1932

Abstract

Classic theory relates herbivore pressure to the ecology and evolution of plant defenses. Here, we summarize current trends in the study of plant–herbivore interactions and how they shape the evolution of plant chemical defenses, host choice, and community composition and diversity. Inter- and intraspecific variation in defense investment is driven by resource availability. The evolution of defenses at deeper nodes of plant phylogeny is conserved, yet defenses are highly labile at the tips. On an ecological timescale, while greater specialization of tropical herbivores enhances local diversity by reducing the performance of plants with similar defenses, in temperate ecosystems with more generalist herbivores, rare defense profiles are at a disadvantage. On an evolutionary timescale, host choice by herbivores is largely determined by plant defenses rather than host phylogeny, leading to evolutionary tracking by herbivores rather than cocladogenesis. The interplay between plants and herbivores shapes both the origin and maintenance of diversity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102221-045254
2023-11-02
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-102221-045254.html?itemId=/content/journals/10.1146/annurev-ecolsys-102221-045254&mimeType=html&fmt=ahah

Literature Cited

  1. Agosta SJ. 2006. On ecological fitting, plant–insect associations, herbivore host shifts, and host plant selection. Oikos 114:3556–65
    [Google Scholar]
  2. Agrawal A, Fishbein M, Halitschke R, Hastings A, Rabosky D, Rasmann S. 2009. Evidence for adaptive radiation from phylogenetic study of plant defenses. PNAS 106:18067–72
    [Google Scholar]
  3. Agrawal AA. 2007. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22:2103–9
    [Google Scholar]
  4. Agrawal AA, Fishbein M. 2006. Plant defense syndromes. Ecology 87:7 Suppl.S132–49
    [Google Scholar]
  5. Agrawal AA, Konno K. 2009. Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu. Rev. Ecol. Evol. Syst. 40:311–31
    [Google Scholar]
  6. Ahmed S, Orians CM, Griffin TS, Buckley S, Unachukwu U et al. 2014. Effects of water availability and pest pressures on tea (Camellia sinensis) growth and functional quality. AoB PLANTS 6:plt054
    [Google Scholar]
  7. Baraloto C, Hardy OJ, Paine CET, Dexter KG, Cruaud C et al. 2012. Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. J. Ecol. 100:3690–701
    [Google Scholar]
  8. Basey JM. 1999. Foraging behavior of beavers (Castor canadensis), plant secondary compounds, and management concerns. Beaver Protection, Management, and Utilization in Europe and North America PE Busher, RM Dzięciołowski 129–46. Boston: Springer US
    [Google Scholar]
  9. Basset Y. 1994. Palatability of tree foliage to chewing insects: a comparison between a temperate and a tropical site. Acta Oecologica 15:181–91
    [Google Scholar]
  10. Becerra JX. 1997. Insects on plants: macroevolutionary chemical trends in host use. Science 276:5310253–56
    [Google Scholar]
  11. Becerra JX. 2007. The impact of herbivore–plant coevolution on plant community structure. PNAS 104:187483–88
    [Google Scholar]
  12. Becerra JX, Noge K, Venable DL. 2009. Macroevolutionary chemical escalation in an ancient plant–herbivore arms race. PNAS 106:4318062–66
    [Google Scholar]
  13. Becerra JX, Venable DL. 1999. Macroevolution of insect–plant associations: the relevance of host biogeography to host affiliation. PNAS 96:2212626–31
    [Google Scholar]
  14. Benson WW, Brown KS, Gilbert LE. 1975. Coevolution of plants and herbivores: passion flower butterflies. Evolution 29:4659–80
    [Google Scholar]
  15. Berenbaum M. 1983. Coumarins and caterpillars: a case for coevolution. Evol. Int. J. Org. Evol. 37:1163–79
    [Google Scholar]
  16. Berenbaum M, Feeny P. 1981. Toxicity of angular furanocoumarins to swallowtail butterflies: escalation in a coevolutionary arms race?. Science 212:4497927–29
    [Google Scholar]
