymmetrical competition. Evolution 56:61081–90
    [Google Scholar]
  29. Dieckmann U, Ferrière R. 2004. Adaptive dynamics and evolving biodiversity. Evolutionary Conservation Biology R Ferrière, U Dieckmann, D Couvet 188–224 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  30. Dray S, Choler P, Dolédec S, Peres-Neto PR, Thuiller W et al. 2014. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95:114–21
    [Google Scholar]
  31. Drossel B. 2001. Biological evolution and statistical physics. Adv. Phys. 50:2209–95
    [Google Scholar]
  32. Edwards KF, Kremer CT, Miller ET, Osmond MM, Litchman E, Klausmeier CA. 2018. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol. Lett. 21:121853–68
    [Google Scholar]
  33. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:4586–608
    [Google Scholar]
  34. Elias M, Gompert Z, Jiggins C, Willmott K. 2008. Mutualistic interactions drive ecological niche convergence in a diverse butterfly community. PLOS Biol 6:12e300
    [Google Scholar]
  35. Emerson BC, Gillespie RG. 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23:11619–30
    [Google Scholar]
  36. Faillace CA, Morin PJ. 2016. Evolution alters the consequences of invasions in experimental communities. Nat. Ecol. Evol. 1:10013
    [Google Scholar]
  37. Faillace CA, Morin PJ. 2020. Evolution alters post-invasion temporal dynamics in experimental communities. J. Anim. Ecol. 89:2285–98
    [Google Scholar]
  38. Fargione J, Brown CS, Tilman D. 2003. Community assembly and invasion: an experimental test of neutral versus niche processes. PNAS 100:158916–20
    [Google Scholar]
  39. Farkas TE, Hendry AP, Nosil P, Beckerman AP. 2015. How maladaptation can structure biodiversity: eco-evolutionary island biogeography. Trends Ecol. Evol. 30:3154–60
    [Google Scholar]
  40. Farkas TE, Mononen T, Comeault AA, Hanski I, Nosil P. 2013. Evolution of camouflage drives rapid ecological change in an insect community. Curr. Biol. 23:191835–43
    [Google Scholar]
  41. Farkas TE, Montejo-Kovacevich G. 2014. Density-dependent selection closes an eco-evolutionary feedback loop in the stick insect Timema cristinae. Biol. Lett. 10:1220140896
    [Google Scholar]
  42. Fielding AP, Pantel JH. 2020. Eco-evolutionary feedbacks and the maintenance of metacommunity diversity in a changing environment. Genes 11:121433
    [Google Scholar]
  43. Fischer BB, Kwiatkowski M, Ackermann M, Krismer J, Roffler S et al. 2014. Phenotypic plasticity influences the eco-evolutionary dynamics of a predator–prey system. Ecology 95:113080–92
    [Google Scholar]
  44. Fox JW, Vasseur DA. 2008. Character convergence under competition for nutritionally essential resources. Am. Nat. 172:5667–80
    [Google Scholar]
  45. Galen C. 2000. High and dry: drought stress, sex-allocation trade-offs, and selection on flower size in the alpine wildflower Polemonium viscosum (Polemoniaceae). Am. Nat. 156:172–83
    [Google Scholar]
  46. Gauch HG, Gauch HG Jr. 1982. Multivariate Analysis in Community Ecology Cambridge, UK: Cambridge Univ. Press
  47. Gillespie R. 2004. Community assembly through adaptive radiation in Hawaiian spiders. Science 303:5656356–59
    [Google Scholar]
  48. Gillespie RG. 2016. Island time and the interplay between ecology and evolution in species diversification. Evol. Appl. 9:53–73
    [Google Scholar]
  49. Gómez P, Paterson S, De Meester L, Liu X, Lenzi L et al. 2016. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat. Commun. 7:12453
    [Google Scholar]
  50. Gomulkiewicz R, Drown DM, Dybdahl MF, Godsoe W, Nuismer SL et al. 2007. Dos and don'ts of testing the geographic mosaic theory of coevolution. Heredity 98:5249–58
    [Google Scholar]
  51. Govaert L, Altermatt F, De Meester L, Leibold MA, McPeek MA et al. 2021a. Integrating fundamental processes to understand eco-evolutionary community dynamics and patterns. Funct. Ecol. 35:102138–55
    [Google Scholar]
  52. Govaert L, De Meester L, Rousseaux S, Declerck SA, Pantel JH. 2021b. Measuring the contribution of evolution to community trait structure in freshwater zooplankton. Oikos 130:101773–87
