1932

Abstract

Modeling has enabled fundamental advances in our understanding of the mechanisms of health and disease for centuries, since at least the time of William Harvey almost 500 years ago. Recent technological advances in molecular methods, computation, and imaging generate optimism that mathematical modeling will enable the biomedical research community to accelerate its efforts in unraveling the molecular, cellular, tissue-, and organ-level processes that maintain health, predispose to disease, and determine response to treatment. In this review, we discuss some of the roles of mathematical modeling in the study of human physiology and pathophysiology and some challenges and opportunities in general and in two specific areas: in vivo modeling of pulmonary function and in vitro modeling of blood cell populations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032557
2020-01-24
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012419-032557.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032557&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Harvey W. 1993. 1889. On the Motion of the Heart and Blood in Animals London: Prometheus
  2. 2. 
    Noble D. 2008. Claude Bernard, the first systems biologist, and the future of physiology. Exp. Physiol. 93:116–26
    [Google Scholar]
  3. 3. 
    Cannon WB. 1939. The Wisdom of the Body New York: Norton
  4. 4. 
    Guyton AC, Coleman TG, Granger HJ 1972. Circulation: overall regulation. Annu. Rev. Physiol. 34:13–44
    [Google Scholar]
  5. 5. 
    Ellner SP, Guckenheimer J. 2006. Dynamic Models in Biology Princeton, NJ: Princeton Univ. Press
  6. 6. 
    Keener J, Sneyd J. 1998. Mathematical Physiology, Vol. 8 New York: Springer
  7. 7. 
    Cobelli C, Carson E. 2008. Introduction to Modeling in Physiology and Medicine London: Elsevier
  8. 8. 
    Keller EF. 2009. It is not possible to reduce biological explanations to explanations in chemistry and/or physics. Contemporary Debates in Philosophy of Biology FJ Ayala, R Arp 32–47 Oxford, UK: Wiley‐Blackwell
    [Google Scholar]
  9. 9. 
    Anderson PW. 1972. More is different. Science 177:4047393–96
    [Google Scholar]
  10. 10. 
    Berg HC. 1984. Random Walks in Biology Princeton, NJ: Princeton Univ. Press
  11. 11. 
    Weaver W. 1948. Science and complexity. Am. Sci. 36:4536–44
    [Google Scholar]
  12. 12. 
    Van Kampen NG. 2007. Stochastic Processes in Physics and Chemistry Amsterdam: Elsevier. , 3rd ed..
  13. 13. 
    MMWR (Morb. Mortal. Wkly. Rep.) 1999. Ten great public health achievements—United States, 1900–1999. MMWR 48:12241–43
    [Google Scholar]
  14. 14. 
    Shah ND, Steyerberg EW, Kent DM 2018. Big data and predictive analytics: recalibrating expectations. JAMA 320:127–28
    [Google Scholar]
  15. 15. 
    Friberg L, Rosenqvist M, Lip GYH 2012. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. Eur. Heart J. 33:121500–10
    [Google Scholar]
  16. 16. 
    Schocken DD, Benjamin EJ, Fonarow GC, Krumholz HM, Levy D et al. 2008. Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 117:192544–65
    [Google Scholar]
  17. 17. 
    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D 1999. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann. Intern. Med. 130:6461–70
    [Google Scholar]
  18. 18. 
    Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M 1995. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:6510123–26
    [Google Scholar]
  19. 19. 
    Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA et al. 1995. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:6510117–22
    [Google Scholar]
  20. 20. 
    Smith HJ, Reinhold P, Goldman MD 2005. Forced oscillation technique and impulse oscillometry. Lung Function Testing R Gosselink, H Stam 72–105 Wakefield, UK: Eur. Respir. Soc. J.
    [Google Scholar]
  21. 21. 
    Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A et al. 2013. Consensus statement for inert gas washout measurement using multiple- and single-breath tests. Eur. Respir. J. 41:3507–22
    [Google Scholar]
  22. 22. 
    Oostveen E, MacLeod D, Lorino H, Farré R, Hantos Z et al. 2003. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur. Respir. J. 22:61026–41
    [Google Scholar]
  23. 23. 
    Benade AH. 1968. On the propagation of sound waves in a cylindrical conduit. J. Acoust. Soc. Am. 75:158–62
    [Google Scholar]
  24. 24. 
    Thurston GB. 1952. Periodic fluid flow through circular tubes. J. Acoust. Soc. Am. 24:6653–56
    [Google Scholar]
  25. 25. 
    DuBois AB, Brody AW, Lewis DH, Burgess BF 1956. Oscillation mechanics of lungs and chest in man. J. Appl. Physiol. 8:6587–94
    [Google Scholar]
  26. 26. 
    Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ 1992. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 72:1168–78
    [Google Scholar]
  27. 27. 
    Lutchen KR, Greenstein JL, Suki B 1996. How inhomogeneities and airway walls affect frequency dependence and separation of airway and tissue properties. J. Appl. Physiol. 80:51696–707
    [Google Scholar]
  28. 28. 
    Lutchen KR, Gillis H. 1997. Relationship between heterogeneous changes in airway morphometry and lung resistance and elastance. J. Appl. Physiol. 83:41192–201
    [Google Scholar]
  29. 29. 
    Kaczka DW, Ingenito EP, Suki B, Lutchen KR 1997. Partitioning airway and lung tissue resistances in humans: effects of bronchoconstriction. J. Appl. Physiol. 82:51531–41
    [Google Scholar]
  30. 30. 
    Thorpe CW, Bates JHT. 1997. Effect of stochastic heterogeneity on lung impedance during acute bronchoconstriction: a model analysis. J. Appl. Physiol. 82:51616–25
    [Google Scholar]
  31. 31. 
    Tawhai MH. 2004. CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97:62310–21
    [Google Scholar]
  32. 32. 
    Dellaca RL, Andersson Olerud M, Zannin E, Kostic P, Pompilio PP et al. 2009. Lung recruitment assessed by total respiratory system input reactance. Intensive Care Med 35:122164–72
    [Google Scholar]
  33. 33. 
    Bhatawadekar SA, Leary D, Maksym GN 2015. Modelling resistance and reactance with heterogeneous airway narrowing in mild to severe asthma. Can. J. Physiol. Pharmacol. 93:3207–14
    [Google Scholar]
  34. 34. 
    Foy BH, Kay D. 2017. A computational comparison of the multiple-breath washout and forced oscillation technique as markers of bronchoconstriction. Respir. Physiol. Neurobiol. 240:61–69
    [Google Scholar]
  35. 35. 
    Tgavalekos NT. 2005. Identifying airways responsible for heterogeneous ventilation and mechanical dysfunction in asthma: an image functional modeling approach. J. Appl. Physiol. 99:62388–97
    [Google Scholar]
  36. 36. 
    Foy BH, Soares M, Bordas R, Richardson M, Bell A et al. 2019. Lung computational models and the role of the small airways in asthma. Am. J. Respir. Crit. Care Med. 200:8982–91
    [Google Scholar]
  37. 37. 
    Tgavalekos NT, Musch G, Harris RS, Vidal Melo MF, Winkler T et al. 2007. Relationship between airway narrowing, patchy ventilation and lung mechanics in asthmatics. Eur. Respir. J. 29:61174–81
    [Google Scholar]
  38. 38. 
    Campana L, Kenyon J, Zhalehdoust-Sani S, Tzeng Y-S, Sun Y et al. 2009. Probing airway conditions governing ventilation defects in asthma via hyperpolarized MRI image functional modeling. J. Appl. Physiol. 106:41293–1300
    [Google Scholar]
  39. 39. 
    Bell AJ, Foy BH, Richardson M, Singapuri A, Mirkes E et al. 2019. Functional CT imaging for identification of the spatial determinants of small-airways disease in adults with asthma. J. Allergy Clin. Immunol. 144:183–93
    [Google Scholar]
  40. 40. 
    Paiva M, Lacquet LM, van der Linden LP 1976. Gas transport in a model derived from Hansen-Ampaya anatomical data of the human lung. J. Appl. Physiol. 41:1115–19
    [Google Scholar]
  41. 41. 
    Verbanck S, Schuermans D, Van Muylem A, Paiva M, Noppen M, Vincken W 1997. Ventilation distribution during histamine provocation. J. Appl. Physiol. 83:61907–16
    [Google Scholar]
  42. 42. 
    Dutrieue B, Vanholsbeeck F, Verbanck S, Paiva M 2000. A human acinar structure for simulation of realistic alveolar plateau slopes. J. Appl. Physiol. 89:51859–67
    [Google Scholar]
  43. 43. 
