1932

Abstract

Desmosomal cadherins are a recent evolutionary innovation that make up the adhesive core of highly specialized intercellular junctions called desmosomes. Desmosomal cadherins, which are grouped into desmogleins and desmocollins, are related to the classical cadherins, but their cytoplasmic domains are tailored for anchoring intermediate filaments instead of actin to sites of cell–cell adhesion. The resulting junctions are critical for resisting mechanical stress in tissues such as the skin and heart. Desmosomal cadherins also act as signaling hubs that promote differentiation and facilitate morphogenesis, creating more complex and effective tissue barriers in vertebrate tissues. Interference with desmosomal cadherin adhesive and supra-adhesive functions leads to a variety of autoimmune, hereditary, toxin-mediated, and malignant diseases. We review our current understanding of how desmosomal cadherins contribute to human health and disease, highlight gaps in our knowledge about their regulation and function, and introduce promising new directions toward combatting desmosome-related diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042320-092912
2022-01-24
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathol-042320-092912.html?itemId=/content/journals/10.1146/annurev-pathol-042320-092912&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Niessen CM, Leckband D, Yap AS. 2011. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol. Rev. 91:691–731
    [Google Scholar]
  2. 2. 
    Harris TJ, Tepass U. 2010. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11:502–14
    [Google Scholar]
  3. 3. 
    Hulpiau P, Gul IS, van Roy F. 2013. New insights into the evolution of metazoan cadherins and catenins. Prog. Mol. Biol. Transl. Sci. 116:71–94
    [Google Scholar]
  4. 4. 
    Green KJ, Roth-Carter Q, Niessen CM, Nichols SA. 2020. Tracing the evolutionary origin of desmosomes. Curr. Biol. 30:R535–43
    [Google Scholar]
  5. 5. 
    Green KJ, Jaiganesh A, Broussard JA. 2019. Desmosomes: essential contributors to an integrated intercellular junction network. F1000Research 8:F1000 Faculty Rev.2150
    [Google Scholar]
  6. 6. 
    Delva E, Tucker DK, Kowalczyk AP. 2009. The desmosome. Cold Spring Harb. Perspect. Biol. 1:a002543
    [Google Scholar]
  7. 7. 
    Owen GR, Stokes DL. 2010. Exploring the nature of desmosomal cadherin associations in 3D. Dermatol. Res. Pract. 2010 930401
    [Google Scholar]
  8. 8. 
    Vielmuth F, Spindler V, Waschke J. 2018. Atomic force microscopy provides new mechanistic insights into the pathogenesis of pemphigus. Front. Immunol. 9:485
    [Google Scholar]
  9. 9. 
    Harrison OJ, Brasch J, Lasso G, Katsamba PS, Ahlsen G et al. 2016. Structural basis of adhesive binding by desmocollins and desmogleins. PNAS 113:7160–65
    [Google Scholar]
  10. 10. 
    Stahley SN, Saito M, Faundez V, Koval M, Mattheyses AL, Kowalczyk AP. 2014. Desmosome assembly and disassembly are membrane raft-dependent. PLOS ONE 9:e87809
    [Google Scholar]
  11. 11. 
    Zimmer SE, Kowalczyk AP. 2020. The desmosome as a model for lipid raft driven membrane domain organization. Biochim. Biophys. Acta Biomembr. 1862:183329
    [Google Scholar]
  12. 12. 
    Lewis JD, Caldara AL, Zimmer SE, Stahley SN, Seybold A et al. 2019. The desmosome is a mesoscale lipid raft-like membrane domain. Mol. Biol. Cell 30:1390–405
    [Google Scholar]
  13. 13. 
    Wallis S, Lloyd S, Wise I, Ireland G, Fleming TP, Garrod D. 2000. The α isoform of protein kinase C is involved in signaling the response of desmosomes to wounding in cultured epithelial cells. Mol. Biol. Cell 11:1077–92
    [Google Scholar]
  14. 14. 
    Garrod D, Tabernero L. 2014. Hyper-adhesion: a unique property of desmosomes. Cell Commun. Adhes. 21:249–56
    [Google Scholar]
  15. 15. 
    Fuchs M, Sigmund AM, Waschke J, Vielmuth F. 2020. Desmosomal hyperadhesion is accompanied with enhanced binding strength of desmoglein 3 molecules. Biophys. J. 119:1489–500
    [Google Scholar]
  16. 16. 
    Hobbs RP, Green KJ. 2012. Desmoplakin regulates desmosome hyperadhesion. J. Investig. Dermatol. 132:482–85
    [Google Scholar]
  17. 17. 
    Bartle EI, Rao TC, Beggs RR, Dean WF, Urner TM et al. 2020. Protein exchange is reduced in calcium-independent epithelial junctions. J. Cell Biol. 219:e201906153
    [Google Scholar]
  18. 18. 