    [Google Scholar]
  53. Govaert L, Pantel JH, De Meester L. 2016. Eco-evolutionary partitioning metrics: assessing the importance of ecological and evolutionary contributions to population and community change. Ecol. Lett. 19:8839–53
    [Google Scholar]
  54. Haldane JBS. 1930. A mathematical theory of natural and artificial selection. Part IV. Isolation. Proc. Camb. Philos. Soc. 26:220–30
    [Google Scholar]
  55. Hanski I. 1991. Single-species metapopulation dynamics: concepts, models and observations. Biol. J. Linn. Soc. 42:17–38
    [Google Scholar]
  56. Hanski I, Mononen T, Ovaskainen O. 2011. Eco-evolutionary metapopulation dynamics and the spatial scale of adaptation. Am. Nat. 177:29–43
    [Google Scholar]
  57. Hardin G. 1960. The competitive exclusion principle. Science 131:34091292–97
    [Google Scholar]
  58. Hart SP, Turcotte MM, Levine JM. 2019. Effects of rapid evolution on species coexistence. PNAS 116:62112–17
    [Google Scholar]
  59. Haydon D, Radtkey RR, Pianka ER 1993. Experimental biogeography: interactions between stochastic, historical, and ecological processes in a model archipelago. Species Diversity in Ecological Communities RE Ricklefs, D Schluter 117–30 Chicago: Univ. Chicago Press
    [Google Scholar]
  60. Hefley TJ, Hooten MB. 2016. Hierarchical species distribution models. Curr. Landscape Ecol. Rep. 1:287–97
    [Google Scholar]
  61. Hendry AP. 2016. Eco-Evolutionary Dynamics Princeton, NJ: Princeton Univ. Press
  62. Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67:3283–335
    [Google Scholar]
  63. HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM. 2012. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43:227–48
    [Google Scholar]
  64. Holt RD 1997. Community modules. Multitrophic Interactions in Terrestrial Systems, 36th Symposium of the British Ecological Society AC Gange, VK Brown 333–49 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  65. Holt RD. 2017. Ilkka Hanski, the “Compleat Ecologist”: an homage to his contributions to the spatial dimension of food web interactions. Ann. Zool. Fenn. 54:1–451–70
    [Google Scholar]
  66. Horn HS, MacArthur RH. 1972. Competition among fugitive species in a harlequin environment. Ecology 53:4749–52
    [Google Scholar]
  67. Hubbell SP. 2001. The Unified Neutral Theory of Biodiversity and Biogeography Monogr. Popul. Biol. 32 Princeton, NJ: Princeton Univ. Press
  68. Hubbell SP. 2006. Neutral theory and the evolution of ecological equivalence. Ecology 87:61387–98
    [Google Scholar]
  69. Illius AW, Fitzgibbon C. 1994. Costs of vigilance in foraging ungulates. Anim. Behav. 47:2481–84
    [Google Scholar]
  70. Irwin RE, Strauss SY, Storz S, Emerson A, Guibert G 2003. The role of herbivores in the maintenance of a flower color polymorphism in wild radish. Ecology 84:71733–43
    [Google Scholar]
  71. Janzen DH. 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104:940501–28
    [Google Scholar]
  72. Johansson J. 2008. Evolutionary responses to environmental changes: How does competition affect adaptation?. Evolution 62:2421–35
    [Google Scholar]
  73. Kisdi É. 2006. Trade-off geometries and the adaptive dynamics of two co-evolving species. Evol. Ecol. Res. 8:6959–73
    [Google Scholar]
  74. Kondoh M. 2003. Foraging adaptation and the relationship between food-web complexity and stability. Science 299:56111388–91
    [Google Scholar]
  75. Krieger RI, Feeny PP, Wilkinson CF. 1971. Detoxication enzymes in the guts of caterpillars: an evolutionary answer to plant defenses?. Science 172:3983579–81
    [Google Scholar]
  76. Lajoie G, Vellend M. 2015. Understanding context dependence in the contribution of intraspecific variation to community trait–environment matching. Ecology 96:112912–22
    [Google Scholar]
  77. Lajoie G, Vellend M. 2018. Characterizing the contribution of plasticity and genetic differentiation to community-level trait responses to environmental change. Ecol. Evol. 8:83895–907
