1932

Abstract

This review provides an assessment of hormesis, a highly conserved evolutionary dose-response adaptive strategy that leads to the development of acquired resilience within well-defined temporal windows. The hormetic-based acquired resilience has a central role in affecting healthy aging, slowing the onset and progression of numerous neurodegenerative and other age-related diseases, and reducing risks and damage due to heart attacks, stroke, and other serious conditions of public health and medical importance. The review provides the historical foundations of hormesis, its dose-response features, its capacity for generalization across biological models and endpoints measured, and its mechanistic foundations. The review also provides a focus on the adaptive features of hormesis, i.e., its capacity to upregulate acquired resilience and how this can be mediated by numerous plant-derived extracts, such as curcumin, ginseng, , resveratrol, and green tea, that induce a broad spectrum of chemopreventive effects via hormesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-062420-124437
2021-03-25
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/food/12/1/annurev-food-062420-124437.html?itemId=/content/journals/10.1146/annurev-food-062420-124437&mimeType=html&fmt=ahah

Literature Cited

  1. Agathokleous E, Calabrese EJ. 2020. A global environmental health perspective and optimization of stress. Sci. Total Environ. 704:135263
    [Google Scholar]
  2. Bao Y, Wang W, Zhou A, Sun C. 2014. Benefits and risk of the hormetic effects of dietary isothiocyanates on cancer prevention. PLOS ONE 9:12e114764
    [Google Scholar]
  3. Brandes LJ. 2005. Hormetic effects of hormones, antihormones, and antidepressants on cancer cell growth in culture: in vivo correlates. Crit. Rev. Toxicol. 35:587–92
    [Google Scholar]
  4. Brandhorst S, Harputlugil E, Mitchell JR, Longo VD. 2017. Protective effects of short-term dietary restriction in surgical stress and chemotherapy. Ageing Res. Rev. 39:68–77
    [Google Scholar]
  5. Branham SE. 1929. The effects of certain chemical compounds upon the course of gas production by baker's yeast. J. Bacteriol. 18:247–64
    [Google Scholar]
  6. Calabrese EJ. 1999. Evidence that hormesis represents an “overcompensation” response to a disruption in homeostasis. Ecotoxicol. Environ. Saf. 42:135–37
    [Google Scholar]
  7. Calabrese EJ. 2001. Overcompensation stimulation: a mechanism for hormetic effects. Crit. Rev. Toxicol. 31:425–70
    [Google Scholar]
  8. Calabrese EJ. 2005a. Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit. Rev. Toxicol. 35:463–582
    [Google Scholar]
  9. Calabrese EJ. 2005b. Historical blunders: how toxicology got the dose-response half right. Cell. Mol. Biol. 51:643–54
    [Google Scholar]
  10. Calabrese EJ. 2008a. Alzheimer's disease drugs: an application of the hormetic dose-response model. Crit. Rev. Toxicol. 38:419–51
    [Google Scholar]
  11. Calabrese EJ. 2008b. An assessment of anxiolytic drug screening tests: hormetic dose responses predominate. Crit. Rev. Toxicol. 38:489–542
    [Google Scholar]
  12. Calabrese EJ. 2008c. Hormesis and medicine. Br. J. Clin. Pharmacol. 66:594–617
    [Google Scholar]
  13. Calabrese EJ. 2008d. Hormesis and mixtures. Toxicol. Appl. Pharmacol. 229:262–63
    [Google Scholar]
  14. Calabrese EJ. 2008e. Hormesis: principles and applications for pharmacology and toxicology. Am. J. Pharmacol. Toxicol. 3:56–68
    [Google Scholar]