    Al-Jassar C, Bikker H, Overduin M, Chidgey M. 2013. Mechanistic basis of desmosome-targeted diseases. J. Mol. Biol. 425:4006–22
    [Google Scholar]
  19. 19. 
    Green KJ, Simpson CL. 2007. Desmosomes: new perspectives on a classic. J. Investig. Dermatol. 127:2499–515
    [Google Scholar]
  20. 20. 
    Najor NA. 2018. Desmosomes in human disease. Annu. Rev. Pathol. Mech. Dis. 13:51–70
    [Google Scholar]
  21. 21. 
    Hatzfeld M, Keil R, Magin TM. 2017. Desmosomes and intermediate filaments: their consequences for tissue mechanics. Cold Spring Harb. Perspect. Biol. 9:a029157
    [Google Scholar]
  22. 22. 
    Berika M, Garrod D. 2014. Desmosomal adhesion in vivo. Cell Commun. Adhes. 21:65–75
    [Google Scholar]
  23. 23. 
    Eshkind L, Tian Q, Schmidt A, Franke WW, Windoffer R, Leube RE. 2002. Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur. J. Cell Biol. 81:592–98
    [Google Scholar]
  24. 24. 
    Den Z, Cheng X, Merched-Sauvage M, Koch PJ. 2006. Desmocollin 3 is required for pre-implantation development of the mouse embryo. J. Cell Sci. 119:482–89
    [Google Scholar]
  25. 25. 
    Lim HYG, Alvarez YD, Gasnier M, Wang Y, Tetlak P et al. 2020. Keratins are asymmetrically inherited fate determinants in the mammalian embryo. Nature 585:404–9
    [Google Scholar]
  26. 26. 
    Bharathan NK, Dickinson AJG. 2019. Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo. Dev. Biol. 450:115–31
    [Google Scholar]
  27. 27. 
    Garrod D, Chidgey M. 2008. Desmosome structure, composition and function. Biochim. Biophys. Acta 1778:572–87
    [Google Scholar]
  28. 28. 
    Merritt AJ, Berika MY, Zhai W, Kirk SE, Ji B et al. 2002. Suprabasal desmoglein 3 expression in the epidermis of transgenic mice results in hyperproliferation and abnormal differentiation. Mol. Cell. Biol. 22:5846–58
    [Google Scholar]
  29. 29. 
    Brennan D, Hu Y, Joubeh S, Choi YW, Whitaker-Menezes D et al. 2007. Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J. Cell Sci. 120:758–71
    [Google Scholar]
  30. 30. 
    Hardman MJ, Liu K, Avilion AA, Merritt A, Brennan K et al. 2005. Desmosomal cadherin misexpression alters β-catenin stability and epidermal differentiation. Mol. Cell. Biol. 25:969–78
    [Google Scholar]
  31. 31. 
    Elias PM, Matsuyoshi N, Wu H, Lin C, Wang ZH et al. 2001. Desmoglein isoform distribution affects stratum corneum structure and function. J. Cell Biol. 153:243–49
    [Google Scholar]
  32. 32. 
    Chidgey M, Brakebusch C, Gustafsson E, Cruchley A, Hail C et al. 2001. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation. J. Cell Biol. 155:821–32
    [Google Scholar]
  33. 33. 
    Cheng X, Mihindukulasuriya K, Den Z, Kowalczyk AP, Calkins CC et al. 2004. Assessment of splice variant-specific functions of desmocollin 1 in the skin. Mol. Cell. Biol. 24:154–63
    [Google Scholar]
  34. 34. 
    Henkler F, Strom M, Mathers K, Cordingley H, Sullivan K, King I. 2001. Trangenic misexpression of the differentiation-specific desmocollin isoform 1 in basal keratinocytes. J. Investig. Dermatol. 116:144–49
    [Google Scholar]
  35. 35. 
    Kugelmann D, Radeva MY, Spindler V, Waschke J. 2019. Desmoglein 1 deficiency causes lethal skin blistering. J. Investig. Dermatol. 139:1596–99.e2
    [Google Scholar]
  36. 36. 
    Godsel LM, Roth-Carter QR, Koetsier JL, Tsoi LC, Broussard JA et al. 2020. Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor. bioRxiv 2020.12.01.406587. https://doi.org/10.1101/2020.12.01.406587
    [Crossref]
  37. 37. 
    Getsios S, Simpson CL, Kojima S, Harmon R, Sheu LJ et al. 2009. Desmoglein 1–dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. J. Cell Biol. 185:1243–58
    [Google Scholar]
  38. 38. 
    Harmon RM, Simpson CL, Johnson JL, Koetsier JL, Dubash AD et al. 2013. Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation. J. Clin. Investig. 123:1556–70
    [Google Scholar]
  39. 39. 
    Najor NA, Fitz GN, Koetsier JL, Godsel LM, Albrecht LV et al. 2017. Epidermal growth factor receptor neddylation is regulated by a desmosomal-COP9 (constitutive photomorphogenesis 9) signalosome complex. eLife 6:e22599
    [Google Scholar]
  40. 40. 