    [Google Scholar]
  78. Lankau RA, Strauss SY. 2007. Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317:58441561–63
    [Google Scholar]
  79. Law R, Leibold MA 2005. Assembly dynamics in metacommunities. Metacommunities: Spatial Dynamics and Ecological Communities M Holyoak, MA Leibold, RD Holt 263–78 Chicago: Univ. Chicago Press
    [Google Scholar]
  80. Law R, Morton RD. 1993. Alternative permanent states of ecological communities. Ecology 74:51347–61
    [Google Scholar]
  81. Law R, Morton RD. 1996. Permanence and the assembly of ecological communities. Ecology 77:3762–75
    [Google Scholar]
  82. Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB et al. 2012. Species interactions alter evolutionary responses to a novel environment. PLOS Biol 10:5e1001330
    [Google Scholar]
  83. Lawton JH. 1999. Are there general laws in ecology?. Oikos 84:2177–92
    [Google Scholar]
  84. Legendre L. 1993. Spatial autocorrelation: trouble or new paradigm?. Ecology 74:1659–73
    [Google Scholar]
  85. Legendre P, Legendre L. 2012. Numerical Ecology Amsterdam: Elsevier
  86. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF et al. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7:7601–13
    [Google Scholar]
  87. Leibold MA, Loeuille N. 2015. Species sorting and patch dynamics in harlequin metacommunities affect the relative importance of environment and space. Ecology 96:3227–33
    [Google Scholar]
  88. Leibold MA, Rudolph FJ, Blanchet FG, De Meester L, Gravel D et al. 2021. The internal structure of metacommunities. Oikos 2022:e08618
    [Google Scholar]
  89. Leibold MA, Urban MC, De Meester L, Klausmeier CA, Vanoverbeke J. 2019. Regional neutrality evolves through local adaptive niche evolution. PNAS 116:72612–17
    [Google Scholar]
  90. Leimar O. 2009. Multidimensional convergence stability. Evol. Ecol. Res. 11:2191–208
    [Google Scholar]
  91. Lepš J, de Bello F, Šmilauer P, Doležal J. 2011. Community trait response to environment: disentangling species turnover versus intraspecific trait variability effects. Ecography 34:5856–63
    [Google Scholar]
  92. Levins R, Culver D. 1971. Regional coexistence of species and competition between rare species. PNAS 68:61246–48
    [Google Scholar]
  93. Lively CM. 1986. Predator-induced shell dimorphism in the acorn barnacle Chthamalus anisopoma. Evolution 40:2232–42
    [Google Scholar]
  94. Loeuille N. 2010. Consequences of adaptive foraging in diverse communities. Funct. Ecol. 24:118–27
    [Google Scholar]
  95. Loeuille N, Barot S, Georgelin E, Kylafis G, Lavigne C. 2013. Eco-evolutionary dynamics of agricultural networks: implications for sustainable management. Adv. Ecol. Res. 49:339–435
    [Google Scholar]
  96. Loeuille N, Leibold MA. 2008. Evolution in metacommunities: on the relative importance of species sorting and monopolization in structuring communities. Am. Nat. 171:6788–99
    [Google Scholar]
  97. Loeuille N, Leibold MA. 2014. Effects of local negative feedbacks on the evolution of species within metacommunities. Ecol. Lett. 17:5563–73
    [Google Scholar]
  98. Loeuille N, Loreau M. 2004. Nutrient enrichment and food chains: Can evolution buffer top-down control?. Theor. Popul. Biol. 65:3285–98
    [Google Scholar]
  99. Loeuille N, Loreau M. 2005. Evolutionary emergence of size-structured food webs. PNAS 102:165761–66
    [Google Scholar]
  100. Loeuille N, Loreau M, Ferrière R. 2002. Consequences of plant–herbivore coevolution on the dynamics and functioning of ecosystems. J. Theor. Biol. 217:3369–81
    [Google Scholar]
  101. Losos JB, Jackman TR, Larson A, de Queiroz K, Rodríguez-Schettino L. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:53592115–18
    [Google Scholar]
  102. Losos JB, Ricklefs RE. 2009. Adaptation and diversification on islands. Nature 457:7231830–36
    [Google Scholar]
  103. MacArthur R, Levins R. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101:921377–85
    [Google Scholar]