  15. Calabrese EJ. 2008f. Modulation of the epileptic seizure threshold: implications of biphasic dose responses. Crit. Rev. Toxicol. 38:543–56
    [Google Scholar]
  16. Calabrese EJ. 2008g. Neuroscience and hormesis: overview and general findings. Crit. Rev. Toxicol. 38:249–52
    [Google Scholar]
  17. Calabrese EJ. 2008h. Pain and U-shaped dose response: occurrence, mechanisms, and clinical implications. Crit. Rev. Toxicol. 38:579–90
    [Google Scholar]
  18. Calabrese EJ. 2008i. Stress biology and hormesis: the Yerkes-Dodson law in psychology—a special case of the hormesis dose response. Crit. Rev. Toxicol. 38:453–62
    [Google Scholar]
  19. Calabrese EJ. 2008j. Hormesis: why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 27:1451–74
    [Google Scholar]
  20. Calabrese EJ. 2009. Getting the dose-response wrong: why hormesis became marginalized and the threshold model accepted. Arch. Toxicol. 83:227–47
    [Google Scholar]
  21. Calabrese EJ. 2011. Toxicology rewrites its history and rethinks its future: giving equal focus to both harmful and beneficial effects. Environ. Toxicol. Chem. 30:2658–73
    [Google Scholar]
  22. Calabrese EJ. 2013a. Biphasic dose response in biology, toxicology and medicine: accounting for their generality and quantitative features. Environ. Poll. 182:452–60
    [Google Scholar]
  23. Calabrese EJ. 2013b. Hormetic mechanisms. Crit. Rev. Toxicol. 43:580–606
    [Google Scholar]
  24. Calabrese EJ. 2014. Dose-response: a fundamental concept in toxicology. Hayes’ Principles and Methods of Toxicology AW Haye s, pp. 89–139 Boca Raton, FL: CRC Press. , 6th ed..
    [Google Scholar]
  25. Calabrese EJ. 2016a. Pre- and post-conditioning hormesis in elderly mice, rats, and humans: its loss and restoration. Biogerontology 17:681–702
    [Google Scholar]
  26. Calabrese EJ. 2016b. Preconditioning is hormesis. Part 1: Documentation, dose-response features and mechanistic foundations. Pharmacol. Res. 110:242–64
    [Google Scholar]
  27. Calabrese EJ. 2016c. Preconditioning is hormesis. Part II: How the conditioning dose mediates protection: dose optimization with temporal and mechanistic frameworks. Pharmacol. Res. 110:265–75
    [Google Scholar]
  28. Calabrese EJ. 2020a. Hormesis and ginseng: ginseng mixtures and individual constituents commonly display hormetic dose responses, especially for neuroprotective effects. Molecules 25:112719
    [Google Scholar]
  29. Calabrese EJ. 2020b. Stimulating hair growth via hormesis: experimental foundations and clinical implications. Pharmacol. Res. 152:104599
    [Google Scholar]
  30. Calabrese EJ, Agathokleous E, Kozumbo WJ, Stanek EJ, Leonard DL. 2019a. Estimating the range of the maximum hormetic stimulatory responses. Environ. Res. 170:337–43
    [Google Scholar]
  31. Calabrese EJ, Baldwin LA. 1997. A quantitatively-based methodology for the evaluation of chemical hormesis. Hum. Ecol. Risk Assess. 3:545–54
    [Google Scholar]
  32. Calabrese EJ, Baldwin LA. 1999. Chemical hormesis: its historical foundations as a biological hypothesis. Toxicol. Pathol. 27:195–216
    [Google Scholar]
  33. Calabrese EJ, Baldwin LA. 2000a. Radiation hormesis: its historical foundations as a biological hypothesis. Hum. Exp. Toxicol. 19:41–75
    [Google Scholar]
  34. Calabrese EJ, Baldwin LA. 2000b. Radiation hormesis: the demise of a legitimate hypothesis. Hum. Exp. Toxicol. 19:76–84
    [Google Scholar]
  35. Calabrese EJ, Baldwin LA. 2000c. Tales of two similar hypotheses: the rise and fall of chemical and radiation hormesis. Hum. Exp. Toxicol. 19:85–97
    [Google Scholar]
  36. Calabrese EJ, Baldwin LA. 2000d. The marginalization of hormesis. Hum. Exp. Toxicol. 19:32–40
    [Google Scholar]
  37. Calabrese EJ, Baldwin LA. 2001. U-shaped dose-response in biology, toxicology and public health. Annu. Rev. Public Health 22:15–33
    [Google Scholar]
  38. Calabrese EJ, Baldwin LA. 2002a. Defining hormesis. Hum. Exper. Toxicol. 21:91–97
    [Google Scholar]
  39. Calabrese EJ, Baldwin LA. 2002b. Hormesis and high-risk groups. Reg. Toxicol. Pharmacol. 35:414–28
    [Google Scholar]
  40. Calabrese EJ, Baldwin LA. 2003. The hormetic dose-response model is more common than the threshold model in toxicology. Toxicol. Sci. 71:246–50
    [Google Scholar]
  41. Calabrese EJ, Bhatia TN, Calabrese V, Dhawan G, Giordano J et al. 2019b. Cytotoxicity models of Huntington's disease and relevance of hormetic mechanisms: a critical assessment of experimental approaches and strategies. Pharmacol. Res. 150:104371
    [Google Scholar]
  42. Calabrese EJ, Blain RB. 2011. The occurrence of hormetic dose responses in the toxicological literature. Reg. Toxicol. Pharmacol. 61:73–81
    [Google Scholar]
  43. Calabrese EJ, Calabrese V, Tsatsakis A, Giordan J. 2020a. Hormesis and Ginko biloba (GB): numerous biological effects of GB are mediated via hormesis. Ageing Res. Rev. 64:101019
    [Google Scholar]
  44. Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V. 2015. What is hormesis and its relevance to healthy aging and longevity. Biogerontology 16:693–707
    [Google Scholar]
  45. Calabrese EJ, Dhawan G, Kapoor R, Mattson MP, Rattan S 2019c. Curcumin and hormesis with particular emphasis on neural cells. Food Chem. Toxicol. 129:399–404
    [Google Scholar]
  46. Calabrese EJ, Giordano JJ, Kozumbo WJ, Leak RK, Bhatia T. 2018a. Hormesis mediates dose-sensitive shifts in macrophage activation patterns. Pharmacol. Res. 137:236–49
    [Google Scholar]
  47. Calabrese EJ, Hanekamp Y, Hanekamp J, Agathokleous E. 2020b. Chloroquine: its hormetic dose responses. Sci. Total Environ. 755:Pt. 1142436
    [Google Scholar]
  48. Calabrese EJ, Iavicoli I, Calabrese V. 2012. Hormesis: why it is important to biogerontogists. Biogerontology 13:215–35
    [Google Scholar]
  49. Calabrese EJ, Kozumbo WJ. 2020. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol. Res. 2020:105283
    [Google Scholar]
  50. Calabrese EJ, Mattson MP. 2011. Hormesis provides a generalized quantitative estimate of biological plasticity. J. Cell Commun. Signal. 5:25–38
    [Google Scholar]
  51. Calabrese EJ, Mattson MP. 2017. How does hormesis impact biology, toxicology and medicine?. NPJ Aging Mech. Dis. 3:13
    [Google Scholar]
  52. Calabrese EJ, Mattson MP, Calabrese V. 2010. Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum. Exper. Toxicol. 29:980–1015
    [Google Scholar]
  53. Calabrese EJ, Mattson MP, Dhawan G, Kapoor R, Calabrese V, Giordano J. 2020c. Hormesis: a potential strategic approach to the treatment of neurodegenerative disease. Int. J. Neurobiol. 155:271–301
    [Google Scholar]
  54. Calabrese EJ, McCarthy ME, Kenyon E 1987. The occurrence of chemically-induced hormesis. Health Phys 52:531–41
    [Google Scholar]
  55. Calabrese EJ, Standenmayer JW, Stanek EJ, Hoffmann GR. 2006. Hormesis outperforms threshold in National Cancer Institute antitumor drug screening database. Toxicol. Sci. 94:368–78
    [Google Scholar]
  56. Calabrese EJ, Tsatsakis AM, Agathokleous E. 2020d. Does green tea induce hormesis?. Dose Response 18:31559325820936170
    [Google Scholar]