    Henry FS, Llapur CJ, Tsuda A, Tepper RS 2012. Numerical modelling and analysis of peripheral airway asymmetry and ventilation in the human adult lung. J. Biomech. Eng. 134:6061001
    [Google Scholar]
  44. 44. 
    Verbanck S, Paiva M. 2018. A simulation study of diffusion–convection interaction and its effect on multiple breath washout indices. Respir. Physiol. Neurobiol. 258:5–11
    [Google Scholar]
  45. 45. 
    Verbanck S, Paiva M. 1990. Model simulations of gas mixing and ventilation distribution in the human lung. J. Appl. Physiol. 69:62269–79
    [Google Scholar]
  46. 46. 
    Cruz JC, Jeng DR, Han D, Wu G, Flores XF 1997. Ventilation inhomogeneities and mixed venous blood N2 in multibreath N2 washout. Respir. Physiol. 69:62269–79
    [Google Scholar]
  47. 47. 
    Verbanck S, Schuermans D, Van Muylem A, Melot C, Noppen M et al. 1998. Conductive and acinar lung-zone contributions to ventilation inhomogeneity in COPD. Am. J. Respir. Crit. Care Med. 157:51573–77
    [Google Scholar]
  48. 48. 
    Mitchell JH, Hoffman EA, Tawhai MH 2012. Relating indices of inert gas washout to localised bronchoconstriction. Respir. Physiol. Neurobiol. 183:3224–33
    [Google Scholar]
  49. 49. 
    Foy BH, Kay D, Bordas R 2017. Modelling responses of the inert-gas washout and MRI to bronchoconstriction. Respir. Physiol. Neurobiol. 235:8–17
    [Google Scholar]
  50. 50. 
    Foy BH, Gonem S, Brightling C, Siddiqui S, Kay D 2018. Modelling the effect of gravity on inert-gas washout outputs. Physiol. Rep. 6:1e13709
    [Google Scholar]
  51. 51. 
    Burrowes KS, Tawhai MH. 2006. Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir. Physiol. Neurobiol. 154:3515–23
    [Google Scholar]
  52. 52. 
    Tawhai MH, Clark AR, Burrowes KS 2011. Computational models of the pulmonary circulation: insights and the move towards clinically directed studies. Pulm. Circ. 1:2224–38
    [Google Scholar]
  53. 53. 
    Foy B, Kay D. 2019. A computationally tractable scheme for simulation of the human pulmonary system. J. Comput. Phys. 388:371–93
    [Google Scholar]
  54. 54. 
    Franco RS. 2008. The measurement and importance of red cell survival. Am. J. Hematol. 84:2109–14
    [Google Scholar]
  55. 55. 
    Waugh RE, Narla M, Jackson CW, Mueller TJ, Suzuki T, Dale GL 1992. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. Blood 79:51351–58
    [Google Scholar]
  56. 56. 
    Lew VL, Raftos JE, Sorette M, Bookchin RM, Mohandas N 1995. Generation of normal human red cell volume, hemoglobin content, and membrane area distributions by “birth” or regulation. ? Blood 86:1334–41
    [Google Scholar]
  57. 57. 
    Gifford SC, Derganc J, Shevkoplyas SS, Yoshida T, Bitensky MW 2006. A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence. Br. J. Haematol. 135:3395–404
    [Google Scholar]
  58. 58. 
    Bosch FH, Werre JM, Roerdinkholder-Stoelwinder B, Huls TH, Willekens FL, Halie MR 1992. Characteristics of red blood cell populations fractionated with a combination of counterflow centrifugation and Percoll separation. Blood 79:1254–60
    [Google Scholar]
  59. 59. 
    Cohen RM, Franco RS, Khera PK, Smith EP, Lindsell CJ et al. 2008. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood 112:104284–91
    [Google Scholar]
  60. 60. 
    IDF (Int. Diabetes Found) 2017. IDF Diabetes Atlas. IDF. . , 8th ed.. https://diabetesatlas.org/resources/2017-atlas.html
  61. 61. 
    Ly J, Marticorena R, Donnelly S 2004. Red blood cell survival in chronic renal failure. Am. J. Kidney Dis. 44:4715–19
    [Google Scholar]
  62. 62. 