  17. Berenbaum MR. 2001. Chemical mediation of coevolution: phylogenetic evidence for Apiaceae and associates. Ann. Mo. Bot. Gard. 88:145–59
    [Google Scholar]
  18. Brooks DR, McLennan DA. 2002. The Nature of Diversity: An Evolutionary Voyage of Discovery Chicago, IL: Univ. Chicago Press
  19. Bryant JP, Chapin FS, Klein DR. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–68
    [Google Scholar]
  20. Burow M, Halkier BA, Kliebenstein DJ. 2010. Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness. Curr. Opin. Plant Biol. 13:3347–52
    [Google Scholar]
  21. Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP. 2020. Metabolomics as an emerging tool for the study of plant–pathogen interactions. Metabolites 10:252
    [Google Scholar]
  22. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12:7693–715
    [Google Scholar]
  23. Chapin FS. 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11:233–60
    [Google Scholar]
  24. Chen F-S, Niklas KJ, Liu Y, Fang X-M, Wan S-Z, Wang H. 2015. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiol. 35:101106–17
    [Google Scholar]
  25. Chesson P. 2000. General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58:3211–37
    [Google Scholar]
  26. Coley PD, Aide TM 1991. Comparison of herbivory and plant defenses in temperate and tropical broad-leaf forests. Plant–Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions PW Price, TM Lewinsohn, GW Fernandes, WW Benson 25–49. New York: John Wiley & Sons
    [Google Scholar]
  27. Coley PD, Barone JA. 1996. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27:305–35
    [Google Scholar]
  28. Coley PD, Bryant JP, Chapin FS. 1985. Resource availability and plant antiherbivore defense. Science 230:4728895–99
    [Google Scholar]
  29. Coley PD, Endara M-J, Ghabash G, Kidner CA, Nicholls JA et al. 2019. Macroevolutionary patterns in overexpression of tyrosine: an anti-herbivore defence in a speciose tropical tree genus, Inga (Fabaceae). J. Ecol. 107:41620–32
    [Google Scholar]
  30. Coley PD, Endara M-J, Kursar TA. 2018. Consequences of interspecific variation in defenses and herbivore host choice for the ecology and evolution of Inga, a speciose rainforest tree. Oecologia 187:2361–76
    [Google Scholar]
  31. Coley PD, Kursar TA. 2014. On tropical forests and their pests. Science 343:616635–36
    [Google Scholar]
  32. Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K et al. 2014. Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102:4845–56
    [Google Scholar]
  33. Connell JH. 1978. Diversity in tropical rain forests and coral reefs. Science 199:43351302–10
    [Google Scholar]
  34. Courtois EA, Dexter KG, Paine CET, Stien D, Engel J et al. 2016. Evolutionary patterns of volatile terpene emissions across 202 tropical tree species. Ecol. Evol. 6:92854–64
    [Google Scholar]
  35. Defossez E, Pitteloud C, Descombes P, Glauser G, Allard P-M et al. 2021. Spatial and evolutionary predictability of phytochemical diversity. PNAS 118:e2013344118
    [Google Scholar]
  36. Dethier VG. 1954. Evolution of feeding preferences in phytophagous insects. Evolution 8:133–54
    [Google Scholar]
  37. Díaz S, Fargione J, Chapin FS III, Tilman D. 2006. Biodiversity loss threatens human well-being. PLOS Biol. 4:8e277
    [Google Scholar]
  38. Dixon RA, Strack D. 2003. Phytochemistry meets genome analysis, and beyond. Plant Metab. 62:6815–16
    [Google Scholar]
  39. Dobzhansky T. 1950. Evolution in the tropics. Am. Sci. 38:2209–21
    [Google Scholar]
  40. Durbin ML, Lundy KE, Morrell PL, Torres-Martinez CL, Clegg MT. 2003. Genes that determine flower color: the role of regulatory changes in the evolution of phenotypic adaptations. Plant Mol. Evol. 29:3507–18
    [Google Scholar]
  41. Dyer LA, Philbin CS, Ochsenrider KM, Richards LA, Massad TJ et al. 2018. Modern approaches to study plant–insect interactions in chemical ecology. Nat. Rev. Chem. 2:650–64
    [Google Scholar]
  42. Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL et al. 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:7154696–99
    [Google Scholar]
  43. Edenius L, Ericsson G, Näslund P. 2002. Selectivity by moose versus the spatial distribution of aspen: a natural experiment. Ecography 25:3289–94
    [Google Scholar]
  44. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:4586–608
    [Google Scholar]
  45. Emiliani G, Fondi M, Fani R, Gribaldo S. 2009. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. Biol. Direct 4:7
    [Google Scholar]
  46. Endara M-J, Coley PD. 2011. The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25:2389–98
    [Google Scholar]
  47. Endara M-J, Coley PD, Ghabash G, Nicholls J, Dexter K et al. 2017. Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. PNAS 114:201707727
    [Google Scholar]
  48. Endara M-J, Coley PD, Wiggins NL, Forrister DL, Younkin GC et al. 2018. Chemocoding as an identification tool where morphological- and DNA-based methods fall short: Inga as a case study. New Phytol. 218:2847–58
    [Google Scholar]
  49. Endara M-J, Soule AJ, Forrister DL, Dexter KG, Pennington RT et al. 2022. The role of plant secondary metabolites in shaping regional and local plant community assembly. J. Ecol. 110:134–45
    [Google Scholar]
  50. Fabian B, Atwell BJ, Hughes L. 2018. Response of extrafloral nectar production to elevated atmospheric carbon dioxide. Aust. J. Bot. 66:7479–88
    [Google Scholar]
  51. Fang C, Fernie AR, Luo J. 2019. Exploring the diversity of plant metabolism. Trends Plant Sci. 24:183–98
    [Google Scholar]
  52. Feeny P 1976. Plant apparency and chemical defense. Biochemical Interaction Between Plants and Insects JW Wallace, RL Mansell 1–40. Boston: Springer US
    [Google Scholar]
  53. Fernie A, Trethewey R, Krotzky A, Willmitzer L. 2004. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5:763–69
    [Google Scholar]
  54. Fine PVA, Kembel SW. 2011. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34:4552–65
    [Google Scholar]
  55. Forister ML, Novotny V, Panorska AK, Baje L, Basset Y et al. 2015. The global distribution of diet breadth in insect herbivores. PNAS 112:2442–47
    [Google Scholar]
  56. Forrister DL, Endara M-J, Soule AJ, Younkin GC, Mills AG et al. 2023. Diversity and divergence: evolution of secondary metabolism in the tropical tree genus Inga. New Phytol. 237:2631–42
    [Google Scholar]
  57. Forrister DL, Endara M-J, Younkin GC, Coley PD, Kursar TA. 2019. Herbivores as drivers of negative density dependence in tropical forest saplings. Science 363:64321213–16
    [Google Scholar]
  58. Fraenkel GS. 1959. The raison d’être of secondary plant substances. Science 129:33611466–70
    [Google Scholar]
  59. Freeland WJ, Janzen DH. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Am. Nat. 108:961269–89
    [Google Scholar]
  60. Futuyma D, Agrawal A. 2009. Macroevolution and the biological diversity of plants and herbivores. PNAS 106:18054–61
    [Google Scholar]
  61. Gilbert LE. 1982. The coevolution of a butterfly and a vine. Sci. Am. 247:2110–21
    [Google Scholar]
  62. Glynn C, Herms DA, Orians CM, Hansen RC, Larsson S. 2007. Testing the growth-differentiation balance hypothesis: dynamic responses of willows to nutrient availability. New Phytol. 176:3623–34
    [Google Scholar]
  63. GNPS 2023. GNPS: Global Natural Product Social Molecular Networking. Data Anal. Platf., Univ. Calif., San Diego https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
    [Google Scholar]
  64. Griffin WJ, Lin GD. 2000. Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:6623–37
    [Google Scholar]
  65. Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111:9821169–94
    [Google Scholar]
  66. Grime JP. 2006. Plant Strategies, Vegetation Processes, and Ecosystem Properties Hoboken, NJ: John Wiley & Sons
  67. Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR. 2001. The carbon–nutrient balance hypothesis: its rise and fall. Ecol. Lett. 4:186–95
    [Google Scholar]
  68. Harborne JB. 1988. Introduction to Ecological Biochemistry London: Academic. , 3rd ed..
  69. Hardy OJ, Couteron P, Munoz F, Ramesh BR, Pélissier R. 2012. Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism. Glob. Ecol. Biogeogr. 21:101007–16
    [Google Scholar]
  70. Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67:3283–335
    [Google Scholar]
  71. Hopkins RJ, van Dam NM, van Loon JJA. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54:57–83
    [Google Scholar]
  72. Hoy SR, Vucetich JA, Liu R, DeAngelis DL, Peterson RO et al. 2019. Negative frequency-dependent foraging behaviour in a generalist herbivore (Alces alces) and its stabilizing influence on food web dynamics. J. Anim. Ecol. 88:91291–304
    [Google Scholar]
  73. Janz N. 2011. Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu. Rev. Ecol. Evol. Syst. 42:71–89
    [Google Scholar]
  74. Janzen DH. 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104:940501–28
    [Google Scholar]
  75. Johnson DJ, Beaulieu WT, Bever JD, Clay K. 2012. Conspecific negative density dependence and forest diversity. Science 336:6083904–7
    [Google Scholar]
  76. Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG et al. 2011. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333:60501755–58
    [Google Scholar]
  77. Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE et al. 2009. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. PNAS 106:4318073–78
    [Google Scholar]
  78. Lewinsohn TM, Novotny V, Basset Y. 2005. Insects on plants: diversity of herbivore assemblages revisited. Annu. Rev. Ecol. Evol. Syst. 36:597–620
    [Google Scholar]
  79. Liscombe DK, Macleod BP, Loukanina N, Nandi OI, Facchini PJ. 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66:111374–93
    [Google Scholar]
  80. Lokvam J, Brenes-Arguedas T, Lee JS, Coley PD, Kursar TA. 2006. Allelochemic function for a primary metabolite: the case of l-tyrosine hyper-production in Inga umbellifera (Fabaceae). Am. J. Bot. 93:81109–15
    [Google Scholar]
  81. Lokvam J, Clausen TP, Grapov D, Coley PD, Kursar TA. 2007. Galloyl depsides of tyrosine from young leaves of Inga laurina. J. Nat. Prod. 70:1134–36
    [Google Scholar]
  82. Lokvam J, Coley PD, Kursar TA. 2004. Cinnamoyl glucosides of catechin and dimeric procyanidins from young leaves of Inga umbellifera (Fabaceae). Phytochemistry 65:3351–58
    [Google Scholar]
  83. Lokvam J, Kursar T. 2005. Divergence in structure and activity of phenolic defenses in young leaves of two co-occurring Inga species. J. Chem. Ecol. 31:2563–80
    [Google Scholar]
  84. Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC et al. 2010. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:7307752–55
    [Google Scholar]
  85. Maron JL, Agrawal AA, Schemske DW. 2019. Plant–herbivore coevolution and plant speciation. Ecology 100:7e02704
    [Google Scholar]
  86. Marsh KJ, Wallis IR, Andrew RL, Foley WJ. 2006. The detoxification limitation hypothesis: Where did it come from and where is it going?. J. Chem. Ecol. 32:61247–66
    [Google Scholar]
  87. Massad TJ, Dyer LA, Vega CG. 2012. Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLOS ONE 7:10e47554
    [Google Scholar]
  88. Massad TJ, Martins de Moraes M, Philbin C, Oliveira C Jr., Cebrian Torrejon G et al. 2017. Similarity in volatile communities leads to increased herbivory and greater tropical forest diversity. Ecology 98:71750–56
    [Google Scholar]
  89. McKey D. 1974. Adaptive patterns in alkaloid physiology. Am. Nat. 108:961305–20
    [Google Scholar]
  90. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM et al. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10:4315–31
    [Google Scholar]
  91. Mitter C, Brooks DR. 1983. Phylogenetic aspects of coevolution. Coevolution DJ Futuyma, M Slatkin 65–98. Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  92. Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. 2022. Coordinated resource allocation to plant growth–defense tradeoffs. New Phytol 233:31051–66
    [Google Scholar]
  93. Moore BD, Andrew RL, Külheim C, Foley WJ. 2014. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol. 201:3733–50
    [Google Scholar]
  94. Nakadai R, Murakami M, Hirao T. 2014. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species. Oecologia 175:41237–45
    [Google Scholar]
  95. Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J et al. 2020. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17:9905–8
    [Google Scholar]
  96. Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B et al. 2002. Low host specificity of herbivorous insects in a tropical forest. Nature 416:6883841–44
    [Google Scholar]
  97. Novotny V, Miller SE, Baje L, Balagawi S, Basset Y et al. 2010. Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J. Anim. Ecol. 79:61193–203
    [Google Scholar]
  98. Ober D. 2010. Gene duplications and the time thereafter—examples from plant secondary metabolism. Plant Biol. 12:4570–77
    [Google Scholar]
  99. Ødegaard F, Diserud OH, Østbye K. 2005. The importance of plant relatedness for host utilization among phytophagous insects. Ecol. Lett. 8:6612–17
    [Google Scholar]
  100. Rhoades DF, Cates RG. 1976. Toward a general theory of plant antiherbivore chemistry. Biochemical Interaction Between Plants and Insects, ed. JW Wallace, RL Mansell 168–213. Boston: Springer US
    [Google Scholar]
  101. Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD et al. 2015. Phytochemical diversity drives plant–insect community diversity. PNAS 112:3510973–78
    [Google Scholar]
  102. Rosenthal GA, Berenbaum MR. 1991. Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 1 San Diego, CA: Academic. , 2nd ed..
  103. Salazar D, Jaramillo A, Marquis RJ. 2016a. The impact of plant chemical diversity on plant–herbivore interactions at the community level. Oecologia 181:41199–208
    [Google Scholar]
  104. Salazar D, Jaramillo MA, Marquis RJ. 2016b. Chemical similarity and local community assembly in the species rich tropical genus Piper. Ecology 97:113176–83
    [Google Scholar]
  105. Salazar D, Lokvam J, Mesones I, Vásquez Pilco M, Ayarza Zuñiga JM et al. 2018. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat. Ecol. Evol. 2:6983–90
    [Google Scholar]
  106. Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009. Is there a latitudinal gradient in the importance of biotic interactions?. Annu. Rev. Ecol. Evol. Syst. 40:245–69
    [Google Scholar]
  107. Schneider GF, Coley PD, Younkin GC, Forrister DL, Mills AG, Kursar TA. 2019. Phenolics lie at the centre of functional versatility in the responses of two phytochemically diverse tropical trees to canopy thinning. J. Exp. Bot. 70:205853–64
    [Google Scholar]
  108. Scossa F, Fernie AR. 2020. The evolution of metabolism: how to test evolutionary hypotheses at the genomic level. Comput. Struct. Biotechnol. J. 18:482–500
    [Google Scholar]
  109. Sedio B. 2013. Trait evolution and species coexistence in the hyperdiverse tropical tree genus Psychotria PhD thesis Univ. Mich. Ann Arbor, MI:
    [Google Scholar]
  110. Sedio BE, Parker JD, McMahon SM, Wright SJ. 2018. Comparative foliar metabolomics of a tropical and a temperate forest community. Ecology 99:122647–53
    [Google Scholar]
  111. Sedio BE, Rojas Echeverri JC, Boya PCA, Wright SJ. 2017. Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98:3616–23
    [Google Scholar]
  112. Sedio BE, Spasojevic MJ, Myers JA, Wright SJ, Person MD et al. 2021. Chemical similarity of co-occurring trees decreases with precipitation and temperature in North American forests. Front. Ecol. Evol. 9:679638
    [Google Scholar]
  113. Sedio BE, Wright SJ, Dick CW. 2012. Trait evolution and the coexistence of a species swarm in the tropical forest understorey. J. Ecol. 100:51183–93
    [Google Scholar]
  114. Sosenski P, Parra-Tabla V. 2019. Secondary metabolites: attracting pollinators. eLSed. H Kehrer-Sawatzki1–9. Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  115. Stamp N. 2003. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 78:123–55
    [Google Scholar]
  116. Stamp N. 2004. Can the growth–differentiation balance hypothesis be tested rigorously?. Oikos 107:2439–48
    [Google Scholar]
  117. Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. 2004. Nicotine's defensive function in nature. PLOS Biol. 2:8e217
    [Google Scholar]
  118. Tewari S, Brown S, Fristensky B. 2003. Plant defense multigene families: I. Divergence of Fusarium solani-induced expression in Pisum and Lathyrus. arXiv:q-bio/0310003 [q-bio.PE]
  119. Thompson JN. 1988. Coevolution and alternative hypotheses on insect/plant interactions. Ecology 69:4893–95
    [Google Scholar]
  120. Tiku AR. 2020. Antimicrobial compounds (phytoanticipins and phytoalexins) and their role in plant defense. In Co-Evolution of Secondary Metabolites, ed. J-M Mérillon, KG Ramawat 845–68. Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  121. Tohge T, Watanabe M, Hoefgen R, Fernie AR. 2013. The evolution of phenylpropanoid metabolism in the green lineage. Crit. Rev. Biochem. Mol. Biol. 48:2123–52
    [Google Scholar]
  122. Treutler H, Tsugawa H, Porzel A, Gorzolka K, Tissier A et al. 2016. Discovering regulated metabolite families in untargeted metabolomics studies. Anal. Chem. 88:168082–90
    [Google Scholar]
  123. Turner JRG. 1981. Adaptation and evolution in Heliconius: a defense of neoDarwinism. Annu. Rev. Ecol. Syst. 12:99–121
    [Google Scholar]
  124. Valencia R, Foster RB, Villa G, Condit R, Svenning JC et al. 2004. Tree species distributions and local habitat variation in the Amazon: large forest plot in Eastern Ecuador. J. Ecol. 92:2214–29