    Arnette CR, Roth-Carter QR, Koetsier JL, Broussard JA, Burks HE et al. 2020. Keratinocyte cadherin desmoglein 1 controls melanocyte behavior through paracrine signaling. Pigment Cell Melanoma Res 33:305–17
    [Google Scholar]
  41. 41. 
    Koch PJ, Mahoney MG, Ishikawa H, Pulkkinen L, Uitto J et al. 1997. Targeted disruption of the pemphigus vulgaris antigen (desmoglein 3) gene in mice causes loss of keratinocyte cell adhesion with a phenotype similar to pemphigus vulgaris. J. Cell Biol. 137:1091–102
    [Google Scholar]
  42. 42. 
    Chen J, Den Z, Koch PJ. 2008. Loss of desmocollin 3 in mice leads to epidermal blistering. J. Cell Sci. 121:2844–49
    [Google Scholar]
  43. 43. 
    Rotzer V, Hartlieb E, Winkler J, Walter E, Schlipp A et al. 2016. Desmoglein 3-dependent signaling regulates keratinocyte migration and wound healing. J. Investig. Dermatol. 136:301–10
    [Google Scholar]
  44. 44. 
    Rehman A, Cai Y, Hunefeld C, Jedlickova H, Huang Y et al. 2019. The desmosomal cadherin desmoglein-3 acts as a keratinocyte anti-stress protein via suppression of p53. Cell Death Dis 10:750
    [Google Scholar]
  45. 45. 
    Chen J, O'Shea C, Fitzpatrick JE, Koster MI, Koch PJ 2012. Loss of Desmocollin 3 in skin tumor development and progression. Mol. Carcinog. 51:535–45
    [Google Scholar]
  46. 46. 
    Hanakawa Y, Matsuyoshi N, Stanley JR. 2002. Expression of desmoglein 1 compensates for genetic loss of desmoglein 3 in keratinocyte adhesion. J. Investig. Dermatol. 119:27–31
    [Google Scholar]
  47. 47. 
    Brennan D, Hu Y, Medhat W, Dowling A, Mahoney MG. 2010. Superficial Dsg2 expression limits epidermal blister formation mediated by pemphigus foliaceus antibodies and exfoliative toxins. Dermatol. Res. Pract. 2010 410278
    [Google Scholar]
  48. 48. 
    Baron S, Hoang A, Vogel H, Attardi LD. 2012. Unimpaired skin carcinogenesis in Desmoglein 3 knockout mice. PLOS ONE 7:e50024
    [Google Scholar]
  49. 49. 
    Gross A, Pack LAP, Schacht GM, Kant S, Ungewiss H et al. 2018. Desmoglein 2, but not desmocollin 2, protects intestinal epithelia from injury. Mucosal Immunol 11:1630–39
    [Google Scholar]
  50. 50. 
    Raya-Sandino A, Luissint AC, Kusters DHM, Narayanan V, Flemming S et al. 2021. Regulation of intestinal epithelial intercellular adhesion and barrier function by desmosomal cadherin desmocollin-2. Mol. Biol. Cell 32:753–68
    [Google Scholar]
  51. 51. 
    Schlegel N, Meir M, Heupel WM, Holthofer B, Leube RE, Waschke J. 2010. Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. Am. J. Physiol. Gastrointest. Liver Physiol. 298:G774–83
    [Google Scholar]
  52. 52. 
    Jiang K, Rankin CR, Nava P, Sumagin R, Kamekura R et al. 2014. Galectin-3 regulates desmoglein-2 and intestinal epithelial intercellular adhesion. J. Biol. Chem. 289:10510–17
    [Google Scholar]
  53. 53. 
    Ungewiss H, Vielmuth F, Suzuki ST, Maiser A, Harz H et al. 2017. Desmoglein 2 regulates the intestinal epithelial barrier via p38 mitogen-activated protein kinase. Sci. Rep. 7:6329
    [Google Scholar]
  54. 54. 
    Ungewiss H, Rotzer V, Meir M, Fey C, Diefenbacher M et al. 2018. Dsg2 via Src-mediated transactivation shapes EGFR signaling towards cell adhesion. Cell. Mol. Life Sci. 75:4251–68
    [Google Scholar]
  55. 55. 
    Kolegraff K, Nava P, Helms MN, Parkos CA, Nusrat A. 2011. Loss of desmocollin-2 confers a tumorigenic phenotype to colonic epithelial cells through activation of Akt/β-catenin signaling. Mol. Biol. Cell 22:1121–34
    [Google Scholar]
  56. 56. 
    Hoorntje ET, Te Rijdt WP, James CA, Pilichou K, Basso C et al. 2017. Arrhythmogenic cardiomyopathy: pathology, genetics, and concepts in pathogenesis. Cardiovasc. Res. 113:1521–31
    [Google Scholar]
  57. 57. 
    Kant S, Holthofer B, Magin TM, Krusche CA, Leube RE. 2015. Desmoglein 2–dependent arrhythmogenic cardiomyopathy is caused by a loss of adhesive function. Circ. Cardiovasc. Genet. 8:553–63
    [Google Scholar]
  58. 58. 
    Bass-Zubek AE, Hobbs RP, Amargo EV, Garcia NJ, Hsieh SN et al. 2008. Plakophilin 2: a critical scaffold for PKCα that regulates intercellular junction assembly. J. Cell Biol. 181:605–13
    [Google Scholar]
  59. 59. 
    Kam CY, Dubash AD, Magistrati E, Polo S, Satchell KJF et al. 2018. Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43. J. Cell Biol. 217:3219–35
    [Google Scholar]
  60. 60. 
    Broussard JA, Yang R, Huang C, Nathamgari SSP, Beese AM et al. 2017. The desmoplakin-intermediate filament linkage regulates cell mechanics. Mol. Biol. Cell 28:3156–64
    [Google Scholar]
  61. 61. 
    Baddam SR, Arsenovic PT, Narayanan V, Duggan NR, Mayer CR et al. 2018. The desmosomal cadherin desmoglein-2 experiences mechanical tension as demonstrated by a FRET-based tension biosensor expressed in living cells. Cells 7:66
    [Google Scholar]
  62. 62. 
    Price AJ, Cost AL, Ungewiss H, Waschke J, Dunn AR, Grashoff C. 2018. Mechanical loading of desmosomes depends on the magnitude and orientation of external stress. Nat. Commun. 9:5284
    [Google Scholar]
  63. 63. 
    Broussard JA, Jaiganesh A, Zarkoob H, Conway DE, Dunn AR et al. 2020. Scaling up single-cell mechanics to multicellular tissues – the role of the intermediate filament–desmosome network. J. Cell Sci. 133:jcs228031
    [Google Scholar]
  64. 64. 
    Godsel LM, Hsieh SN, Amargo EV, Bass AE, Pascoe-McGillicuddy LT et al. 2005. Desmoplakin assembly dynamics in four dimensions: multiple phases differentially regulated by intermediate filaments and actin. J. Cell Biol. 171:1045–59
    [Google Scholar]
  65. 65. 
    Nekrasova O, Harmon RM, Broussard JA, Koetsier JL, Godsel LM et al. 2018. Desmosomal cadherin association with Tctex-1 and cortactin-Arp2/3 drives perijunctional actin polymerization to promote keratinocyte delamination. Nat. Commun. 9:1053
    [Google Scholar]
  66. 66. 
    Thomas M, Ladoux B, Toyama Y. 2020. Desmosomal junctions govern tissue integrity and actomyosin contractility in apoptotic cell extrusion. Curr. Biol. 30:682–90.e5
    [Google Scholar]
  67. 67. 
    Broussard JA, Koetsier JL, Hegazy M, Green KJ. 2021. Desmosomes polarize and integrate chemical and mechanical signaling to govern epidermal tissue form and function. Curr. Biol 31:327591.e5
    [Google Scholar]
  68. 68. 
    Uttagomol J, Ahmad US, Rehman A, Huang Y, Laly AC et al. 2019. Evidence for the desmosomal cadherin desmoglein-3 in regulating YAP and phospho-YAP in keratinocyte responses to mechanical forces. Int. J. Mol. Sci. 20:6221
    [Google Scholar]
  69. 69. 
    Kottke MD, Delva E, Kowalczyk AP. 2006. The desmosome: cell science lessons from human diseases. J. Cell Sci. 119:797–806
    [Google Scholar]
  70. 70. 
    Delva E, Kowalczyk AP. 2009. Regulation of cadherin trafficking. Traffic 10:259–67
    [Google Scholar]
  71. 71. 
    North AJ, Chidgey MA, Clarke JP, Bardsley WG, Garrod DR 1996. Distinct desmocollin isoforms occur in the same desmosomes and show reciprocally graded distributions in bovine nasal epidermis. PNAS 93:7701–5
    [Google Scholar]
  72. 72. 
    Stahley SN, Kowalczyk AP. 2015. Desmosomes in acquired disease. Cell Tissue Res 360:439–56
    [Google Scholar]
  73. 73. 
    Nava P, Laukoetter MG, Hopkins AM, Laur O, Gerner-Smidt K et al. 2007. Desmoglein-2: a novel regulator of apoptosis in the intestinal epithelium. Mol. Biol. Cell 18:4565–78
    [Google Scholar]
  74. 74. 
    Michels C, Buchta T, Bloch W, Krieg T, Niessen CM. 2009. Classical cadherins regulate desmosome formation. J. Investig. Dermatol. 129:2072–75
    [Google Scholar]
  75. 75. 
    Shafraz O, Rubsam M, Stahley SN, Caldara AL, Kowalczyk AP et al. 2018. E-cadherin binds to desmoglein to facilitate desmosome assembly. eLife 7:e37629
    [Google Scholar]
  76. 76. 
    Godsel LM, Dubash AD, Bass-Zubek AE, Amargo EV, Klessner JL et al. 2010. Plakophilin 2 couples actomyosin remodeling to desmosomal plaque assembly via RhoA. Mol. Biol. Cell 21:2844–59
    [Google Scholar]
  77. 77. 
    Tsang SM, Brown L, Lin K, Liu L, Piper K et al. 2012. Non-junctional human desmoglein 3 acts as an upstream regulator of Src in E-cadherin adhesion, a pathway possibly involved in the pathogenesis of pemphigus vulgaris. J. Pathol. 227:81–93
    [Google Scholar]
  78. 78. 
    Moch M, Schwarz N, Windoffer R, Leube RE. 2020. The keratin-desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis. Cell. Mol. Life Sci. 77:543–58
    [Google Scholar]
  79. 79. 
    Nekrasova OE, Amargo EV, Smith WO, Chen J, Kreitzer GE, Green KJ. 2011. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J. Cell Biol. 195:1185–203
    [Google Scholar]
  80. 80. 
    Lechler T, Fuchs E. 2007. Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J. Cell Biol. 176:147–54
    [Google Scholar]
  81. 81. 
    Lewis L, Barrandon Y, Green H, Albrecht-Buehler G. 1987. The reorganization of microtubules and microfilaments in differentiating keratinocytes. Differentiation 36:228–33
    [Google Scholar]
  82. 82. 
    Muroyama A, Lechler T 2017. A transgenic toolkit for visualizing and perturbing microtubules reveals unexpected functions in the epidermis. eLife 6:e29834
    [Google Scholar]
  83. 83. 
    Mahanty S, Dakappa SS, Shariff R, Patel S, Swamy MM et al. 2019. Keratinocyte differentiation promotes ER stress-dependent lysosome biogenesis. Cell Death Dis 10:269
    [Google Scholar]
  84. 84. 
    Liwosz A, Lei T, Kukuruzinska MA. 2006. N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J. Biol. Chem. 281:23138–49
    [Google Scholar]
  85. 85. 
    Zhao H, Liang Y, Xu Z, Wang L, Zhou F et al. 2008. N-glycosylation affects the adhesive function of E-Cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435. J. Cell. Biochem. 104:162–75
    [Google Scholar]
  86. 86. 
    Jin SP, Chung JH. 2018. Inhibition of N-glycosylation by tunicamycin attenuates cell–cell adhesion via impaired desmosome formation in normal human epidermal keratinocytes. Biosci. Rep. 38:BSR20171641
    [Google Scholar]
  87. 87. 
    Roberts BJ, Johnson KE, McGuinn KP, Saowapa J, Svoboda RA et al. 2014. Palmitoylation of plakophilin is required for desmosome assembly. J. Cell Sci. 127:3782–93
    [Google Scholar]
  88. 88. 
    Woodley KT, Collins MO. 2019. S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate cell adhesion. EMBO Rep 20:e47472
    [Google Scholar]
  89. 89. 
    Roberts BJ, Svoboda RA, Overmiller AM, Lewis JD, Kowalczyk AP et al. 2016. Palmitoylation of desmoglein 2 is a regulator of assembly dynamics and protein turnover. J. Biol. Chem. 291:24857–65
    [Google Scholar]
  90. 90. 
    Thomason HA, Scothern A, McHarg S, Garrod DR. 2010. Desmosomes: adhesive strength and signalling in health and disease. Biochem. J. 429:419–33
    [Google Scholar]
  91. 91. 
    Bertocchi C, Vaman Rao M, Zaidel-Bar R 2012. Regulation of adherens junction dynamics by phosphorylation switches. J. Signal. Transduct. 2012:125295
    [Google Scholar]
  92. 92. 
    Garrod DR, Fisher C, Smith A, Nie Z. 2008. Pervanadate stabilizes desmosomes. Cell Adhes. Migr. 2:161–66
    [Google Scholar]
  93. 93. 
    Albrecht LV, Zhang L, Shabanowitz J, Purevjav E, Towbin JA et al. 2015. GSK3- and PRMT-1–dependent modifications of desmoplakin control desmoplakin–cytoskeleton dynamics. J. Cell Biol. 208:597–612
    [Google Scholar]
  94. 94. 
    Kimura TE, Merritt AJ, Garrod DR. 2007. Calcium-independent desmosomes of keratinocytes are hyper-adhesive. J. Investig. Dermatol. 127:775–81
    [Google Scholar]
  95. 95. 
    Lorch JH, Klessner J, Park JK, Getsios S, Wu YL et al. 2004. Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells. J. Biol. Chem. 279:37191–200
    [Google Scholar]
  96. 96. 
    Devaux CA, Mezouar S, Mege JL. 2019. The E-cadherin cleavage associated to pathogenic bacteria infections can favor bacterial invasion and transmigration, dysregulation of the immune response and cancer induction in humans. Front. Microbiol. 10:2598
    [Google Scholar]
  97. 97. 
    Ponnuchamy B, Khalil RA. 2008. Role of ADAMs in endothelial cell permeability: cadherin shedding and leukocyte rolling. Circ. Res. 102:1139–42
    [Google Scholar]
  98. 98. 
    Klessner JL, Desai BV, Amargo EV, Getsios S, Green KJ. 2009. EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Mol. Biol. Cell 20:328–37
    [Google Scholar]
  99. 99. 
    Jiang R, Shi Z, Johnson JJ, Liu Y, Stack MS. 2011. Kallikrein-5 promotes cleavage of desmoglein-1 and loss of cell-cell cohesion in oral squamous cell carcinoma. J. Biol. Chem. 286:9127–35
    [Google Scholar]
  100. 100. 
    Kasperkiewicz M, Ellebrecht CT, Takahashi H, Yamagami J, Zillikens D et al. 2017. Pemphigus. Nat. Rev. Dis. Primers 3:17026
    [Google Scholar]
  101. 101. 
    Saito M, Stahley SN, Caughman CY, Mao X, Tucker DK et al. 2012. Signaling dependent and independent mechanisms in pemphigus vulgaris blister formation. PLOS ONE 7:e50696
    [Google Scholar]
  102. 102. 
    Walter E, Vielmuth F, Wanuske MT, Seifert M, Pollmann R et al. 2019. Role of Dsg1- and Dsg3-mediated signaling in pemphigus autoantibody-induced loss of keratinocyte cohesion. Front. Immunol. 10:1128
    [Google Scholar]
  103. 103. 
    Sharma P, Mao X, Payne AS. 2007. Beyond steric hindrance: the role of adhesion signaling pathways in the pathogenesis of pemphigus. J. Dermatol. Sci. 48:1–14
    [Google Scholar]
  104. 104. 
    Sayar BS, Ruegg S, Schmidt E, Sibilia M, Siffert M et al. 2014. EGFR inhibitors erlotinib and lapatinib ameliorate epidermal blistering in pemphigus vulgaris in a non-linear, V-shaped relationship. Exp. Dermatol. 23:33–38
    [Google Scholar]
  105. 105. 
    Mao X, Cho MJT, Ellebrecht CT, Mukherjee EM, Payne AS. 2017. Stat3 regulates desmoglein 3 transcription in epithelial keratinocytes. JCI Insight 2:e92253
    [Google Scholar]
  106. 106. 
    Kugelmann D, Rotzer V, Walter E, Egu DT, Fuchs MT et al. 2019. Role of Src and cortactin in pemphigus skin blistering. Front. Immunol. 10:626
    [Google Scholar]
  107. 107. 
    Didona D, Maglie R, Eming R, Hertl M. 2019. Pemphigus: current and future therapeutic strategies. Front. Immunol. 10:1418
    [Google Scholar]
  108. 108. 
    Wang HH, Liu CW, Li YC, Huang YC. 2015. Efficacy of rituximab for pemphigus: a systematic review and meta-analysis of different regimens. Acta Derm. Venereol. 95:928–32
    [Google Scholar]
  109. 109. 
    Stenson PD, Mort M, Ball EV, Chapman M, Evans K et al. 2020. The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 139:1197–207
    [Google Scholar]
  110. 110. 
    Kim JH, Kim SE, Park HS, Lee SH, Lee SE, Kim SC. 2019. A homozygous nonsense mutation in the DSG3 gene causes acantholytic blisters in the oral and laryngeal mucosa. J. Investig. Dermatol. 139:1187–90
    [Google Scholar]
  111. 111. 
    Samuelov L, Sarig O, Harmon RM, Rapaport D, Ishida-Yamamoto A et al. 2013. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat. Genet. 45:1244–48
    [Google Scholar]
  112. 112. 
    Taiber S, Samuelov L, Mohamad J, Barak EC, Sarig O et al. 2018. SAM syndrome is characterized by extensive phenotypic heterogeneity. Exp. Dermatol. 27:787–90
    [Google Scholar]
  113. 113. 
    Has C, Jakob T, He Y, Kiritsi D, Hausser I, Bruckner-Tuderman L 2015. Loss of desmoglein 1 associated with palmoplantar keratoderma, dermatitis and multiple allergies. Br. J. Dermatol. 172:257–61
    [Google Scholar]
  114. 114. 
    McAleer MA, Pohler E, Smith FJ, Wilson NJ, Cole C et al. 2015. Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. J. Allergy Clin. Immunol. 136:1268–76
    [Google Scholar]
  115. 115. 
    Cheng R, Yan M, Ni C, Zhang J, Li M, Yao Z. 2016. Report of Chinese family with severe dermatitis, multiple allergies and metabolic wasting syndrome caused by novel homozygous desmoglein-1 gene mutation. J. Dermatol. 43:1201–4
    [Google Scholar]
  116. 116. 
    Polivka L, Hadj-Rabia S, Bal E, Leclerc-Mercier S, Madrange M et al. 2018. Epithelial barrier dysfunction in desmoglein-1 deficiency. J. Allergy Clin. Immunol. 142:702–6.e7
    [Google Scholar]
  117. 117. 
    Frommherz LH, Schempp CM, Has C. 2021. Secukinumab for the treatment of SAM syndrome associated with desmoglein-1 deficiency. Br. J. Dermatol. 184:770–72
    [Google Scholar]
  118. 118. 
    Paller AS, Czarnowicki T, Renert-Yuval Y, Holland K, Huynh T et al. 2018. The spectrum of manifestations in desmoplakin gene (DSP) spectrin repeat 6 domain mutations: immunophenotyping and response to ustekinumab. J. Am. Acad. Dermatol. 78:498–505.e2
    [Google Scholar]
  119. 119. 
    Hernandez-Martin A, Kennedy-Batalla R, Canedo E, Bernaldo-de-Quiros E, Carazo-Gallego B et al. 2019. Imbalance in T-helper 17 cells and targeted therapy in an infant with SAM-like syndrome. N. Engl. J. Med. 381:2176–78
    [Google Scholar]
  120. 120. 
    Cohen-Barak E, Godsel LM, Koetsier JL, Hegazy M, Kushnir-Grinbaum D et al. 2020. The role of desmoglein 1 in gap junction turnover revealed through the study of SAM syndrome. J. Investig. Dermatol. 140:556–67.e9
    [Google Scholar]
  121. 121. 
    Patel DM, Dubash AD, Kreitzer G, Green KJ. 2014. Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin–EB1 interactions. J. Cell Biol. 206:779–97
    [Google Scholar]
  122. 122. 
    Vimalanathan AK, Ehler E, Gehmlich K. 2018. Genetics of and pathogenic mechanisms in arrhythmogenic right ventricular cardiomyopathy. Biophys. Rev. 10:973–82
    [Google Scholar]
  123. 123. 
    Addison J, Taylor MRG, Mestroni L. 2019. Genotype-phenotype correlations in ARVC: toward a precision medicine approach. Int. J. Cardiol. 286:115–16
    [Google Scholar]
  124. 124. 
    Schinner C, Erber BM, Yeruva S, Schlipp A, Rotzer V et al. 2020. Stabilization of desmoglein-2 binding rescues arrhythmia in arrhythmogenic cardiomyopathy. JCI Insight 5:e130141
    [Google Scholar]
  125. 125. 
    Spindler V, Rotzer V, Dehner C, Kempf B, Gliem M et al. 2013. Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering. J. Clin. Investig. 123:800–11
    [Google Scholar]
  126. 126. 
    Janiszewska M, Primi MC, Izard T. 2020. Cell adhesion in cancer: beyond the migration of single cells. J. Biol. Chem. 295:2495–505
    [Google Scholar]
  127. 127. 
    Wong MP, Cheang M, Yorida E, Coldman A, Gilks CB et al. 2008. Loss of desmoglein 1 expression associated with worse prognosis in head and neck squamous cell carcinoma patients. Pathology 40:611–16
    [Google Scholar]
  128. 128. 
    Dusek RL, Attardi LD. 2011. Desmosomes: new perpetrators in tumour suppression. Nat. Rev. Cancer 11:317–23
    [Google Scholar]
  129. 129. 
    Valenzuela-Iglesias A, Burks HE, Arnette CR, Yalamanchili A, Nekrasova O et al. 2019. Desmoglein 1 regulates invadopodia by suppressing EGFR/Erk signaling in an Erbin-dependent manner. Mol. Cancer Res. 17:1195–206
    [Google Scholar]
  130. 130. 
    Brown L, Waseem A, Cruz IN, Szary J, Gunic E et al. 2014. Desmoglein 3 promotes cancer cell migration and invasion by regulating activator protein 1 and protein kinase C-dependent-Ezrin activation. Oncogene 33:2363–74
    [Google Scholar]
  131. 131. 
    Khan K, Hardy R, Haq A, Ogunbiyi O, Morton D, Chidgey M. 2006. Desmocollin switching in colorectal cancer. Br. J. Cancer 95:1367–70
    [Google Scholar]
  132. 132. 
    Funakoshi S, Ezaki T, Kong J, Guo RJ, Lynch JP. 2008. Repression of the desmocollin 2 gene expression in human colon cancer cells is relieved by the homeodomain transcription factors Cdx1 and Cdx2. Mol. Cancer Res. 6:1478–90
    [Google Scholar]
  133. 133. 
    Cai F, Zhu Q, Miao Y, Shen S, Su X, Shi Y. 2017. Desmoglein-2 is overexpressed in non-small cell lung cancer tissues and its knockdown suppresses NSCLC growth by regulation of p27 and CDK2. J. Cancer Res. Clin. Oncol. 143:59–69
    [Google Scholar]
  134. 134. 
    Cui T, Chen Y, Yang L, Knosel T, Huber O et al. 2012. The p53 target gene desmocollin 3 acts as a novel tumor suppressor through inhibiting EGFR/ERK pathway in human lung cancer. Carcinogenesis 33:2326–33
    [Google Scholar]
  135. 135. 
    Overmiller AM, Pierluissi JA, Wermuth PJ, Sauma S, Martinez-Outschoorn U et al. 2017. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. FASEB J 31:3412–24
    [Google Scholar]
  136. 136. 
    Yang T, Gu X, Jia L, Guo J, Tang Q et al. 2021. DSG2 expression is low in colon cancer and correlates with poor survival. BMC Gastroenterol 21:7
    [Google Scholar]
  137. 137. 
    Biedermann K, Vogelsang H, Becker I, Plaschke S, Siewert JR et al. 2005. Desmoglein 2 is expressed abnormally rather than mutated in familial and sporadic gastric cancer. J. Pathol. 207:199–206
    [Google Scholar]
  138. 138. 
    Hutz K, Zeiler J, Sachs L, Ormanns S, Spindler V. 2017. Loss of desmoglein 2 promotes tumorigenic behavior in pancreatic cancer cells. Mol. Carcinog. 56:1884–95
    [Google Scholar]
  139. 139. 
    Schlegel N, Boerner K, Waschke J. 2021. Targeting desmosomal adhesion and signalling for intestinal barrier stabilization in inflammatory bowel diseases—lessons from experimental models and patients. Acta Physiol. 231:e13492
    [Google Scholar]
  140. 140. 
    Dusek RL, Getsios S, Chen F, Park JK, Amargo EV et al. 2006. The differentiation-dependent desmosomal cadherin desmoglein 1 is a novel caspase-3 target that regulates apoptosis in keratinocytes. J. Biol. Chem. 281:3614–24
    [Google Scholar]
  141. 141. 
    Johnson JL, Koetsier JL, Sirico A, Agidi AT, Antonini D et al. 2014. The desmosomal protein desmoglein 1 aids recovery of epidermal differentiation after acute UV light exposure. J. Investig. Dermatol. 134:2154–62
    [Google Scholar]
  142. 142. 
    Schmidt E, Waschke J. 2009. Apoptosis in pemphigus. Autoimmun. Rev. 8:533–37
    [Google Scholar]
  143. 143. 
    Amagai M. 2003. Desmoglein as a target in autoimmunity and infection. J. Am. Acad. Dermatol. 48:244–52
    [Google Scholar]
  144. 144. 
    Zhao G, Zhang HM, Qiu Y, Ye X, Yang D 2020. Cleavage of desmosomal cadherins promotes γ-catenin degradation and benefits Wnt signaling in coxsackievirus B3-induced destruction of cardiomyocytes. Front. Microbiol. 11:767
    [Google Scholar]
  145. 145. 
    Petrova E, Hovnanian A. 2020. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin. Orphan Drugs 8:455–87
    [Google Scholar]
  146. 146. 
    Park K, Lee SE, Shin KO, Uchida Y. 2019. Insights into the role of endoplasmic reticulum stress in skin function and associated diseases. FEBS J 286:413–25
    [Google Scholar]
  147. 147. 
    Kamekura R, Nava P, Feng M, Quiros M, Nishio H et al. 2015. Inflammation-induced desmoglein-2 ectodomain shedding compromises the mucosal barrier. Mol. Biol. Cell 26:3165–77
    [Google Scholar]
  148. 148. 
    Yulis M, Quiros M, Hilgarth R, Parkos CA, Nusrat A. 2018. Intracellular desmoglein-2 cleavage sensitizes epithelial cells to apoptosis in response to pro-inflammatory cytokines. Cell Death Dis 9:389
    [Google Scholar]
  149. 149. 
    Spindler V, Meir M, Vigh B, Flemming S, Hutz K et al. 2015. Loss of desmoglein 2 contributes to the pathogenesis of Crohn's disease. Inflamm. Bowel Dis. 21:2349–59
    [Google Scholar]
  150. 150. 
    Li B, Huang L, Lv P, Li X, Liu G et al. 2020. The role of Th17 cells in psoriasis. Immunol. Res. 68:296–309
    [Google Scholar]
  151. 151. 
    Sherrill JD, Kc K, Wu D, Djukic Z, Caldwell JM et al. 2014. Desmoglein-1 regulates esophageal epithelial barrier function and immune responses in eosinophilic esophagitis. Mucosal Immunol 7:718–29
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042320-092912
Loading
/content/journals/10.1146/annurev-pathol-042320-092912
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error