  104. Magurran AE. 2003. Measuring Biological Diversity Malden, MA: Blackwell Sci. Ltd.
  105. Maliet O, Loeuille N, Morlon H. 2020. An individual-based model for the eco-evolutionary emergence of bipartite interaction networks. Ecol. Lett. 23:111623–34
    [Google Scholar]
  106. Matsuda H, Abrams PA. 1994. Runaway evolution to self-extinction under asymmetrical competition. Evolution 48:61764–72
    [Google Scholar]
  107. McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21:4178–85
    [Google Scholar]
  108. McIntyre PJ, Whitham TG. 2003. Plant genotype affects long-term herbivore population dynamics and extinction: conservation implications. Ecology 84:2311–22
    [Google Scholar]
  109. McPeek MA. 2017. Evolutionary Community Ecology Monogr. Popul. Biol. 58 Princeton, NJ: Princeton Univ. Press
  110. Medeiros LP, Garcia G, Thompson JN, Guimarães PR. 2018. The geographic mosaic of coevolution in mutualistic networks. PNAS 115:4712017–22
    [Google Scholar]
  111. Meroz N, Tovi N, Sorokin Y, Friedman J. 2021. Community composition of microbial microcosms follows simple assembly rules at evolutionary timescales. Nat. Commun. 12:12891
    [Google Scholar]
  112. Metz JAJ, Mylius SD, Diekmann O. 2008. When does evolution optimise?. Evol. Ecol. Res. 10:629–54
    [Google Scholar]
  113. Miller TE. 1995. Evolution of Brassica rapa L. (Cruciferae) populations in intra- and interspecific competition. Evolution 49:61125–33
    [Google Scholar]
  114. Mouquet N, Loreau M. 2003. Community patterns in source-sink metacommunities. Am. Nat. 162:544–57
    [Google Scholar]
  115. Müller-Schärer H, Schaffner U, Steinger T. 2004. Evolution in invasive plants: implications for biological control. Trends Ecol. Evol. 19:8417–22
    [Google Scholar]
  116. Münkemüller T, Gallien L. 2015. VirtualCom: a simulation model for eco-evolutionary community assembly and invasion. Methods Ecol. Evol. 6:6735–43
    [Google Scholar]
  117. Munoz F, Grenié M, Denelle P, Taudière A, Laroche F et al. 2018. ecolottery: Simulating and assessing community assembly with environmental filtering and neutral dynamics in R. Methods Ecol. Evol. 9:3693–703
    [Google Scholar]
  118. Nadeau CP, Farkas TE, Makkay AM, Papke RT, Urban MC. 2021. Adaptation reduces competitive dominance and alters community assembly. Proc. R. Soc. B 2881945:20203133
    [Google Scholar]
  119. Nee S, May RM. 1992. Dynamics of metapopulations: habitat destruction and competitive coexistence. J. Anim. Ecol. 61:137–40
    [Google Scholar]
  120. Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N. 2012. Eco-evolutionary responses of biodiversity to climate change. Nat. Climate Change 2:10747–51
    [Google Scholar]
  121. Nosil P, Sandoval CP, Crespi BJ. 2006. The evolution of host preference in allopatric versus parapatric populations of Timema cristinae. J. Evol. Biol. 19:929–42
    [Google Scholar]
  122. Nuismer SL, Jordano P, Bascompte J. 2013. Coevolution and the architecture of mutualistic networks. Evolution 67:2338–54
    [Google Scholar]
  123. Oksanen L, Fretwell SD, Arruda J, Niemela P. 1981. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118:2240–61
    [Google Scholar]
  124. Oksanen L, Oksanen T. 2000. The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155:6703–23
    [Google Scholar]
  125. Ovaskainen O, Tikhonov G, Norberg A, Blanchet FG, Duan L et al. 2017. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20:5561–76
    [Google Scholar]
  126. Overcast I, Ruffley M, Rosindell J, Harmon L, Borges PA et al. 2021. A unified model of species abundance, genetic diversity, and functional diversity reveals the mechanisms structuring ecological communities. Mol. Ecol. Resour. 21:82782–800
    [Google Scholar]
  127. Palmer TM, Doak DF, Stanton ML, Bronstein JL, Kiers ET et al. 2010. Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. PNAS 107:4017234–39
    [Google Scholar]
  128. Palmer TM, Stanton ML, Young TP, Goheen JR, Pringle RM, Karban R. 2008. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319:5860192–95
    [Google Scholar]
  129. Pantel JH, Duvivier C, De Meester L. 2015. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecol. Lett. 18:10992–1000
    [Google Scholar]
  130. Parvinen K. 2005. Evolutionary suicide. Acta Biotheor. 53:3241–64
    [Google Scholar]
  131. Pelletier F, Garant D, Hendry AP. 2009. Eco-evolutionary dynamics. Philos. Trans. R. Soc. B 364:1483–89
    [Google Scholar]
  132. Peres-Neto PR, Dray S, ter Braak CJ. 2017. Linking trait variation to the environment: critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography 40:7806–16
    [Google Scholar]
  133. Phillips JG, Linscott TM, Rankin AM, Kraemer AC, Shoobs NF, Parent CE. 2020. Archipelago-wide patterns of colonization and speciation among an endemic radiation of Galápagos land snails. J. Heredity 111:192–102
    [Google Scholar]
  134. Piccardi P, Vessman B, Mitri S. 2019. Toxicity drives facilitation between 4 bacterial species. PNAS 116:3215979–84
    [Google Scholar]
  135. Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD et al. 2018. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361:6399eaar5452
    [Google Scholar]
  136. Rankin DJ, López-Sepulcre A. 2005. Can adaptation lead to extinction?. Oikos 111:3616–19
    [Google Scholar]
  137. Relyea RA, Auld JR. 2004. Having the guts to compete: how intestinal plasticity explains costs of inducible defences. Ecol. Lett. 7:9869–75
    [Google Scholar]
  138. Richardson JL, Urban MC, Bolnick DI, Skelly DK. 2014. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29:165–76
    [Google Scholar]
  139. Ricklefs RE. 2008. Disintegration of the ecological community: American Society of Naturalists Sewall Wright award winner address. Am. Nat. 172:6741–50
    [Google Scholar]
  140. Ricklefs RE, Bermingham E. 2002. The concept of the taxon cycle in biogeography. Glob. Ecol. Biogeogr. 11:5353–61
    [Google Scholar]
  141. Ricklefs RE, Schluter D, eds. 1993. Species Diversity in Ecological Communities: Historical and Geographical Perspectives Chicago: Univ. Chicago Press
  142. Riley GA 1963. Marine Biology I; Proceedings of the First International Interdisciplinary Conference Washington, DC: Am. Inst. Biol. Sci.
  143. Rossberg AG, Matsuda H, Amemiya T, Itoh K. 2006. Food webs: experts consuming families of experts. J. Theor. Biol. 241:3552–63
    [Google Scholar]
  144. Roughgarden J, Feldman M. 1975. Species packing and predation pressure. Ecology 56:2489–92
    [Google Scholar]
  145. Schoener TW. 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–29
    [Google Scholar]
  146. Serván CA, Allesina S. 2021. Tractable models of ecological assembly. Ecol. Lett. 24:51029–37
    [Google Scholar]
  147. Singer MC, Parmesan C. 2018. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557:7704238–41
    [Google Scholar]
  148. Skelly DK, Werner EE. 1990. Behavioral and life-historical responses of larval American toads to an odonate predator. Ecology 71:62313–22
    [Google Scholar]
  149. Slatkin M. 1980. Ecological character displacement. Ecology 61:1163–77
    [Google Scholar]
  150. Stegen JC, Enquist BJ, Ferriere R. 2009. Advancing the metabolic theory of biodiversity. Ecol. Lett. 12:101001–15
    [Google Scholar]
  151. Steiner CF, Cáceres CE, Smith SD. 2007. Resurrecting the ghost of competition past with dormant zooplankton eggs. Am. Nat. 169:3416–22
    [Google Scholar]
  152. Strauss SY, Rudgers JA, Lau JA, Irwin RE. 2002. Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 17:6278–85
    [Google Scholar]
  153. Tatsumi S, Cadotte MW, Mori AS. 2019. Individual-based models of community assembly: Neighbourhood competition drives phylogenetic community structure. J. Ecol. 107:2735–46
    [Google Scholar]
  154. terHorst CP 2011. Experimental evolution of protozoan traits in response to interspecific competition. J. Evol. Biol. 24:136–46
    [Google Scholar]
  155. Thompson JN. 1989. Concepts of coevolution. Trends Ecol. Evol. 4:6179–83
    [Google Scholar]
  156. Thompson JN. 1998. Rapid evolution as an ecological process. Trends Ecol. Evol. 13:8329–32
    [Google Scholar]
  157. Thompson JN. 1999. Specific hypotheses on the geographic mosaic of coevolution. Am. Nat. 153:S5S1–14
    [Google Scholar]
  158. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press
  159. Thompson J, Charpentier A, Bouguet G, Charmasson F, Roset S et al. 2013. Evolution of a genetic polymorphism with climate change in a Mediterranean landscape. PNAS 110:82893–97
    [Google Scholar]
