1932

Abstract

Rift Valley fever virus (RVFV) is an emerging arboviral pathogen that causes disease in both livestock and humans. Severe disease manifestations of Rift Valley fever (RVF) in humans include hemorrhagic fever, ocular disease, and encephalitis. This review describes the current understanding of the pathogenesis of RVF encephalitis. While some data from human studies exist, the development of several animal models has accelerated studies of the neuropathogenesis of RVFV. We review current animal models and discuss what they have taught us about RVFV encephalitis. We briefly describe alternative models that have been used to study other neurotropic arboviruses and how these models may help contribute to our understanding RVFV encephalitis. We conclude with some unanswered questions and future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-091919-065806
2022-09-29
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-091919-065806.html?itemId=/content/journals/10.1146/annurev-virology-091919-065806&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Daubney R, Hudson JR, Garnham PC. 1931. Enzootic hepatitis or Rift Valley fever. An undescribed virus disease of sheep cattle and man from East Africa. J. Pathol. Bacteriol. 34:545–79
    [Crossref] [Google Scholar]
  2. 2.
    Murithi RM, Munyua P, Ithondeka PM, Macharia JM, Hightower A et al. 2011. Rift Valley fever in Kenya: history of epizootics and identification of vulnerable districts. Epidemiol. Infect. 139:372–80
    [Crossref] [Google Scholar]
  3. 3.
    Barr JN, Weber F, Schmaljohn CS. 2021. Bunyavirales: the viruses and their replication. Fields Virology: Emerging Viruses PM Howley, DM Knipe, SPJ Whelan 706–49 Philadelphia: Wolters Kluwer. , 7th ed..
    [Google Scholar]
  4. 4.
    Chamchod F, Cosner C, Cantrell RS, Beier JC, Ruan S. 2015. Transmission dynamics of Rift Valley fever virus: effects of live and killed vaccines on epizootic outbreaks and enzootic maintenance. Front. Microbiol. 6:1568
    [Google Scholar]
  5. 5.
    Odendaal L, Clift SJ, Fosgate GT, Davis AS. 2020. Ovine fetal and placental lesions and cellular tropism in natural Rift Valley fever virus infections. Vet. Pathol. 57:791–806
    [Crossref] [Google Scholar]
  6. 6.
    Shieh WJ, Paddock CD, Lederman E, Rao CY, Gould LH et al. 2010. Pathologic studies on suspect animal and human cases of Rift Valley fever from an outbreak in Eastern Africa, 2006–2007. Am. J. Trop. Med. Hyg. 83:38–42
    [Crossref] [Google Scholar]
  7. 7.
    Davies FG, Martin V. 2006. Recognizing Rift Valley fever. Vet. Ital. 42:31–53
    [Google Scholar]
  8. 8.
    Abd el-Rahim IH, Abd el-Hakim U, Hussein M 1999. An epizootic of Rift Valley fever in Egypt in 1997. Rev. Sci. Tech. 18:741–48
    [Crossref] [Google Scholar]
  9. 9.
    LaBeaud AD, Pfeil S, Muiruri S, Dahir S, Sutherland LJ et al. 2015. Factors associated with severe human Rift Valley fever in Sangailu, Garissa County, Kenya. PLOS Negl. Trop. Dis. 9:e0003548
    [Crossref] [Google Scholar]
  10. 10.
    Anyangu AS, Gould LH, Sharif SK, Nguku PM, Omolo JO et al. 2010. Risk factors for severe Rift Valley fever infection in Kenya, 2007. Am. J. Trop. Med. Hyg. 83:14–21
    [Crossref] [Google Scholar]
  11. 11.
    Madani TA, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM et al. 2003. Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin. Infect. Dis. 37:1084–92
    [Crossref] [Google Scholar]
  12. 12.
    Bron GM, Strimbu K, Cecilia H, Lerch A, Moore SM et al. 2021. Over 100 years of Rift Valley fever: a patchwork of data on pathogen spread and spillover. Pathogens 10:6708
    [Crossref] [Google Scholar]
  13. 13.
    Laughlin LW, Meegan JM, Strausbaugh LJ, Morens DM, Watten RH. 1979. Epidemic Rift Valley fever in Egypt: observations of the spectrum of human illness. Trans. R. Soc. Trop. Med. Hyg. 73:630–33
    [Crossref] [Google Scholar]
  14. 14.
    Gear J, De Meillon B, Measroch V, Davis DH, Harwin H. 1951. Rift Valley fever in South Africa. 2. The occurrence of human cases in the Orange Free State, the North-Western Cape Province, the Western and Southern Transvaal. B. Field and laboratory investigation. S. Afr. Med. J. 25:908–12
    [Google Scholar]
  15. 15.
    Al-Hazmi M, Ayoola EA, Abdurahman M, Banzal S, Ashraf J et al. 2003. Epidemic Rift Valley fever in Saudi Arabia: a clinical study of severe illness in humans. Clin. Infect. Dis. 36:245–52
    [Crossref] [Google Scholar]
  16. 16.
    El Mamy AB, Baba MO, Barry Y, Isselmou K, Dia ML et al. 2011. Unexpected Rift Valley fever outbreak, northern Mauritania. Emerg. Infect. Dis. 17:1894–96
    [Crossref] [Google Scholar]
  17. 17.
    Hassan OA, Ahlm C, Sang R, Evander M. 2011. The 2007 Rift Valley fever outbreak in Sudan. PLOS Negl. Trop. Dis. 5:e1229
    [Crossref] [Google Scholar]
  18. 18.
    McMillen CM, Hartman AL. 2018. Rift Valley fever in animals and humans: current perspectives. Antivir. Res. 156:29–37
    [Crossref] [Google Scholar]
  19. 19.
    Anyamba A, Chretien JP, Formenty PB, Small J, Tucker CJ et al. 2006. Rift Valley fever potential, Arabian Peninsula. Emerg. Infect. Dis. 12:518–20
    [Crossref] [Google Scholar]
  20. 20.
    Zouaghi K, Bouattour A, Aounallah H, Surtees R, Krause E et al. 2021. First serological evidence of Crimean-Congo hemorrhagic fever virus and Rift Valley fever virus in ruminants in Tunisia. Pathogens 10:6769
    [Crossref] [Google Scholar]
  21. 21.
    Endale A, Michlmayr D, Abegaz WE, Geda B, Asebe G et al. 2021. Sero-prevalence of West Nile virus and Rift Valley fever virus infections among cattle under extensive production system in South Omo area, southern Ethiopia. Trop. Anim. Health Prod. 53:92
    [Crossref] [Google Scholar]
  22. 22.
    Cosseddu GM, Doumbia B, Scacchia M, Pinoni C, Di Provvido A et al. 2021. Sero-surveillance of emerging viral diseases in camels and cattle in Nouakchott, Mauritania: an abattoir study. Trop. Anim. Health Prod. 53:195
    [Crossref] [Google Scholar]
  23. 23.
    Halawi AD, Saasa N, Pongombo BL, Kajihara M, Chambaro HM et al. 2019. Seroprevalence of Rift Valley fever in cattle of smallholder farmers in Kwilu Province in the Democratic Republic of Congo. Trop. Anim. Health Prod. 51:2619–27
    [Crossref] [Google Scholar]
  24. 24.
    Blomstrom AL, Scharin I, Stenberg H, Figueiredo J, Nhambirre O et al. 2016. Seroprevalence of Rift Valley fever virus in sheep and goats in Zambezia, Mozambique. Infect. Ecol. Epidemiol 6:31343
    [Google Scholar]
  25. 25.
    Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K et al. 2020. Rift Valley Fever—epidemiological update and risk of introduction into Europe. EFSA J 18:e06041
    [Crossref] [Google Scholar]
  26. 26.
    Mweya CN, Mboera LEG, Kimera SI. 2017. Climate influence on emerging risk areas for Rift Valley fever epidemics in Tanzania. Am. J. Trop. Med. Hyg. 97:109–14
    [Crossref] [Google Scholar]
  27. 27.
    Nanyingi MO, Munyua P, Kiama SG, Muchemi GM, Thumbi SM et al. 2015. A systematic review of Rift Valley fever epidemiology 1931–2014. Infect. Ecol. Epidemiol. 5:28024
    [Google Scholar]
  28. 28.
    Kim Y, Metras R, Dommergues L, Youssouffi C, Combo S et al. 2021. The role of livestock movements in the spread of Rift Valley fever virus in animals and humans in Mayotte, 2018–19. PLOS Negl. Trop. Dis. 15:e0009202
    [Crossref] [Google Scholar]
  29. 29.
    Ksiazek TG, Jouan A, Meegan JM, Le Guenno B, Wilson ML et al. 1989. Rift Valley fever among domestic animals in the recent West African outbreak. Res. Virol. 140:67–77
    [Crossref] [Google Scholar]
  30. 30.
    Meegan JM. 1979. The Rift Valley fever epizootic in Egypt 1977–78. 1. Description of the epizootic and virological studies. Trans. R. Soc. Trop. Med. Hyg. 73:6618–23
    [Crossref] [Google Scholar]
  31. 31.
    Javelle E, Lesueur A, Pommier de Santi V, de Laval F, Lefebvre T et al. 2020. The challenging management of Rift Valley Fever in humans: literature review of the clinical disease and algorithm proposal. Ann. Clin. Microbiol. Antimicrob. 19:4
    [Crossref] [Google Scholar]
  32. 32.
    Uwishema O, Adanur I, Babatunde AO, Hasan MM, Elmahi OKO et al. 2021. Viral infections amidst COVID-19 in Africa: implications and recommendations. J. Med. Virol. 93:6798–802
    [Crossref] [Google Scholar]
  33. 33.
    Al-Hazmi A, Al-Rajhi AA, Abboud EB, Ayoola EA, Al-Hazmi M et al. 2005. Ocular complications of Rift Valley fever outbreak in Saudi Arabia. Ophthalmology 112:313–18
    [Crossref] [Google Scholar]
  34. 34.
    Mohamed M, Mosha F, Mghamba J, Zaki SR, Shieh WJ et al. 2010. Epidemiologic and clinical aspects of a Rift Valley fever outbreak in humans in Tanzania, 2007. Am. J. Trop. Med. Hyg. 83:22–27
    [Crossref] [Google Scholar]
  35. 35.
    Dodd KA, McElroy AK, Jones TL, Zaki SR, Nichol ST, Spiropoulou CF. 2014. Rift Valley fever virus encephalitis is associated with an ineffective systemic immune response and activated T cell infiltration into the CNS in an immunocompetent mouse model. PLOS Negl. Trop. Dis. 8:e2874
    [Crossref] [Google Scholar]
  36. 36.
    Smith DR, Steele KE, Shamblin J, Honko A, Johnson J et al. 2010. The pathogenesis of Rift Valley fever virus in the mouse model. Virology 407:256–67
    [Crossref] [Google Scholar]
  37. 37.
    Reed C, Lin K, Wilhelmsen C, Friedrich B, Nalca A et al. 2013. Aerosol exposure to Rift Valley fever virus causes earlier and more severe neuropathology in the murine model, which has important implications for therapeutic development. PLOS Negl. Trop. Dis. 7:e2156
    [Crossref] [Google Scholar]
  38. 38.
    Leger P, Nachman E, Richter K, Tamietti C, Koch J et al. 2020. NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice. Nat. Commun. 11:3281
    [Crossref] [Google Scholar]
  39. 39.
    Lang Y, Henningson J, Jasperson D, Li Y, Lee J et al. 2016. Mouse model for the Rift Valley fever virus MP12 strain infection. Vet. Microbiol. 195:70–77
    [Crossref] [Google Scholar]
  40. 40.
    Bales JM, Powell DS, Bethel LM, Reed DS, Hartman AL. 2012. Choice of inbred rat strain impacts lethality and disease course after respiratory infection with Rift Valley fever virus. Front. Cell Infect. Microbiol. 2:105
    [Crossref] [Google Scholar]
  41. 41.
    Albe JR, Boyles DA, Walters AW, Kujawa MR, McMillen CM et al. 2019. Neutrophil and macrophage influx into the central nervous system are inflammatory components of lethal Rift Valley fever encephalitis in rats. PLOS Pathog 15:e1007833
    [Crossref] [Google Scholar]
  42. 42.
    Hartman AL, Powell DS, Bethel LM, Caroline AL, Schmid RJ et al. 2014. Aerosolized Rift Valley fever virus causes fatal encephalitis in African green monkeys and common marmosets. J. Virol. 88:2235–45
    [Crossref] [Google Scholar]
  43. 43.
    Wonderlich ER, Caroline AL, McMillen CM, Walters AW, Reed DS et al. 2018. Peripheral blood biomarkers of disease outcome in a monkey model of Rift Valley fever encephalitis. J. Virol. 92:e01662–17
    [Crossref] [Google Scholar]
  44. 44.
    Smith DR, Bird BH, Lewis B, Johnston SC, McCarthy S et al. 2012. Development of a novel nonhuman primate model for Rift Valley fever. J. Virol. 86:2109–20
    [Crossref] [Google Scholar]
  45. 45.
    Barbeau DJ, Cartwright HN, Harmon JR, Spengler JR, Spiropoulou CF et al. 2021. Identification and characterization of Rift Valley fever virus-specific T cells reveals a dependence on CD40/CD40L interactions for prevention of encephalitis. J. Virol. 95:23e01506–21
    [Crossref] [Google Scholar]
  46. 46.
    Anderson GW Jr., Slone TW Jr., Peters CJ. 1988. The gerbil, Meriones unguiculatus, a model for Rift Valley fever viral encephalitis. Arch. Virol. 102:187–96
    [Crossref] [Google Scholar]
  47. 47.
    Cartwright HN, Barbeau DJ, McElroy AK. 2020. Rift Valley fever virus is lethal in different inbred mouse strains independent of sex. Front. Microbiol. 11:1962
    [Crossref] [Google Scholar]
  48. 48.
    do Valle TZ, Billecocq A, Guillemot L, Alberts R, Gommet C et al. 2010. A new mouse model reveals a critical role for host innate immunity in resistance to Rift Valley fever. J. Immunol. 185:6146–56
    [Crossref] [Google Scholar]
  49. 49.
    Gray KK, Worthy MN, Juelich TL, Agar SL, Poussard A et al. 2012. Chemotactic and inflammatory responses in the liver and brain are associated with pathogenesis of Rift Valley fever virus infection in the mouse. PLOS Negl. Trop. Dis. 6:e1529
    [Crossref] [Google Scholar]
  50. 50.
    Reed C, Steele KE, Honko A, Shamblin J, Hensley LE, Smith DR. 2012. Ultrastructural study of Rift Valley fever virus in the mouse model. Virology 431:58–70
    [Crossref] [Google Scholar]
  51. 51.
    Dodd KA, McElroy AK, Jones ME, Nichol ST, Spiropoulou CF. 2013. Rift Valley fever virus clearance and protection from neurologic disease are dependent on CD4+ T cell and virus-specific antibody responses. J. Virol. 87:6161–71
    [Crossref] [Google Scholar]
  52. 52.
    Harmon JR, Spengler JR, Coleman-McCray JD, Nichol ST, Spiropoulou CF, McElroy AK. 2018. CD4 T cells, CD8 T cells, and monocytes coordinate to prevent Rift Valley fever virus encephalitis. J. Virol. 92:24e01270–18
    [Crossref] [Google Scholar]
  53. 53.
    Cartwright HN, Barbeau DJ, Doyle JD, McElroy AK. 2021. A novel mouse model of Rift Valley fever virus encephalitis Abstract presented at the 40th Annual American Society for Virology Meeting July 19–23
  54. 54.
    Peters CJ, Slone TW. 1982. Inbred rat strains mimic the disparate human response to Rift Valley fever virus infection. J. Med. Virol. 10:45–54
    [Crossref] [Google Scholar]
  55. 55.
    Peters CJ, Anderson GW Jr. 1981. Pathogenesis of Rift Valley fever. Viruses 3:5493–519
    [Google Scholar]
  56. 56.
    Anderson GW Jr., Rosebrock JA, Johnson AJ, Jennings GB, Peters CJ. 1991. Infection of inbred rat strains with Rift Valley fever virus: development of a congenic resistant strain and observations on age-dependence of resistance. Am. J. Trop. Med. Hyg. 44:475–80
    [Crossref] [Google Scholar]
  57. 57.
    Busch CM, Callicott RJ, Peters CJ, Morrill JC, Womack JE. 2015. Mapping a major gene for resistance to Rift Valley fever virus in laboratory rats. J. Hered. 106:728–33
    [Crossref] [Google Scholar]
  58. 58.
    Caroline AL, Kujawa MR, Oury TD, Reed DS, Hartman AL. 2016. Inflammatory biomarkers associated with lethal Rift Valley fever encephalitis in the Lewis rat model. Front. Microbiol. 6:1509
    [Crossref] [Google Scholar]
  59. 59.
    Schwarz MM, McMillen CM, Demers MJ, Hartman A. 2021. Development of a rat model of Rift Valley fever virus ocular disease Abstract presented at the 40th Annual American Society for Virology Meeting July 19–23
  60. 60.
    Boyles DA, Schwarz MM, Albe JR, McMillen CM, O'Malley KJ et al. 2021. Development of Rift Valley fever encephalitis in rats is mediated by early infection of olfactory epithelium and neuroinvasion across the cribriform plate. J. Gen. Virol. 102:001522
    [Crossref] [Google Scholar]
  61. 61.
    Walters AW, Kujawa MR, Albe JR, Reed DS, Klimstra WB, Hartman AL. 2019. Vascular permeability in the brain is a late pathogenic event during Rift Valley fever virus encephalitis in rats. Virology 526:173–79
    [Crossref] [Google Scholar]
  62. 62.
    Cosgriff TM, Morrill JC, Jennings GB, Hodgson LA, Slayter MV et al. 1989. Hemostatic derangement produced by Rift Valley fever virus in rhesus monkeys. Rev. Infect. Dis. 11:Suppl. 4S807–14
    [Crossref] [Google Scholar]
  63. 63.
    Morrill JC, Jennings GB, Johnson AJ, Cosgriff TM, Gibbs PH, Peters CJ. 1990. Pathogenesis of Rift Valley fever in rhesus monkeys: role of interferon response. Arch. Virol. 110:195–212
    [Crossref] [Google Scholar]
  64. 64.
    Peters CJ, Jones D, Trotter R, Donaldson J, White J et al. 1988. Experimental Rift Valley fever in rhesus macaques. Arch. Virol. 99:31–44
    [Crossref] [Google Scholar]
  65. 65.
    Morrill JC, Peters CJ. 2011. Protection of MP-12–vaccinated rhesus macaques against parenteral and aerosol challenge with virulent Rift Valley fever virus. J. Infect. Dis. 204:229–36
    [Crossref] [Google Scholar]
  66. 66.
    Barbeau DJ, Albe JR, Nambulli S, Tilston-Lunel NL, Hartman AL et al. 2020. Rift Valley fever virus infection causes acute encephalitis in the ferret. mSphere 5:e00798–20
    [Crossref] [Google Scholar]
  67. 67.
    van Velden DJ, Meyer JD, Olivier J, Gear JH, McIntosh B. 1977. Rift Valley fever affecting humans in South Africa: a clinicopathological study. S. Afr. Med. J. 51:867–71
    [Google Scholar]
  68. 68.
    Ikegami T, Makino S. 2011. The pathogenesis of Rift Valley fever. Viruses 3:493–519
    [Crossref] [Google Scholar]
  69. 69.
    Gaudreault NN, Indran SV, Bryant PK, Richt JA, Wilson WC. 2015. Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines. Front. Microbiol. 6:664
    [Crossref] [Google Scholar]
  70. 70.
    Moy RH, Gold B, Molleston JM, Schad V, Yanger K et al. 2014. Antiviral autophagy restricts Rift Valley fever virus infection and is conserved from flies to mammals. Immunity 40:51–65
    [Crossref] [Google Scholar]
  71. 71.
    Ritter M, Bouloy M, Vialat P, Janzen C, Haller O, Frese M. 2000. Resistance to Rift Valley fever virus in Rattus norvegicus: genetic variability within certain ‘inbred’ strains. J. Gen. Virol. 81:2683–88
    [Crossref] [Google Scholar]
  72. 72.
    Chiaradia I, Lancaster MA. 2020. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci. 23:1496–508
    [Crossref] [Google Scholar]
  73. 73.
    Zhang BZ, Chu H, Han S, Shuai H, Deng J et al. 2020. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res 30:928–31
    [Crossref] [Google Scholar]
  74. 74.
    Qian X, Nguyen HN, Jacob F, Song H, Ming GL. 2017. Using brain organoids to understand Zika virus-induced microcephaly. Development 144:952–57
    [Crossref] [Google Scholar]
  75. 75.
    Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC et al. 2016. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–54
    [Crossref] [Google Scholar]
  76. 76.
    Vahey GM, Lindsey NP, Staples JE, Hills SL. 2021. La Crosse virus disease in the United States, 2003–2019. Am. J. Trop. Med. Hyg. 105:807–12
    [Crossref] [Google Scholar]
  77. 77.
    Winkler CW, Woods TA, Groveman BR, Carmody AB, Speranza EE et al. 2019. Neuronal maturation reduces the type I IFN response to orthobunyavirus infection and leads to increased apoptosis of human neurons. J. Neuroinflamm. 16:229
    [Crossref] [Google Scholar]
  78. 78.
    Humpel C. 2015. Organotypic brain slice cultures: a review. Neuroscience 305:86–98
    [Crossref] [Google Scholar]
  79. 79.
    Croft CL, Cruz PE, Ryu DH, Ceballos-Diaz C, Strang KH et al. 2019. rAAV-based brain slice culture models of Alzheimer's and Parkinson's disease inclusion pathologies. J. Exp. Med. 216:539–55
    [Crossref] [Google Scholar]
  80. 80.
    Busch J, Chey S, Sieg M, Vahlenkamp TW, Liebert UG. 2021. Mutated measles virus matrix and fusion protein influence viral titer in vitro and neuro-invasion in Lewis rat brain slice cultures. