1932

Abstract

While red blood cell (RBC) transfusion is the most common medical intervention in hospitalized patients, as with any therapeutic, it is not without risk. Allogeneic RBC exposure can result in recipient alloimmunization, which can limit the availability of compatible RBCs for future transfusions and increase the risk of transfusion complications. Despite these challenges and the discovery of RBC alloantigens more than a century ago, relatively little has historically been known regarding the immune factors that regulate RBC alloantibody formation. Through recent epidemiological approaches, in vitro–based translational studies, and newly developed preclinical models, the processes that govern RBC alloimmunization have emerged as more complex and intriguing than previously appreciated. Although common alloimmunization mechanisms exist, distinct immune pathways can be engaged, depending on the target alloantigen involved. Despite this complexity, key themes are beginning to emerge that may provide promising approaches to not only actively prevent but also possibly alleviate the most severe complications of RBC alloimmunization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042320-110411
2023-01-24
2024-05-19
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathol-042320-110411.html?itemId=/content/journals/10.1146/annurev-pathol-042320-110411&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Denis J. 1668. An extract of a letter, written by J. Denis, doctor of physick, and professor of philosophy and the mathematicks at Paris, touching a late cure of an inveterate phrensy by the transfusion of bloud. Philos. Trans. R. Soc. Lond. 2:61724
    [Google Scholar]
  2. 2.
    Greenwalt T. 1997. A short history of transfusion medicine. Transfusion 37:55063
    [Google Scholar]
  3. 3.
    Landsteiner K. 1900. Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zentralbl. Bakteriol. 27:35762
    [Google Scholar]
  4. 4.
    Stowell CP, Stowell SR. 2019. Biologic roles of the ABH and Lewis histo-blood group antigens part I: infection and immunity. Vox Sang. 114:42642
    [Google Scholar]
  5. 5.
    Stowell SR, Stowell CP. 2019. Biologic roles of the ABH and Lewis histo-blood group antigens part II: thrombosis, cardiovascular disease and metabolism. Vox Sang. 114:53552
    [Google Scholar]
  6. 6.
    Levine P, Stetson RE. 1939. An unusual case of intra-group agglutination. JAMA 113:212627
    [Google Scholar]
  7. 7.
    Yazdanbakhsh K, Ware RE, Noizat-Pirenne F. 2012. Red blood cell alloimmunization in sickle cell disease: pathophysiology, risk factors, and transfusion management. Blood 120:52837
    [Google Scholar]
  8. 8.
    Cruz-Leal Y, Lazarus AH. 2021. Could antigen loss be a potential mechanism to explain antibody-mediated immune suppression?. Transfusion 61:10046
    [Google Scholar]
  9. 9.
    Hendrickson JE, Desmarets M, Deshpande SS, Chadwick TE, Hillyer CD et al. 2006. Recipient inflammation affects the frequency and magnitude of immunization to transfused red blood cells. Transfusion 46:152636
    [Google Scholar]
  10. 10.
    Howie HL, Delaney M, Wang X, Er LS, Vidarsson G et al. 2016. Serological blind spots for variants of human IgG3 and IgG4 by a commonly used anti-immunoglobulin reagent. Transfusion 56:295362
    [Google Scholar]
  11. 11.
    Howie HL, Delaney M, Wang X, Er LS, Kapp L et al. 2017. Errors in data interpretation from genetic variation of human analytes. JCI Insight 2:13e94532
    [Google Scholar]
  12. 12.
    Tormey CA, Hendrickson JE. 2019. Transfusion-related red blood cell alloantibodies: induction and consequences. Blood 133:182130
    [Google Scholar]
  13. 13.
    Vichinsky EP, Earles A, Johnson RA, Hoag MS, Williams A, Lubin B 1990. Alloimmunization in sickle cell anemia and transfusion of racially unmatched blood. N. Engl. J. Med. 322:161721
    [Google Scholar]
  14. 14.
    Gerritsma J, Oomen I, Meinderts S, van der Schoot C, Biemond B et al. 2021. Back to base pairs: What is the genetic risk for red blood cell alloimmunization?. Blood Rev. 48:100794
    [Google Scholar]
  15. 15.
    Meinderts SM, Gerritsma JJ, Sins JW, de Boer M, van Leeuwen K et al. 2019. Identification of genetic biomarkers for alloimmunization in sickle cell disease. Br. J. Haematol. 186:88799
    [Google Scholar]
  16. 16.
    Noizat-Pirenne F, Tournamille C, Bierling P, Roudot-Thoraval F, Le Pennec PY et al. 2006. Relative immunogenicity of Fya and K antigens in a Caucasian population, based on HLA class II restriction analysis. Transfusion 46:132833
    [Google Scholar]
  17. 17.
    Sippert , Visentainer JEL, Alves HV, Rodrigues C, Gilli SCO et al. 2017. Red blood cell alloimmunization in patients with sickle cell disease: correlation with HLA and cytokine gene polymorphisms. Transfusion 57:37989
    [Google Scholar]
  18. 18.
    Meinderts SM, Sins JWR, Fijnvandraat K, Nagelkerke SQ, Geissler J et al. 2017. Nonclassical FCGR2C haplotype is associated with protection from red blood cell alloimmunization in sickle cell disease. Blood 130:19212130
    [Google Scholar]
  19. 19.