  160. Thompson PL, Fronhofer EA. 2019. The conflict between adaptation and dispersal for maintaining biodiversity in changing environments. PNAS 116:4221061–67
    [Google Scholar]
  161. Tilman D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75:12–16
    [Google Scholar]
  162. Urban MC, De Meester L. 2009. Community monopolization: local adaptation enhances priority effects in an evolving metacommunity. Proc. R. Soc. B 276:16764129–38
    [Google Scholar]
  163. Urban MC, Freidenfelds NA, Richardson JL. 2020a. Microgeographic divergence of functional responses among salamanders under antagonistic selection from apex predators. Proc. R. Soc. B 2871938:20201665
    [Google Scholar]
  164. Urban MC, Leibold MA, Amarasekare P, De Meester L, Gomulkiewicz R et al. 2008. The evolutionary ecology of metacommunities. Trends Ecol. Evol. 23:311–17
    [Google Scholar]
  165. Urban MC, Skelly DK. 2006. Evolving metacommunities: toward an evolutionary perspective on metacommunities. Ecology 87:71616–26
    [Google Scholar]
  166. Urban MC, Strauss SY, Pelletier F, Palkovacs EP, Leibold MA et al. 2020b. Evolutionary origins for ecological patterns in space. PNAS 117:3017482–90
    [Google Scholar]
  167. Valdovinos FS, Ramos-Jiliberto R, Garay-Narváez L, Urbani P, Dunne JA. 2010. Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecol. Lett. 13:121546–59
    [Google Scholar]
  168. Vanoverbeke J, Urban MC, De Meester L. 2016. Community assembly is a race between immigration and adaptation: eco-evolutionary interactions across spatial scales. Ecography 39:9858–70
    [Google Scholar]
  169. Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH et al. 2012. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27:4244–52
    [Google Scholar]
  170. Webb C. 2003. A complete classification of Darwinian extinction in ecological interactions. Am. Nat. 161:2181–205
    [Google Scholar]
  171. Weiher E, Freund D, Bunton T, Stefanski A, Lee T, Bentivenga S. 2011. Advances, challenges and a developing synthesis of ecological community assembly theory. Philos. Trans. R. Soc. B 366:15762403–13
    [Google Scholar]
  172. Weinbach A, Loeuille N, Rohr RP. 2022. Eco-evolutionary dynamics further weakens mutualistic interaction and coexistence under population decline. Evol. Ecol. 36:373–87
    [Google Scholar]
  173. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK et al. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7:7510–23
    [Google Scholar]
  174. Whitham TG, Young WP, Martinsen GD, Gehring CA, Schweitzer JA et al. 2003. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84:3559–73
    [Google Scholar]
  175. Wiegand T, Uriarte M, Kraft NJ, Shen G, Wang X, He F 2017. Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity: insights into plant community assembly processes. Annu. Rev. Ecol. Evol. Syst. 48:329–51
    [Google Scholar]
  176. Wilson EO. 1959. Adaptive shift and dispersal in a tropical ant fauna. Evolution 13:1122–44
    [Google Scholar]
  177. Wilson EO. 1961. The nature of the taxon cycle in the Melanesian ant fauna. Am. Nat. 95:882169–93
    [Google Scholar]
  178. Wisnoski NI, Leibold MA, Lennon JT. 2019. Dormancy in metacommunities. Am. Nat. 194:2135–51
    [Google Scholar]
  179. Wood ZT, Lopez LK, Symons CC, Robinson RR, Palkovacs EP, Kinnison MT. 2022. Drivers and cascading ecological consequences of Gambusia affinis trait variation. Am. Nat. 199:E91–110
    [Google Scholar]
  180. Yacine Y, Allhoff KT, Weinbach A, Loeuille N. 2021. Collapse and rescue of evolutionary food webs under global warming. J. Anim. Ecol. 90:3710–22
    [Google Scholar]
  181. Yamamichi M, Kyogoku D, Iritani R, Kobayashi K, Takahashi Y et al. 2020. Intraspecific adaptation load: a mechanism for species coexistence. Trends Ecol. Evol. 35:10897–907
    [Google Scholar]
  182. Yamamichi M, Miner BE. 2015. Indirect evolutionary rescue: prey adapts, predator avoids extinction. Evol. Appl. 8:8787–95
    [Google Scholar]
  183. Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG. 2003. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424:6946303–6
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102220-024934
Loading
/content/journals/10.1146/annurev-ecolsys-102220-024934
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error