    [Google Scholar]
  125. Vermeij GJ. 1994. The evolutionary interaction among species: selection, escalation, and coevolution. Annu. Rev. Ecol. Syst. 25:219–36
    [Google Scholar]
  126. Vleminckx J, Salazar D, Fortunel C, Mesones I, Dávila N et al. 2018. Divergent secondary metabolites and habitat filtering both contribute to tree species coexistence in the Peruvian Amazon. Front. Plant Sci. 9:836
    [Google Scholar]
  127. Vleminckx J, Schimann H, Decaëns T, Fichaux M, Vedel V et al. 2019. Coordinated community structure among trees, fungi and invertebrate groups in Amazonian rainforests. Sci. Rep. 9:111337
    [Google Scholar]
  128. Volf M, Pyszko P, Abe T, Libra M, Kotásková N et al. 2017. Phylogenetic composition of host plant communities drives plant-herbivore food web structure. J. Anim. Ecol. 86:3556–65
    [Google Scholar]
  129. Wahlberg N. 2001. The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae). Evol. Int. J. Org. Evol. 55:3522–37
    [Google Scholar]
  130. Walker TWN, Alexander JM, Allard P-M, Baines O, Baldy V et al. 2022. Functional traits 2.0: the power of the metabolome for ecology. J. Ecol. 110:14–20
    [Google Scholar]
  131. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N et al. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34:8828–37
    [Google Scholar]
  132. Wang S, Alseekh S, Fernie AR, Luo J. 2019. The structure and function of major plant metabolite modifications. Mol. Plant 12:7899–919
    [Google Scholar]
  133. Watanabe Y, Hinata K, Qu L, Kitaoka S, Watanabe M et al. 2021. Effects of elevated CO2 and nitrogen loading on the defensive traits of three successional deciduous broad-leaved tree seedlings. Forests 12:7939
    [Google Scholar]
  134. Weiblen GD, Webb CO, Novotny V, Basset Y, Miller SE. 2006. Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87:7S62–75
    [Google Scholar]
  135. Wetzel WC, Inouye BD, Hahn PG, Whitehead SR, Underwood N. 2023. Variability in plant–herbivore interactions. Annu. Rev. Ecol. Evol. Syst. 54:451–74
    [Google Scholar]
  136. Wiggins NL, Forrister DL, Endara M-J, Coley PD, Kursar TA. 2016. Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in Inga, a genus of tropical trees. Ecol. Evol. 6:2478–92
    [Google Scholar]
  137. Wills C, Harms KE, Wiegand T, Punchi-Manage R, Gilbert GS et al. 2016. Persistence of neighborhood demographic influences over long phylogenetic distances may help drive post-speciation adaptation in tropical forests. PLOS ONE 11:6e0156913
    [Google Scholar]
  138. Windsor AJ, Reichelt M, Figuth A, Svatoš A, Kroymann J et al. 2005. Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae). Evol. Metab. Divers. 66:111321–33
    [Google Scholar]
  139. Wink M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:13–19
    [Google Scholar]
  140. Wright JS. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:11–14
    [Google Scholar]
  141. Xie W, Hodge A, Hao Z, Fu W, Guo L et al. 2022. Increased carbon partitioning to secondary metabolites under phosphorus deficiency in Glycyrrhiza uralensis Fisch. is modulated by plant growth stage and arbuscular mycorrhizal symbiosis. Front. Plant Sci. 13:876192
    [Google Scholar]
  142. Yguel B, Bailey R, Tosh ND, Vialatte A, Vasseur C et al. 2011. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. 14:111117–24
    [Google Scholar]
  143. Zhang Y, Deng T, Sun L, Landis JB, Moore MJ et al. 2021. Phylogenetic patterns suggest frequent multiple origins of secondary metabolites across the seed–plant ‘tree of life. .’ Natl. Sci. Rev. 8:4nwaa105
    [Google Scholar]
  144. Züst T, Agrawal AA. 2017. Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Annu. Rev. Plant Biol. 68:513–34
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102221-045254
Loading
/content/journals/10.1146/annurev-ecolsys-102221-045254
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error