    Brantley S, Ramsey G. 1988. Red cell alloimmunization in multitransfused HLA-typed patients. Transfusion 28:46366
    [Google Scholar]
  20. 20.
    Pirenne F, Yazdanbakhsh K. 2018. How I safely transfuse patients with sickle-cell disease and manage delayed hemolytic transfusion reactions. Blood 131:277381
    [Google Scholar]
  21. 21.
    Calabro S, Gallman A, Gowthaman U, Liu D, Chen P et al. 2016. Bridging channel dendritic cells induce immunity to transfused red blood cells. J. Exp. Med. 213:88796
    [Google Scholar]
  22. 22.
    Yazer MH, Triulzi DJ, Shaz B, Kraus T, Zimring JC. 2009. Does a febrile reaction to platelets predispose recipients to red blood cell alloimmunization?. Transfusion 49:107075
    [Google Scholar]
  23. 23.
    Evers D, van der Bom JG, Tijmensen J, Middelburg RA, de Haas M et al. 2016. Red cell alloimmunisation in patients with different types of infections. Br. J. Haematol. 175:95666
    [Google Scholar]
  24. 24.
    Karafin MS, Tan S, Tormey CA, Spencer BR, Hauser RG et al. 2019. Prevalence and risk factors for RBC alloantibodies in blood donors in the Recipient Epidemiology and Donor Evaluation Study-III (REDS-III). Transfusion 59:21725
    [Google Scholar]
  25. 25.
    Zheng Y, Pollak J, Henderson K, Hendrickson JE, Tormey CA. 2018. A novel association between high red blood cell alloimmunization rates and hereditary hemorrhagic telangiectasia. Transfusion 58:77580
    [Google Scholar]
  26. 26.
    Evers D, Zwaginga JJ, Tijmensen J, Middelburg RA, de Haas M et al. 2017. Treatments for hematologic malignancies in contrast to those for solid cancers are associated with reduced red cell alloimmunization. Haematologica 102:52
    [Google Scholar]
  27. 27.
    Oud JA, Evers D, Middelburg RA, de Vooght KM, van de Kerkhof D et al. 2021. Association between renal failure and red blood cell alloimmunization among newly transfused patients. Transfusion 61:3541
    [Google Scholar]
  28. 28.
    Zalpuri S, Evers D, Zwaginga JJ, Schonewille H, de Vooght KM et al. 2014. Immunosuppressants and alloimmunization against red blood cell transfusions. Transfusion 54:198187
    [Google Scholar]
  29. 29.
    Cohen D, Hartung H, Evans P, Friedman DF, Chou ST. 2016. Red blood cell alloimmunization in transfused patients with bone marrow failure syndromes. Transfusion 56:6131419
    [Google Scholar]
  30. 30.
    Fasano RM, Booth GS, Miles M, Du L, Koyama T et al. 2015. Red blood cell alloimmunization is influenced by recipient inflammatory state at time of transfusion in patients with sickle cell disease. Br. J. Haematol. 168:291300
    [Google Scholar]
  31. 31.
    Saslaw S, Bouroncle BA, Wall RL, Doan CA. 1959. Studies on the antibody response in splenectomized persons. N. Engl. J. Med. 261:12025
    [Google Scholar]
  32. 32.
    Evers D, van der Bom JG, Tijmensen J, de Haas M, Middelburg RA et al. 2016. Splenectomy protects humans from red cell alloimmunization. Blood 128:24
    [Google Scholar]
  33. 33.
    Lewis SM, Williams A, Eisenbarth SC. 2019. Structure and function of the immune system in the spleen. Sci. Immunol. 4:eaau6085
    [Google Scholar]
  34. 34.
    Ferster A, Bujan W, Corazza F, Devalck C, Fondu P et al. 1993. Bone marrow transplantation corrects the splenic reticuloendothelial dysfunction in sickle cell anemia. Blood 81:411025
    [Google Scholar]
  35. 35.
    Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF et al. 2011. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet 377:166372
    [Google Scholar]
  36. 36.
    Pearson HA, Cornelius EA, Schwartz AD, Zelson JH, Wolfson SL, Spencer RP. 1970. Transfusion-reversible functional asplenia in young children with sickle-cell anemia. N. Engl. J. Med. 283:33437
    [Google Scholar]
  37. 37.
    Thompson AA, Cunningham MJ, Singer ST, Neufeld EJ, Vichinsky E et al. 2011. Red cell alloimmunization in a diverse population of transfused patients with thalassaemia. Br. J. Haematol. 153:12128
    [Google Scholar]
  38. 38.
    Hendrickson JE, Saakadze N, Cadwell CM, Upton JW, Mocarski ES et al. 2009. The spleen plays a central role in primary humoral alloimmunization to transfused mHEL red blood cells. Transfusion 49:167884
    [Google Scholar]
  39. 39.
    Patel SR, Gibb DR, Girard-Pierce K, Zhou X, Rodrigues LC et al. 2018. Marginal zone B cells induce alloantibody formation following RBC transfusion. Front. Immunol. 9:2516
    [Google Scholar]
  40. 40.
    Zerra PE, Patel SR, Jajosky RP, Arthur CM, McCoy JW et al. 2021. Marginal zone B cells mediate a CD4 T-cell–dependent extrafollicular antibody response following RBC transfusion in mice. Blood 138:70621
    [Google Scholar]
  41. 41.