    Beutler E, Waalen J. 2006. The definition of anemia: What is the lower limit of normal of the blood hemoglobin concentration. ? Blood 107:51747–50
    [Google Scholar]
  63. 63. 
    Callender S, Powell E, Witts L 1945. The life-span of the red cell in man. J. Pathol. Bacteriol. 57:1129–39
    [Google Scholar]
  64. 64. 
    Uehlinger DE, Gotch FA, Sheiner LB 1992. A pharmacodynamic model of erythropoietin therapy for uremic anemia. Clin. Pharmacol. Ther. 51:176–89
    [Google Scholar]
  65. 65. 
    Krzyzanski W, Ramakrishnan R, Jusko WJ 1999. Basic pharmacodynamic models for agents that alter production of natural cells. J. Pharmacokinet. Biopharm. 72:5467–89
    [Google Scholar]
  66. 66. 
    Perez-Ruixo JJ, Kimko HC, Chow AT, Piotrovsky V, Krzyzanski W, Jusko WJ 2005. Population cell life span models for effects of drugs following indirect mechanisms of action. J. Pharmacokinet. Pharmacodyn. 32:5–6767–93
    [Google Scholar]
  67. 67. 
    de Winter W, DeJongh J, Post T, Ploeger B, Urquhart R et al. 2006. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J. Pharmacokinet. Pharmacodyn. 33:3313–43
    [Google Scholar]
  68. 68. 
    Hamrén B, Björk E, Sunzel M, Karlsson MO 2008. Models for plasma glucose, HbA1c, and hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar treatment. Clin. Pharmacol. Ther. 84:2228–35
    [Google Scholar]
  69. 69. 
    Lledó-García R, Kalicki RM, Uehlinger DE, Karlsson MO 2012. Modeling of red blood cell life-spans in hematologically normal populations. J. Pharmacokinet. Pharmacodyn. 39:5453–62
    [Google Scholar]
  70. 70. 
    Shrestha RP, Horowitz J, Hollot CV, Germain MJ, Widness JA et al. 2016. Models for the red blood cell lifespan. J. Pharmacokinet. Pharmacodyn. 43:3259–74
    [Google Scholar]
  71. 71. 
    Krzyzanski W, Perez Ruixo JJ 2012. Lifespan based indirect response models. J. Pharmacokinet. Pharmacodyn. 39:1109–23
    [Google Scholar]
  72. 72. 
    Krzyzanski W, Jusko WJ. 2002. Multiple-pool cell lifespan model of hematologic effects of anticancer agents. J. Pharmacokinet. Pharmacodyn. 29:4311–37
    [Google Scholar]
  73. 73. 
    Zenker S, Rubin J, Clermont G 2007. From inverse problems in mathematical physiology to quantitative differential diagnoses. PLOS Comput. Biol. 3:11e204
    [Google Scholar]
  74. 74. 
    Malka R, Nathan DM, Higgins JM 2016. Mechanistic modeling of hemoglobin glycation and red blood cell kinetics enables personalized diabetes monitoring. Sci. Transl. Med. 8:359359ra130
    [Google Scholar]
  75. 75. 
    Sun T, Morgan H. 2010. Single-cell microfluidic impedance cytometry: a review. 84423–43
  76. 76. 
    Higgins JM. 2015. Red blood cell dynamics. Clin. Lab. Med. 35:143–57
    [Google Scholar]
  77. 77. 
    Dornhorst AC. 1951. The interpretation of red cell survival curves. Blood 6:121284–92
    [Google Scholar]
  78. 78. 
    Mackey MC. 1978. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 51:5941–56
    [Google Scholar]
  79. 79. 
    Colijn C, Mackey MC. 2005. A mathematical model of hematopoiesis—I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237:2117–32
    [Google Scholar]
  80. 80. 
    Ackleh AS, Deng K, Ito K, Thibodeaux J 2006. A structured erythropoiesis model with nonlinear cell maturation velocity and hormone decay rate. Math. Biosci. 204:121–48
    [Google Scholar]
  81. 81. 
    Crauste F, Pujo-Menjouet L, Génieys S, Molina C, Gandrillon O 2008. Adding self-renewal in committed erythroid progenitors improves the biological relevance of a mathematical model of erythropoiesis. J. Theor. Biol. 250:2322–38
    [Google Scholar]
  82. 82. 