  57. Calabrese V, Santoro A, Salinaro AT, Modaffari S, Scuto M et al. 2018b. Hormetic approaches to the treatment of Parkinson's disease: perspectives and possibilities. J. Neurosci. Res. 96:1641–62
    [Google Scholar]
  58. Chan WH, Hsuuw YD. 2007. Dosage effect of ginkgolide B on ethanol-induced cell death in human hepatoma G2 cells. Ann. N.Y. Acad. Sci. 1096:388–98
    [Google Scholar]
  59. Chu SF, Zhou X, He WB, Chen C, Luo P et al. 2019. Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway. Acta Pharmacol. Sin. 40:13–25
    [Google Scholar]
  60. Cook R, Calabrese EJ. 2006. The importance of hormesis to public health. Environ. Health Perspect. 114:1631–35
    [Google Scholar]
  61. Crump T. 2003. NIH-98-134: contemporary medicine as presented by its practitioners themselves, Leipzig, 1923:217–50. Nonlinearity Biol. Toxicol. Med. 1:3295–318
    [Google Scholar]
  62. Dominguez LJ, Barbagallo M, Morley JE. 2009. Anti-aging medicine: pitfalls and hopes. Aging Male 12:13–20
    [Google Scholar]
  63. Domirovic D, Rattan SIS. 2011. Curcumin induces stress response and hormetically modulates wound healing ability of human skin fibroblasts undergoing aging in vitro. Biogerontology 12:5437–44
    [Google Scholar]
  64. Enstrom JE. 1978. Cancer and total mortality among active Mormons. Cancer 42:1943–51
    [Google Scholar]
  65. Enstrom JE. 1979. Cancer mortality amongst low-risk populations. CA Cancer J. Clin. 29:352–61
    [Google Scholar]
  66. Fosslien E. 2009. The hormetic morphogen theory of curvature and the morphogenesis and pathology of tubular and other curved structures. Dose Response 7:307–31
    [Google Scholar]
  67. Franco OH, Bonneux L, de Laet C, Peetrs A, Steyerberg LW, Mackenbach JP. 2004. The polymeal: a more natural, safer, and probably tastier (than the polypill) strategy to reduce cardiovascular disease by more than 75%. Br. Med. J. 329:1447–50
    [Google Scholar]
  68. Furst A. 1987. Hormetic effects in pharmacology: pharmacological inversions as prototypes for hormesis. Health Phys 52:527–30
    [Google Scholar]
  69. Gezer C, Yucean S, Rattan SIS. 2015. Artichoke compound cynarin differentially affects the survival, growth, and stress response of normal, immortalized, and cancerous human cells. Turkish J. Biol. 39:299–305
    [Google Scholar]
  70. Gruhlke MCH, Nicco C, Batteux F, Slusarenko AJ. 2017. The effects of allicin, a reactive sulfur species from garlic, on a selection of mammalian cell lines. Antioxidants 6:11
    [Google Scholar]
  71. Gundimeda U, McNeil TH, Fan TK, Deng R, Raudu D et al. 2014. Green tea catechins potentiate the neuritogenic action of brain-derived neurotropic factor: role of 67-kDA laminin receptor and hydrogen peroxide. Biochem. Biophys. Res. Commun. 445:218–24
    [Google Scholar]
  72. Hall DM, Oberley TD, Moseley PM, Buettner GR, Oberley LW et al. 2000. Caloric restriction improves thermotolerance and reduces hyperthermia-induced cellular damage in old rats. FASEB J 14:78–86
    [Google Scholar]
  73. Hernandez-Saavedra D, Moody L, Xu GB, Chen H, Pan YX. 2019. Epigenetic regulation of metabolism and inflammation by calorie restriction. Adv. Nutr. 10:520–36
    [Google Scholar]
  74. Horwitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–96
    [Google Scholar]
  75. Hou RR, Chen JZ, Chen H, Kang XG, Li MG, Wang BR. 2008. Neuroprotective effects of (−)-epigallocatechin-3-gallate (EGCG) on paraquat-induced apoptosis in PC12 cells. Cell Biol. Int. 32:22–30
    [Google Scholar]
  76. Huang Y, Wang K, Gu CX, Yu G, Zhao D et al. 2018. Berberine, a natural plant alkaloid, synergistically sensitizes human liver cancer cells to sorafenib. Oncol. Rep. 40:1525–32
    [Google Scholar]
  77. Jia L, Xiong Y, Zhan W, Ma X, Xu X. 2020. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Exp. Cell Res. 386:111717
    [Google Scholar]
  78. Khallaghi B, Safarian F, Nasoohi S, Ahmadiani A, Dargahi L. 2016. Metformin-induced protection against oxidative stress is associated with AKT/mTOR restoration in PC12. Life Sci 148:286292
    [Google Scholar]
  79. Kim JH, Park SH, Nam SW, Kwon HJ, Kim BW et al. 2011. Curcumin stimulates proliferation, stemness acting signals and migration of 3T3-L1 preadipocytes. Int. J. Mol. Med. 28:429–35
    [Google Scholar]
  80. Lackova Z, Buchtelova H, Buchtova Z, Klejdus B, Heger Z et al. 2017. Anticarcinogenic effect of spices due to phenolic and flavonoid compounds: in vitro evaluation of prostate cells. Molecules 22:1626
    [Google Scholar]
  81. Lagarde F, Beausoleil C, Belcher SM, Belsunces LP, Emond C et al. 2015. Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Environ. Health 14:13
    [Google Scholar]
  82. Leak RK, Calabrese EJ, Kozumbo WJ, Gidday JM, Johnson TE et al. 2018. Enhancing and extending biological performance and resilience. Dose Response 16:155932581878501
    [Google Scholar]
  83. Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ et al. 2020. Healthy effects of plant polyphenols: molecular mechanisms. Int. J. Mol. Sci. 21:1250
    [Google Scholar]
  84. Li HB, Gao JM, Gao JM, Ying XX, Guan HQ, Li JC. 2007. Magnolol-induced H460 cells death via autophagy but not apoptosis. Arch. Pharmacol. Res. 30:1566–74
    [Google Scholar]
  85. Li M, Fan W, Zhou N 2008. Effects of EGCG on the growth of human hair follicles and cell proliferation of human dermal papilla cells (DPCs) in vitro. Chin. J. Dermatol. 41:173–75
    [Google Scholar]
  86. Li S, Tang D, Xue Z, Zhang Z, Sun X et al. 2011. Biphasic effect of EGb761 on simulated ischemia-induced rat BMSC survival in vitro and in vivo. Life Sci 88:853–63
    [Google Scholar]
  87. Liu JW, Tian SJ, de Barry J, Luu B. 2007. Panazadiol glycosides that induce neuronal differentiation in neurosphere stem cells. J. Nat. Prod. 70:1329–34
    [Google Scholar]
  88. Luckey TD. 1980. Ionizing Radiation and Hormesis Boca Raton, FL: CRC Press
  89. Ma XX, Liu J, Wang CM, Zhou JP, He ZZ, Lin H. 2018. Low-dose curcumin stimulates proliferation of rat embryonic neural stem cells through glucocorticoid receptor and STAT3. CNS Neurosci. Therap. 24:940–46
    [Google Scholar]
  90. Mao L, Dauchy T, Blask DE, Dauchy EM, Slakey LM et al. 2016. Melatonin suppression of aerobic glycolysis (Warburg effect), survival signaling and metastasis in human leiomyosarcoma. J. Pineal Res. 60:167–77
    [Google Scholar]
  91. Martin KR, Wooden A. 2012. Tart cherry juice induces differential dose-dependent effects on apoptosis, but not cellular proliferation in MCF-7 human breast cancer cells. J. Med. Food 15:945–54
    [Google Scholar]
  92. Maruska A, Ugenskiene R, Raulinaityte D, Juozaityte E, Kaskoniene V et al. 2017. Analysis of antiproliferative effect of Chamerion angustifolium water extract and its fractions on several breast cancer cell lines. Adv. Med. Sci. 62:158–64
    [Google Scholar]
  93. Masoro EJ. 1998. Hormesis and the antiaging action of dietary restriction. Exp. Gerontol. 33:61–66
    [Google Scholar]
  94. Masoro EJ. 2000. Dietary restriction and longevity extension as a manifestation of hormesis. Hum. Ecol. Risk Assess. 6:273–79
    [Google Scholar]
  95. Masoro EJ. 2007a. Role of hormesis in life extension by caloric restriction. Dose Response 5:163–75
    [Google Scholar]
  96. Masoro EJ. 2007b. The role of hormesis in life extension by dietary restriction. Interdiscip. Top. Gerontol. Geriat. 35:1–17
    [Google Scholar]
  97. Masoro EJ 2010. History of caloric restriction, aging and longevity. Caloric Restriction, Aging and Longevity AV Everitt, SIS Rattan, DG Le Conteur, R de Cabo 3–14 Dordrecht, Neth: Springer
    [Google Scholar]
  98. Mattson MP. 2008. Dietary factors, hormesis and health. Ageing Res. Rev. 7:43–48
    [Google Scholar]
  99. Mattson MP. 2014. Challenging oneself intermittently to improve health. Dose Response 12:600–18
    [Google Scholar]
  100. McCay CM, Crowell MF, Maynard LA. 1935. The effects of retarded growth upon the length of lifespan and upon the ultimate body size. J. Nutr. 10:63–79
    [Google Scholar]
  101. McDonald RB, Ramsey JJ. 2010. Honoring Clive McCay and 75 years of calorie restriction research. J. Nutr. 140:71205–10
    [Google Scholar]
  102. Miller WS, Green CA, Kitchen H. 1945. Biphasic action of penicillin and other sulphonamide similarity. Nature 155:210–11
    [Google Scholar]
  103. Moran JM, Leal-Hernandez O, Canal-Macias ML, Roncero-Martin R, Guerrero-Bonmatty R et al. 2016. Antiproliferative properties of oleuropein in human osteosarcoma cells. Nat. Prod. Commun. 11:491–92
    [Google Scholar]
  104. Murrell GAC, Francis MJO, Bromley L. 1988. Oxygen free radicals stimulate fibroblast proliferation. Biochem. Soc. Trans. 17:484
    [Google Scholar]
  105. Oh AM, Kim HR, Park YJ, Lee YH, Chung KH. 2015. Ethanolic extract of dandilion (Taraxacum mongolicum) induces estrogenic activity on MCF-7 cells and immature rats. Chin. J. Nat. Med. 13:808–14
    [Google Scholar]
  106. Paduch R, Trytek M, Krol SK, Kud J, Frant M et al. 2016. Biological activity of terpene compounds produced by biotechnological methods. Pharmacol. Biol. 54:1096–107
    [Google Scholar]
  107. Panthong S, Boonsathorn N, Chucawankul S. 2016. Antioxidant activity, anti-proliferative activity, and amino acid profiles of ethanolic extracts of edible mushrooms. Gen. Mol. Res. 15:15048886
    [Google Scholar]
  108. Rafi MM, Kanakasabai S, Reyes MD, Bright JJ. 2013. Lycopene modulates growth and survival associated genes in prostate cancer. J. Nutr. Biochem. 24:1724–34
    [Google Scholar]
  109. Randall WA, Price W, Welch H 1947. Demonstration of hormesis (increase in fatality rate) by penicillin. Am. J. Public Health 37:421–25
    [Google Scholar]
  110. Sakagami H, Shi H, Bandow K, Tomomura M, Tomomura A et al. 2018. Search of neuroprotective polyphenols using the “Overlay” isolation method. Molecules 23:1840
    [Google Scholar]
  111. Sallinaro AT, Pennisi M, DiPaola R, Scuto M, Crupi R et al. 2018. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer's disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun. Aging 15:8
    [Google Scholar]
  112. Schulz H. 1923. Hugo Schulz. In Die Medizin Der Gegenwart in Selbstdarspellungen, ed. LR Grotepp. 21650 Leipzig, Ger.: Verlag Von Felix Meiner
  113. Scuto MC, Mancuso C, Tomasello B, Ontario ML, Cavallaro A et al. 2019. Curcumin, hormesis and the nervous system. Nutrients 11:2417
    [Google Scholar]
  114. Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen MD 2008. Ginsenoside Rb1 stimulates glucose through insulin-like signaling pathway in 3TE-L1 adipocytes. J. Endocrin. 198:561–69
    [Google Scholar]
  115. Shi C, Zhao L, Zhu B, Li Q, Yew DT et al. 2009. Dosage effects of EGb761 on hydrogen peroxide-induced cell death in SH-SY5Y cells. Chem.-Biol. Interact. 180:389–97
    [Google Scholar]
  116. Stebbing ARD. 1982. The stimulation of growth by low-levels of inhibitors. Sci. Total Environ. 22:213–34
    [Google Scholar]
  117. Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S et al. 2018. Acquired resilience: an evolved system of tissue protection in mammals. Dose Response 16:1559325818803428
    [Google Scholar]
  118. Surh YJ. 2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. 3:768–80
    [Google Scholar]
  119. Szabadi E. 1977. A model of two functionally antagonistic receptor populations activated by the same agonist. J. Theor. Biol. 69:101–12
    [Google Scholar]
  120. Ugochukwu NH, Figgers CL. 2006. Dietary caloric restriction modifies inflammatory responses in the livers of streptozotocin-induced diabetic rats. Nutr. Res. 26:221–26
    [Google Scholar]
  121. Vashisht M, Rani P, Sunita, Kumar Onteru S, Singh D 2018. Curcumin primed exosomes reverses LPS-induced pro-inflammatory gene expression in buffalo granulosa cells. Cell Biochem 119:1488–500
    [Google Scholar]
  122. Velasquez JT, Nazareth L, Quinn RJ, Ekberg JAK, St. John JA. 2014. Low-dose curcumin stimulates proliferation, migration and phagocytic activity of olfactory ensheathing cells. PLOS ONE 9:e111787
    [Google Scholar]
  123. Wang C, Han Z. 2015. Ginkgo biloba extract enhances differentiation and performance of neural stem cells in mouse cochlea. Cell. Mol. Neurobiol. 35:861–69
    [Google Scholar]
  124. Wang N, Wang F, Gao Y, Yin P, Pan C et al. 2016. Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis. J. Pharm. Sci. 132:192–200
    [Google Scholar]
  125. Wang TTY, Sathyamoorthy N, Phang JM. 1996. Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis 17:271–75
    [Google Scholar]
  126. Weindruch R, Walford RL. 1982. Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215:1415–18
    [Google Scholar]
  127. Weindruch R, Walford RL, Fligel S, Guthrie D 1986. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J. Nutr. 116:165–68
    [Google Scholar]
  128. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL et al. 2004. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–89
    [Google Scholar]
  129. Yan X, Xue J, Wang S, Liu Y, Zheng S et al. 2015. Ginsenoside-Rb1 protects hypoxic and ischemic-damaged cardiomyocyte by regulating expression of miRNAs. Evid. Based Comp. Altern. Med. 2015.171306
    [Google Scholar]
  130. You BR, Moon HJ, Han YH, Park WH. 2010. Gallic acid inhibits the growth of Hela cervical cancer cells via apoptosis and/or necrosis. Food Chem. Toxicol. 48:1134–340
    [Google Scholar]
  131. Yu BP. 2000. Why calorie restriction would work for human longevity. Biogerontology 7:179–82
    [Google Scholar]
  132. Yu BP, Masoro EJ, McMahan CA. 1985. Nutritional influences on aging of Fisher 344 rat. I. Physical, metabolic, and longevity characteristics. J. Gerontol. 40:657–70
    [Google Scholar]
  133. Zhang H, Su Y, Wang J, Gao Y, Yang F et al. 2019. Ginsenoside Rb1 promotes the growth of mink hair follicle via PI3K/AKT/GSK-3β signaling pathway. Life Sci 229:210–18
    [Google Scholar]
  134. Zhao X, Zeng Z, Gaur U, Fang J, Peng T et al. 2019. Metformin protects PC12 cells and hippocampal neurons from H202-induced oxidative damage through activation of AMPK pathway. J. Cell. Physiol. 23:16619–29
    [Google Scholar]
/content/journals/10.1146/annurev-food-062420-124437
Loading
/content/journals/10.1146/annurev-food-062420-124437
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error