    Hess JR. 2010. Red cell storage. J. Proteom. 73:36873
    [Google Scholar]
  42. 42.
    Zalpuri S, Schonewille H, Middelburg R, van de Watering L, de Vooght K et al. 2013. Effect of storage of red blood cells on alloimmunization. Transfusion 53:2795800
    [Google Scholar]
  43. 43.
    Castilho L. 2015. Red blood cell storage and alloimmunization: a fact or a myth?. Rev. Bras. Hematol. Hemoter. 37:35960
    [Google Scholar]
  44. 44.
    Tormey CA, Hendrickson JE. 2017. Irradiation of red blood cells and alloimmunization. Lab. Med. 48:17277
    [Google Scholar]
  45. 45.
    Campbell-Lee SA, Gvozdjan K, Choi KM, Chen YF, Saraf SL et al. 2018. Red blood cell alloimmunization in sickle cell disease: assessment of transfusion protocols during two time periods. Transfusion 58:158896
    [Google Scholar]
  46. 46.
    Yee ME, Josephson CD, Winkler AM, Webb J, Luban NL et al. 2017. Red blood cell minor antigen mismatches during chronic transfusion therapy for sickle cell anemia. Transfusion 57:273846
    [Google Scholar]
  47. 47.
    Higgins JM, Sloan SR. 2008. Stochastic modeling of human RBC alloimmunization: evidence for a distinct population of immunologic responders. Blood 112:254653
    [Google Scholar]
  48. 48.
    Nickel RS, Horan JT, Fasano RM, Meyer E, Josephson CD et al. 2015. Immunophenotypic parameters and RBC alloimmunization in children with sickle cell disease on chronic transfusion. Am. J. Hematol. 90:113541
    [Google Scholar]
  49. 49.
    Tamagne M, Pakdaman S, Bartolucci P, Habibi A, Galactéros F et al. 2021. Whole-blood phenotyping to assess alloimmunization status in transfused sickle cell disease patients. Blood Adv. 5:127882
    [Google Scholar]
  50. 50.
    Balbuena-Merle R, Curtis SA, Devine L, Gibb DR, Karafin MS et al. 2019. Red blood cell alloimmunization is associated with lower expression of FcγR1 on monocyte subsets in patients with sickle cell disease. Transfusion 59:321927
    [Google Scholar]
  51. 51.
    Vichinsky EP, Styles LA, Colangelo LH, Wright EC, Castro O, Nickerson B. 1997. Acute chest syndrome in sickle cell disease: clinical presentation and course. Blood 89:178792
    [Google Scholar]
  52. 52.
    Zhong H, Bao W, Friedman D, Yazdanbakhsh K. 2014. Hemin controls T cell polarization in sickle cell alloimmunization. J. Immunol. 193:10210
    [Google Scholar]
  53. 53.
    Tamagne M, Pakdaman S, Bartolucci P, Habibi A, Galactéros F et al. 2021. Whole-blood CCR7 expression and chemoattraction in red blood cell alloimmunization. Br. J. Haematol. 194:47781
    [Google Scholar]
  54. 54.
    Godefroy E, Zhong H, Pham P, Friedman D, Yazdanbakhsh K. 2015. TIGIT-positive circulating follicular helper T cells display robust B-cell help functions: potential role in sickle cell alloimmunization. Haematologica 100:1415
    [Google Scholar]
  55. 55.
    Godefroy E, Liu Y, Shi P, Mitchell WB, Cohen D et al. 2016. Altered heme-mediated modulation of dendritic cell function in sickle cell alloimmunization. Haematologica 101:1028
    [Google Scholar]
  56. 56.
    Vingert B, Tamagne M, Habibi A, Pakdaman S, Ripa J et al. 2015. Phenotypic differences of CD4+ T cells in response to red blood cell immunization in transfused sickle cell disease patients. Eur. J. Immunol. 45:186879
    [Google Scholar]
  57. 57.
    Pal M, Bao W, Wang R, Liu Y, An X et al. 2021. Hemolysis inhibits humoral B-cell responses and modulates alloimmunization risk in patients with sickle cell disease. Blood 137:26980
    [Google Scholar]
  58. 58.
    Bao W, Zhong H, Manwani D, Vasovic L, Uehlinger J et al. 2013. Regulatory B-cell compartment in transfused alloimmunized and non-alloimmunized patients with sickle cell disease. Am. J. Hematol. 88:73640
    [Google Scholar]
  59. 59.
    Madany E, Lee J, Halprin C, Seo J, Baca N et al. 2021. Altered type 1 interferon responses in alloimmunized and nonalloimmunized patients with sickle cell disease. EJHaem 2:470010
    [Google Scholar]
  60. 60.
    Liu Y, Pal M, Bao W, Shi PA, Lobo CA et al. 2021. Type I interferon is induced by hemolysis and drives antibody-mediated erythrophagocytosis in sickle cell disease. Blood 138:116271
    [Google Scholar]
  61. 61.
    Dumas G, Habibi A, Onimus T, Merle JC, Razazi K et al. 2016. Eculizumab salvage therapy for delayed hemolysis transfusion reaction in sickle cell disease patients. Blood 127:106264
    [Google Scholar]
  62. 62.
    Chonat S, Quarmyne MO, Bennett CM, Dean CL, Joiner CH et al. 2018. Contribution of alternative complement pathway to delayed hemolytic transfusion reaction in sickle cell disease. Haematologica 103:e48385
    [Google Scholar]
  63. 63.
    Shi PA, Choi E, Chintagari NR, Nguyen J, Guo X et al. 2016. Sustained treatment of sickle cell mice with haptoglobin increases HO-1 and H-ferritin expression and decreases iron deposition in the kidney without improvement in kidney function. Br. J. Haematol. 175:71423
    [Google Scholar]
  64. 64.
    Mann ER, Bernardo D, English NR, Landy J, Al-Hassi HO et al. 2016. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum. Gut 65:25670
    [Google Scholar]
  65. 65.
    Snell GD. 1948. Methods for the study of histocompatibility genes. J. Genet. 49:87108
    [Google Scholar]
  66. 66.
    Barth R, Counce S, Smith P, Snell GD. 1956. Strong and weak histocompatibility gene differences in mice and their role in the rejection of homografts of tumors and skin. Ann. Surg. 144:2198204
    [Google Scholar]
  67. 67.
    Yi T, Li J, Chen H, Wu J, An J et al. 2015. Splenic dendritic cells survey red blood cells for missing self-CD47 to trigger adaptive immune responses. Immunity 43:76475
    [Google Scholar]
  68. 68.
    Frame M, Mollison PL. 1972. The rabbit red cell antigen Hg A and anti-Hg A. Immunology 22:103742
    [Google Scholar]
  69. 69.
    Auffray I, Marfatia S, de Jong K, Lee G, Huang C-H et al. 2001. Glycophorin A dimerization and band 3 interaction during erythroid membrane biogenesis: in vivo studies in human glycophorin A transgenic mice. Blood 97:287278
    [Google Scholar]
  70. 70.
    Hartley SB, Crosbie J, Brink R, Kantor AB, Basten A, Goodnow CC. 1991. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 353:76569
    [Google Scholar]
  71. 71.
    Desmarets M, Cadwell CM, Peterson KR, Neades R, Zimring JC. 2009. Minor histocompatibility antigens on transfused leukoreduced units of red blood cells induce bone marrow transplant rejection in a mouse model. Blood 114:231522
    [Google Scholar]
  72. 72.
    Smith NH, Henry KL, Cadwell CM, Bennett A, Hendrickson JE et al. 2012. Generation of transgenic mice with antithetical KEL1 and KEL2 human blood group antigens on red blood cells. Transfusion 52:262030
    [Google Scholar]
  73. 73.
    Arthur CM, Patel SR, Smith NH, Bennett A, Kamili NA et al. 2017. Antigen density dictates immune responsiveness following red blood cell transfusion. J. Immunol. 198:267180
    [Google Scholar]
  74. 74.
    Stowell SR, Girard-Pierce KR, Smith NH, Henry KL, Arthur CM et al. 2014. Transfusion of murine red blood cells expressing the human KEL glycoprotein induces clinically significant alloantibodies. Transfusion 54:17989
    [Google Scholar]
  75. 75.
    Jash A, Usaneerungrueng C, Howie HL, Qiu A, Luckey CJ et al. 2021. Antibodies to low-copy number RBC alloantigen convert a tolerogenic stimulus to an immunogenic stimulus in mice. Front. Immunol. 12:629608
    [Google Scholar]
  76. 76.
    Chaudhuri A, Yuen G, Fang F, Storry J. 2004. Development of Duffy transgenic mouse: in vivo expression of human Duffy gene with −33T→C promoter mutation in non-erythroid tissues. Br. J. Haematol. 127:35659
    [Google Scholar]
  77. 77.
    Goossens D, Da Silva N, Metral S, Cortes U, Callebaut I et al. 2013. Mice expressing RHAG and RHD human blood group genes. PLOS ONE 8:e80460
    [Google Scholar]
  78. 78.
    Campbell-Lee SA, Liu J, Velliquette RW, Halverson GR, Shirey RS et al. 2006. The production of red blood cell alloantibodies in mice transfused with blood from transgenic Fyb-expressing mice. Transfusion 46:10168288
    [Google Scholar]
  79. 79.
    Gruber DR, Richards AL, Howie HL, Hay AM, Lebedev JN et al. 2020. Passively transferred IgG enhances humoral immunity to a red blood cell alloantigen in mice. Blood Adv. 4:152637
    [Google Scholar]
  80. 80.
    Hudson KE, Lin E, Hendrickson JE, Lukacher AE, Zimring JC. 2010. Regulation of primary alloantibody response through antecedent exposure to a microbial T-cell epitope. Blood 115:398996
    [Google Scholar]
  81. 81.
    Gibb DR, Liu J, Santhanakrishnan M, Natarajan P, Madrid DJ et al. 2017. B cells require Type 1 interferon to produce alloantibodies to transfused KEL-expressing red blood cells in mice. Transfusion 57:2595608
    [Google Scholar]
  82. 82.
    Smith NH, Hod EA, Spitalnik SL, Zimring JC, Hendrickson JE. 2012. Transfusion in the absence of inflammation induces antigen-specific tolerance to murine RBCs. Blood 119:156669
    [Google Scholar]
  83. 83.
    Patel SR, Bennett A, Girard-Pierce K, Maier CL, Chonat S et al. 2018. Recipient priming to one RBC alloantigen directly enhances subsequent alloimmunization in mice. Blood Adv. 2:10515
    [Google Scholar]
  84. 84.
    Maier CL, Mener A, Patel SR, Jajosky RP, Bennett AL et al. 2018. Antibody-mediated immune suppression by antigen modulation is antigen-specific. Blood Adv. 2:29863000
    [Google Scholar]
  85. 85.
    Gibb DR, Liu J, Natarajan P, Santhanakrishnan M, Madrid DJ et al. 2017. Type I IFN is necessary and sufficient for inflammation-induced red blood cell alloimmunization in mice. J. Immunol. 199:104150
    [Google Scholar]
  86. 86.
    Stowell SR, Henry KL, Smith NH, Hudson KE, Halverson GR et al. 2013. Alloantibodies to a paternally derived RBC KEL antigen lead to hemolytic disease of the fetus/newborn in a murine model. Blood 122:1494504
    [Google Scholar]
  87. 87.
    Girard-Pierce KR, Stowell SR, Smith NH, Arthur CM, Sullivan HC et al. 2013. A novel role for C3 in antibody-induced red blood cell clearance and antigen modulation. Blood 122:1793801
    [Google Scholar]
  88. 88.
    Yu J, Heck S, Yazdanbakhsh K. 2007. Prevention of red cell alloimmunization by CD25 regulatory T cells in mouse models. Am. J. Hematol. 82:69196
    [Google Scholar]
  89. 89.
    Stowell SR, Smith NH, Zimring JC, Fu X, Palmer AF et al. 2013. Addition of ascorbic acid solution to stored murine red blood cells increases posttransfusion recovery and decreases microparticles and alloimmunization. Transfusion 53:224857
    [Google Scholar]
  90. 90.
    Hendrickson JE, Roback JD, Hillyer CD, Easley KA, Zimring JC. 2008. Discrete Toll-like receptor agonists have differential effects on alloimmunization to transfused red blood cells. Transfusion 48:186977
    [Google Scholar]
  91. 91.
    Hendrickson JE, Hod EA, Perry JR, Ghosh S, Chappa P et al. 2012. Alloimmunization to transfused HOD red blood cells is not increased in mice with sickle cell disease. Transfusion 52:23140
    [Google Scholar]
  92. 92.
    Bao W, Zhong H, Yazdanbakhsh K. 2014. Immunologic characterization suggests reduced alloimmunization in a murine model of thalassemia intermedia. Transfusion 54:288091
    [Google Scholar]
  93. 93.
    D'Alessandro A, Hansen KC, Eisenmesser EZ, Zimring JC 2019. Protect, repair, destroy or sacrifice: a role of oxidative stress biology in inter-donor variability of blood storage?. Blood Transfus. 17:428188
    [Google Scholar]
  94. 94.
    Hendrickson JE, Hod EA, Spitalnik SL, Hillyer CD, Zimring JC. 2010. Storage of murine red blood cells enhances alloantibody responses to an erythroid-specific model antigen. Transfusion 50:64248
    [Google Scholar]
  95. 95.
    Zimring JC, Smith N, Stowell SR, Johnsen JM, Bell LN et al. 2014. Strain-specific red blood cell storage, metabolism, and eicosanoid generation in a mouse model. Transfusion 54:13748
    [Google Scholar]
  96. 96.
    Howie HL, Hay AM, de Wolski K, Waterman H, Lebedev J et al. 2019. Differences in Steap3 expression are a mechanism of genetic variation of RBC storage and oxidative damage in mice. Blood Adv 3:227285
    [Google Scholar]
  97. 97.
    Shinde P, Howie HL, Stegmann TC, Hay AM, Waterman HR et al. 2020. IgG subclass determines suppression versus enhancement of humoral alloimmunity to Kell RBC antigens in mice. Front. Immunol. 11:1516
    [Google Scholar]
  98. 98.
    Hendrickson JE, Hod EA, Cadwell CM, Eisenbarth SC, Spiegel DA et al. 2011. Rapid clearance of transfused murine red blood cells is associated with recipient cytokine storm and enhanced alloimmunogenicity. Transfusion 51:244554
    [Google Scholar]
  99. 99.
    Jajosky R, Arthur C, Allen J, Fuller M, Zerra PE et al. 2019. CD47 regulates red blood cell alloimmunization in mice. Blood 134:Suppl. 1100
    [Google Scholar]
  100. 100.
    Oldenborg P-A, Zheleznyak A, Fang Y-F, Lagenaur CF, Gresham HD, Lindberg FP. 2000. Role of CD47 as a marker of self on red blood cells. Science 288:205154
    [Google Scholar]
  101. 101.
    Maier CL, Jajosky R, Verkerke H, Patel SR, Allen JW et al. 2022. Storage differentially impacts immunization to distinct red cell antigens following transfusion in mice. Transfusion In press
    [Google Scholar]
  102. 102.
    Hendrickson JE, Hod EA, Hudson KE, Spitalnik SL, Zimring JC. 2011. Transfusion of fresh murine red blood cells reverses adverse effects of older stored red blood cells. Transfusion 51:2695702
    [Google Scholar]
  103. 103.
    Hendrickson JE, Chadwick TE, Roback JD, Hillyer CD, Zimring JC. 2007. Inflammation enhances consumption and presentation of transfused RBC antigens by dendritic cells. Blood 110:273643
    [Google Scholar]
  104. 104.
    Calabro S, Liu D, Gallman A, Nascimento MS, Yu Z et al. 2016. Differential intrasplenic migration of dendritic cell subsets tailors adaptive immunity. Cell Rep. 16:247285
    [Google Scholar]
  105. 105.
    Vanderkerken M, Maes B, Vandersarren L, Toussaint W, Deswarte K et al. 2020. TAO-kinase 3 governs the terminal differentiation of NOTCH2-dependent splenic conventional dendritic cells. PNAS 117:3133142
    [Google Scholar]
  106. 106.
    Gibb DR, Calabro S, Liu D, Tormey CA, Spitalnik SL et al. 2016. The Nlrp3 inflammasome does not regulate alloimmunization to transfused red blood cells in mice. EBioMedicine 9:7786
    [Google Scholar]
  107. 107.
    Medved J, Knott BM, Tarrah SN, Li AN, Shah N et al. 2021. The lysophospholipid-binding molecule CD1D is not required for the alloimmunization response to fresh or stored RBCs in mice despite RBC storage driving alterations in lysophospholipids. Transfusion 61:216978
    [Google Scholar]
  108. 108.
    Soldatenko A, Hoyt LR, Xu L, Calabro S, Lewis SM et al. 2022. Innate and adaptive immunity to transfused allogeneic RBCs in mice requires MyD88. J. Immunol. 208:99197
    [Google Scholar]
  109. 109.
    Ghosh S, Adisa OA, Chappa P, Tan F, Jackson KA et al. 2013. Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J. Clin. Investig. 123:480920
    [Google Scholar]
  110. 110.
    Lam LM, Murphy S, Kokkinaki D, Venosa A, Sherrill-Mix S et al. 2021. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci. Transl. Med. 13:eabj1008
    [Google Scholar]
  111. 111.
    Wojczyk BS, Kim N, Bandyopadhyay S, Francis RO, Zimring JC et al. 2014. Macrophages clear refrigerator storage–damaged red blood cells and subsequently secrete cytokines in vivo, but not in vitro, in a murine model. Transfusion 54:318697
    [Google Scholar]
  112. 112.
    Arneja A, Salazar JE, Jiang W, Hendrickson JE, Zimring JC, Luckey CJ. 2016. Interleukin-6 receptor-alpha signaling drives anti-RBC alloantibody production and T-follicular helper cell differentiation in a murine model of red blood cell alloimmunization. Haematologica 101:e440
    [Google Scholar]
  113. 113.
    Liu D, Gibb DR, Escamilla-Rivera V, Liu J, Santhanakrishnan M et al. 2019. Type 1 IFN signaling critically regulates influenza-induced alloimmunization to transfused KEL RBCs in a murine model. Transfusion 59:324352
    [Google Scholar]
  114. 114.
    Arthur CM, Zerra PE, Shin S, Wang J, Song X et al. 2022. Nonhuman glycans can regulate anti-factor VIII antibody formation in mice. Blood 139:131217
    [Google Scholar]
  115. 115.
    Zerra PE, Cox C, Baldwin WH, Patel SR, Arthur CM et al. 2017. Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A. Blood 130:255968
    [Google Scholar]
  116. 116.
    Martin F, Kearney JF. 2002. Marginal-zone B cells. Nat. Rev. Immunol. 2:32335
    [Google Scholar]
  117. 117.
    Mener A, Patel SR, Arthur CM, Chonat S, Wieland A et al. 2018. Complement serves as a switch between CD4+ T cell–independent and –dependent RBC antibody responses. JCI Insight 3:e121631
    [Google Scholar]
  118. 118.
    Sharp TH, Boyle AL, Diebolder CA, Kros A, Koster AJ, Gros P. 2019. Insights into IgM-mediated complement activation based on in situ structures of IgM-C1-C4b. PNAS 116:119005
    [Google Scholar]
  119. 119.
    Mener A, Arthur CM, Patel SR, Liu J, Hendrickson JE, Stowell SR. 2018. Complement component 3 negatively regulates antibody response by modulation of red blood cell antigen. Front. Immunol. 9:676
    [Google Scholar]
  120. 120.
    Zerra PE, Arthur CM, Chonat S, Maier CL, Mener A et al. 2020. Fc gamma receptors and complement component 3 facilitate anti-fVIII antibody formation. Front. Immunol. 11:905
    [Google Scholar]
  121. 121.
    Carroll MC, Isenman DE. 2012. Regulation of humoral immunity by complement. Immunity 37:2199207
    [Google Scholar]
  122. 122.
    Ghannam A, Pernollet M, Fauquert JL, Monnier N, Ponard D et al. 2008. Human C3 deficiency associated with impairments in dendritic cell differentiation, memory B cells, and regulatory T cells. J. Immunol. 181:7515866
    [Google Scholar]
  123. 123.
    Arthur CM, Patel SR, Sharma A, Zerra PE, Chonat S et al. 2022. Clodronate inhibits alloimmunization against distinct red blood cell alloantigens in mice. Transfusion 62:94853
    [Google Scholar]
  124. 124.
    Elayeb R, Tamagne M, Pinheiro M, Ripa J, Djoudi R et al. 2017. Anti-CD20 antibody prevents red blood cell alloimmunization in a mouse model. J. Immunol. 199:377180
    [Google Scholar]
  125. 125.
    Mock DM, Stowell SR, Franco RS, Kyosseva SV, Nalbant D et al. 2022. Antibodies against biotin-labeled red blood cells can shorten posttransfusion survival. Transfusion 62:477082
    [Google Scholar]
  126. 126.
    Natarajan P, Liu D, Patel SR, Santhanakrishnan M, Beitler D et al. 2017. CD4 depletion or CD40L blockade results in antigen-specific tolerance in a red blood cell alloimmunization model. Front. Immunol. 8:907
    [Google Scholar]
  127. 127.
    Bao W, Yu J, Heck S, Yazdanbakhsh K. 2009. Regulatory T-cell status in red cell alloimmunized responder and nonresponder mice. Blood 113:562427
    [Google Scholar]
  128. 128.
    Elayeb R, Tamagne M, Bierling P, Noizat-Pirenne F, Vingert B. 2016. Red blood cell alloimmunization is influenced by the delay between Toll-like receptor agonist injection and transfusion. Haematologica 101:220918
    [Google Scholar]
  129. 129.
    Yu H, Stowell SR, Bernardo L, Hendrickson JE, Zimring JC et al. 2014. Antibody-mediated immune suppression of erythrocyte alloimmunization can occur independently from red cell clearance or epitope masking in a murine model. J. Immunol. 193:6290210
    [Google Scholar]
  130. 130.
    Stowell SR, Arthur CM, Girard-Pierce KR, Sullivan HC, Santhanakrishnan M et al. 2015. Anti-KEL sera prevents alloimmunization to transfused KEL RBCs in a murine model. Haematologica 100:e394
    [Google Scholar]
  131. 131.
    Gehrie EA, Tormey CA. 2014. The influence of clinical and biological factors on transfusion-associated non-ABO antigen alloimmunization: responders, hyper-responders, and non-responders. Transfus. Med. Hemother. 41:642029
    [Google Scholar]
  132. 132.
    Schriek P, Ching AC, Moily NS, Moffat J, Beattie L et al. 2022. Marginal zone B cells acquire dendritic cell functions by trogocytosis. Science 375:eabf7470
    [Google Scholar]
  133. 133.
    Zimring JC, Spitalnik SL. 2015. Pathobiology of transfusion reactions. Annu. Rev. Pathol. Mech. Dis. 10:83110
    [Google Scholar]
  134. 134.
    Nickel RS, Hendrickson JE, Fasano RM, Meyer EK, Winkler AM et al. 2016. Impact of red blood cell alloimmunization on sickle cell disease mortality: a case series. Transfusion 56:10714
    [Google Scholar]
  135. 135.
    Dean CL, Maier CL, Chonat S, Chang A, Carden MA et al. 2019. Challenges in the treatment and prevention of delayed hemolytic transfusion reactions with hyperhemolysis in sickle cell disease patients. Transfusion 59:1698705
    [Google Scholar]
  136. 136.
    Dean CL, Maier CL, Roback JD, Stowell SR. 2019. Multiple hemolytic transfusion reactions misinterpreted as severe vaso-occlusive crisis in a patient with sickle cell disease. Transfusion 59:44853
    [Google Scholar]
  137. 137.
    Schirmer DA, Song S-C, Baliff JP, Harbers SO, Clynes RA et al. 2007. Mouse models of IgG- and IgM-mediated hemolysis. Blood 109:3099107
    [Google Scholar]
  138. 138.
    Liepkalns JS, Hod EA, Stowell SR, Cadwell CM, Spitalnik SL, Zimring JC. 2012. Biphasic clearance of incompatible red blood cells through a novel mechanism requiring neither complement nor Fcγ receptors in a murine model. Transfusion 52:263145
    [Google Scholar]
  139. 139.
    Zimring JC, Cadwell CM, Chadwick TE, Spitalnik SL, Schirmer DA et al. 2007. Nonhemolytic antigen loss from red blood cells requires cooperative binding of multiple antibodies recognizing different epitopes. Blood 110:22018
    [Google Scholar]
  140. 140.
    Zimring JC, Hair GA, Chadwick TE, Deshpande SS, Anderson KM et al. 2005. Nonhemolytic antibody-induced loss of erythrocyte surface antigen. Blood 106:110512
    [Google Scholar]
  141. 141.
    Mener A, Patel SR, Arthur CM, Stowell SR. 2019. Antibody-mediated immunosuppression can result from RBC antigen loss independent of Fcγ receptors in mice. Transfusion 59:37184
    [Google Scholar]
  142. 142.
    Stowell SR, Liepkalns JS, Hendrickson JE, Girard-Pierce KR, Smith NH et al. 2013. Antigen modulation confers protection to red blood cells from antibody through Fcγ receptor ligation. J. Immunol. 191:501325
    [Google Scholar]
  143. 143.
    Arthur CM, Allen JWL, Verkerke H, Yoo J, Jajosky RP et al. 2021. Antigen density dictates RBC clearance, but not antigen modulation, following incompatible RBC transfusion in mice. Blood Adv. 5:52738
    [Google Scholar]
  144. 144.
    Liu J, Santhanakrishnan M, Natarajan P, Gibb DR, Eisenbarth SC et al. 2016. Antigen modulation as a potential mechanism of anti-KEL immunoprophylaxis in mice. Blood 128:315968
    [Google Scholar]
  145. 145.
    Sullivan HC, Gerner-Smidt C, Nooka AK, Arthur CM, Thompson L et al. 2017. Daratumumab (anti-CD38) induces loss of CD38 on red blood cells. Blood 129:303337
    [Google Scholar]
  146. 146.
    Kapur R, Della Valle L, Sonneveld M, Hipgrave Ederveen A, Visser R et al. 2014. Low anti-RhD IgG-Fc-fucosylation in pregnancy: a new variable predicting severity in haemolytic disease of the fetus and newborn. Br. J. Haematol. 166:93645
    [Google Scholar]
  147. 147.
    Stowell SR, Winkler AM, Maier CL, Arthur CM, Smith NH et al. 2012. Initiation and regulation of complement during hemolytic transfusion reactions. Clin. Dev. Immunol. 2012:307093
    [Google Scholar]
  148. 148.
    Sullivan HC, Arthur CM, Thompson L, Patel SR, Stowell SR et al. 2018. Anti-RhD reduces levels of detectable RhD antigen following anti-RhD infusion. Transfusion 58:542
    [Google Scholar]
  149. 149.
    Arthur CM, Patel SR, Sullivan HC, Winkler AM, Tormey CA et al. 2016. CD8+ T cells mediate antibody-independent platelet clearance in mice. Blood 127:182327
    [Google Scholar]
  150. 150.
    Thein SL, Pirenne F, Fasano RM, Habibi A, Bartolucci P et al. 2020. Hemolytic transfusion reactions in sickle cell disease: underappreciated and potentially fatal. Haematologica 105:353944
    [Google Scholar]
  151. 151.
    Narbey D, Habibi A, Chadebech P, Mekontso-Dessap A, Khellaf M et al. 2017. Incidence and predictive score for delayed hemolytic transfusion reaction in adult patients with sickle cell disease. Am. J. Hematol. 92:134048
    [Google Scholar]
  152. 152.
    Chonat S, Mener A, Verkerke H, Stowell SR. 2020. Role of complement in alloimmunization and hyperhemolysis. Curr. Opin. Hematol. 27:640614
    [Google Scholar]
  153. 153.
    Roumenina LT, Bartolucci P, Pirenne F. 2019. The role of complement in post-transfusion hemolysis and hyperhemolysis reaction. Transfus. Med. Rev. 33:22530
    [Google Scholar]
  154. 154.
    Floch A, Morel A, Zanchetta-Balint F, Cordonnier-Jourdin C, Allali S et al. 2020. Anti-C5 antibody treatment for delayed hemolytic transfusion reactions in sickle cell disease. Haematologica 105:269497
    [Google Scholar]
  155. 155.
    Oud JA, Evers D, de Haas M, de Vooght KM, van de Kerkhof D et al. 2021. The effect of extended c, E and K matching in females under 45 years of age on the incidence of transfusion-induced red blood cell alloimmunisation. Br. J. Haematol. 195:60411
    [Google Scholar]
  156. 156.
    Chou ST, Alsawas M, Fasano RM, Field JJ, Hendrickson JE et al. 2020. American Society of Hematology 2020 guidelines for sickle cell disease: transfusion support. Blood Adv. 4:232755
    [Google Scholar]
  157. 157.
    Chou ST, Jackson T, Vege S, Smith-Whitley K, Friedman DF, Westhoff CM. 2013. High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors. Blood 122:6106271
    [Google Scholar]
  158. 158.
    Lane WJ, Westhoff CM, Gleadall NS, Aguad M, Smeland-Wagman R et al. 2018. Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study. Lancet Haematol. 5:6e24151
    [Google Scholar]
  159. 159.
    Boonyasampant M, Weitz IC, Kay B, Boonchalermvichian C, Liebman HA, Shulman IA. 2015. Life-threatening delayed hyperhemolytic transfusion reaction in a patient with sickle cell disease: effective treatment with eculizumab followed by rituximab. Transfusion 55:2398403
    [Google Scholar]
  160. 160.
    Floch A, Morel A, Zanchetta-Balint F, Cordonnier-Jourdin C, Allali S et al. 2020. Anti-C5 antibody treatment for delayed hemolytic transfusion reactions in sickle cell disease. Haematologica 105:2694
    [Google Scholar]
  161. 161.
    Noizat-Pirenne F, Habibi A, Mekontso-Dessap A, Razazi K, Chadebech P et al. 2015. The use of rituximab to prevent severe delayed haemolytic transfusion reaction in immunized patients with sickle cell disease. Vox Sang. 108:26267
    [Google Scholar]
  162. 162.
    Natarajan P, Liu J, Santhanakrishnan M, Gibb DR, Slater LM, Hendrickson JE. 2017. Bortezomib decreases the magnitude of a primary humoral immune response to transfused red blood cells in a murine model. Transfusion 57:8292
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042320-110411
Loading
/content/journals/10.1146/annurev-pathol-042320-110411
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error