    Freise KJ, Widness JA, Schmidt RL, Veng-Pedersen P 2007. Pharmacodynamic analysis of time-variant cellular disposition: reticulocyte disposition changes in phlebotomized sheep. J. Pharmacokinet. Pharmacodyn. 34:4519–47
    [Google Scholar]
  83. 83. 
    Freise KJ, Widness JA, Schmidt RL, Veng-Pedersen P 2008. Modeling time variant distributions of cellular lifespans: increases in circulating reticulocyte lifespans following double phlebotomies in sheep. J. Pharmacokinet. Pharmacodyn. 35:3285–323
    [Google Scholar]
  84. 84. 
    Savill NJ, Chadwick W, Reece SE 2009. Quantitative analysis of mechanisms that govern red blood cell age structure and dynamics during anaemia. PLOS Comput. Biol. 5:6e1000416
    [Google Scholar]
  85. 85. 
    Desloge EA. 1963. Fokker–Planck equation. Am. J. Phys. 31:4237–46
    [Google Scholar]
  86. 86. 
    Malka R, Delgado FF, Manalis SR, Higgins JM 2014. In vivo volume and hemoglobin dynamics of human red blood cells. PLOS Comput. Biol. 10:10e1003839
    [Google Scholar]
  87. 87. 
    Higgins JM, Mahadevan L. 2010. Physiological and pathological population dynamics of circulating human red blood cells. PNAS 107:4720587–92
    [Google Scholar]
  88. 88. 
    Chaudhury A, Noiret L, Higgins JM 2017. White blood cell population dynamics for risk stratification of acute coronary syndrome. PNAS 114:4612344–49
    [Google Scholar]
  89. 89. 
    Golub MS, Hogrefe CE, Malka R, Higgins JM 2014. Developmental plasticity of red blood cell homeostasis. Am. J. Hematol. 89:459–66
    [Google Scholar]
  90. 90. 
    Patel HH, Patel HR, Higgins JM 2015. Modulation of red blood cell population dynamics is a fundamental homeostatic response to disease. Am. J. Hematol. 90:5422–28
    [Google Scholar]
  91. 91. 
    Piel FB, Steinberg MH, Rees DC 2017. Sickle cell disease. N. Engl. J. Med. 376:161561–73
    [Google Scholar]
  92. 92. 
    Li X, Dao M, Lykotrafitis G, Karniadakis GE 2017. Biomechanics and biorheology of red blood cells in sickle cell anemia. J. Biomech. 50:34–41
    [Google Scholar]
  93. 93. 
    Higgins JM, Eddington DT, Bhatia SN, Mahadevan L 2007. Sickle cell vaso-occlusion and rescue in a microfluidic device. PNAS 104:20496–500
    [Google Scholar]
  94. 94. 
    Higgins JM, Eddington DT, Bhatia S, Mahadevan L 2009. Statistical dynamics of flowing red blood cells by morphological image processing. PLOS Comput. Biol. 5:e1000288
    [Google Scholar]
  95. 95. 
    Wood DK, Soriano AO, Mahadevan L, Higgins JM, Bhatia SN 2012. A biophysical indicator of vaso-occlusive risk in sickle cell disease. Sci. Transl. Med. 4:123123ra26
    [Google Scholar]
  96. 96. 
    Lu X, Wood DK, Higgins JM 2016. Deoxygenation reduces sickle cell blood flow at arterial oxygen tension. Biophys. J 110:122751–58
    [Google Scholar]
  97. 97. 
    Lu X, Chaudhury A, Higgins JM, Wood DK 2018. Oxygen-dependent flow of sickle trait blood as an in vitro therapeutic benchmark for sickle cell disease treatments. Am. J. Hematol. 93:101227–35
    [Google Scholar]
  98. 98. 
    Milner PF, Charache S. 1973. Life span of carbamylated red cells in sickle cell anemia. J. Clin. Investig. 52:123161–71
    [Google Scholar]
  99. 99. 
    Kasfiki AG, Antipas SE, Dimitriou PA, Gritzali FA, Melissinos KG 1982. Mathematical analysis of 51Cr-labelled red cell survival curves in congenital haemolytic anaemias. Eur. J. Nucl. Med. 7:4181–83
    [Google Scholar]
  100. 100. 
    Franco RS, Yasin Z, Lohmann JM, Palascak MB, Nemeth TA et al. 2000. The survival characteristics of dense sickle cells. Blood 96:103610–17
    [Google Scholar]
  101. 101. 
    Franco RS, Yasin Z, Palascak MB, Ciraolo P, Joiner CH, Rucknagel DL 2006. The effect of fetal hemoglobin on the survival characteristics of sickle cells. Blood 108:31073–76
    [Google Scholar]
  102. 102. 
    Quinn CT, Smith EP, Arbabi S, Khera PK, Lindsell CJ et al. 2016. Biochemical surrogate markers of hemolysis do not correlate with directly measured erythrocyte survival in sickle cell anemia. Am. J. Hematol. 91:121195–1201
    [Google Scholar]
  103. 103. 
    Hsieh MM, Kang EM, Fitzhugh CD, Link MB, Bolan CD et al. 2009. Allogeneic hematopoietic stem-cell transplantation for sickle cell disease. N. Engl. J. Med. 361:242309–17
    [Google Scholar]
  104. 104. 
    Andreani M, Testi M, Gaziev J, Condello R, Bontadini A et al. 2011. Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease. Haematologica 96:1128–33
    [Google Scholar]
  105. 105. 
    Wu CJ, Gladwin M, Tisdale J, Hsieh M, Law T et al. 2007. Mixed haematopoietic chimerism for sickle cell disease prevents intravascular haemolysis. Br. J. Haematol. 139:3504–7
    [Google Scholar]
  106. 106. 
    Walters MC, Patience M, Leisenring W, Rogers ZR, Aquino VM et al. 2001. Stable mixed hematopoietic chimerism after bone marrow transplantation for sickle cell anemia. Biol. Blood Marrow Transplant. 7:12665–73
    [Google Scholar]
  107. 107. 
    Fitzhugh CD, Cordes S, Taylor T, Coles W, Roskom K et al. 2017. At least 20% donor myeloid chimerism is necessary to reverse the sickle phenotype after allogeneic HSCT. Blood 130:171946–48
    [Google Scholar]
  108. 108. 
    Wu CJ, Krishnamurti L, Kutok JL, Biernacki M, Rogers S et al. 2005. Evidence for ineffective erythropoiesis in severe sickle cell disease. Blood 106:103639–45
    [Google Scholar]
  109. 109. 
    Roberts C, Kean L, Archer D, Balkan C, Hsu LL 2005. Murine and math models for the level of stable mixed chimerism to cure β-thalassemia by nonmyeloablative bone marrow transplantation. Ann. N. Y. Acad. Sci. 1054:423–28
    [Google Scholar]
  110. 110. 
    Hoban MD, Orkin SH, Bauer DE 2016. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 127:7839–48
    [Google Scholar]
  111. 111. 
    Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT et al. 2011. Fetal hemoglobin in sickle cell anemia. Blood 118:119–27
    [Google Scholar]
  112. 112. 
    Altrock PM, Brendel C, Renella R, Orkin SH, Williams DA, Michor F 2016. Mathematical modeling of erythrocyte chimerism informs genetic intervention strategies for sickle cell disease. Am. J. Hematol. 91:9931–37
    [Google Scholar]
  113. 113. 
    Johnston GL, Smith DL, Fidock DA 2013. Malaria's missing number: calculating the human component of R0 by a within-host mechanistic model of Plasmodium falciparum infection and transmission. PLOS Comput. Biol. 9:4e1003025
    [Google Scholar]
  114. 114. 
    Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, Roberts DJ 2007. Malarial anemia: of mice and men. Blood 110:118–28
    [Google Scholar]
  115. 115. 
    Looareesuwan S, Davis TME, Pukrittayakamee S, Supanaranond W, Desakorn V et al. 1991. Erythrocyte survival in severe falciparum malaria. Acta Trop 48:4263–70
    [Google Scholar]
  116. 116. 
    Looareesuwan S, Ho M, Wattanagoon Y, White NJ, Warrell DA et al. 1987. Dynamic alteration in splenic function during acute falciparum malaria. N. Engl. J. Med. 317:11675–79
    [Google Scholar]
  117. 117. 
    Looareesuwan S, Merry AH, Phillips RE, Pleehachinda R, Wattanagoon Y et al. 1987. Reduced erythrocyte survival following clearance of malarial parasitaemia in Thai patients. Br. J. Haematol. 67:4473–78
    [Google Scholar]
  118. 118. 
    Woodruff AW, Ansdell VE, Pettitt LE 1979. Cause of anæmia in malaria. Lancet 313:81251055–57
    [Google Scholar]
  119. 119. 
    Aguilar R, Moraleda C, Achtman AH, Mayor A, Quintó L et al. 2014. Severity of anaemia is associated with bone marrow haemozoin in children exposed to Plasmodium falciparum. Br. J. Haematol 164:6877–87
    [Google Scholar]
  120. 120. 
    White NJ. 2018. Anaemia and malaria. Malar. J. 17:1371
    [Google Scholar]
  121. 121. 
    Weatherall DJ, Abdalla S. 1982. The anaemia of Plasmodium Falciparum malaria. Br. Med. Bull. 38:2147–51
    [Google Scholar]
  122. 122. 
    Jakeman GN, Saul A, Hogarth WL, Collins WE 1999. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology 119:2127–33
    [Google Scholar]
  123. 123. 
    Calis JCJ, Phiri KS, Faragher EB, Brabin BJ, Bates I et al. 2008. Severe anemia in Malawian children. N. Engl. J. Med. 358:9888–99
    [Google Scholar]
  124. 124. 
    Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE et al. 2016. Global epidemiology of Plasmodium vivax. Am. J. Trop. Med. Hyg 95:6 Suppl.15–34
    [Google Scholar]
  125. 125. 
    Gruszczyk J, Kanjee U, Chan L-J, Menant S, Malleret B et al. 2018. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. . Science 359:637148–55
    [Google Scholar]
  126. 126. 
    Pasvol G, Weatherall DJ, Wilson RJ 1980. The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum. Br. J. Haematol 45:2285–95
    [Google Scholar]
  127. 127. 
    McQueen PG, McKenzie FE. 2004. Age-structured red blood cell susceptibility and the dynamics of malaria infections. PNAS 101:249161–66
    [Google Scholar]
  128. 128. 
    McQueen PG, McKenzie FE. 2008. Host control of malaria infections: constraints on immune and erythropoietic response kinetics. PLOS Comput. Biol. 4:8e1000149
    [Google Scholar]
  129. 129. 
    Douglas NM, Anstey NM, Buffet PA, Poespoprodjo JR, Yeo TW et al. 2012. The anaemia of Plasmodium vivax malaria. Malar. J. 11:135
    [Google Scholar]
  130. 130. 
    Kheng S, Muth S, Taylor WRJ, Tops N, Kosal K et al. 2015. Tolerability and safety of weekly primaquine against relapse of Plasmodium vivax in Cambodians with glucose-6-phosphate dehydrogenase deficiency. BMC Med 13:1203
    [Google Scholar]
  131. 131. 
    Beutler E, Dern RJ, Alving AS 1954. The hemolytic effect of primaquine. IV. The relationship of cell age to hemolysis. J. Lab. Clin. Med. 44:3439–42
    [Google Scholar]
  132. 132. 
    Beutler E. 2008. Glucose-6-phosphate dehydrogenase deficiency: a historical perspective. Blood 111:116–24
    [Google Scholar]
  133. 133. 
    Marks PA, Gross RT. 1959. Erythrocyte glucose-6-phosphate dehydrogenase deficiency: evidence of differences between Negroes and Caucasians with respect to this genetically determined trait. J. Clin. Investig. 38:2253–62
    [Google Scholar]
  134. 134. 
    Watson J, Taylor WR, Menard D, Kheng S, White NJ 2017. Modelling primaquine-induced haemolysis in G6PD deficiency. eLife 6:e23061
    [Google Scholar]
  135. 135. 
    Alving AS, Johnson CF, Tarlov AR, Brewer GJ, Kellermeyer RW, Carson PE 1960. Mitigation of the haemolytic effect of primaquine and enhancement of its action against exoerythrocytic forms of the Chesson strain of Plasmodium vivax by intermittent regimens of drug administration: a preliminary report. Bull. World Health Organ. 22:621–31
    [Google Scholar]
  136. 136. 
    May RM. 1978. Dynamical diseases. Nature 272:673–74
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032557
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032557
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error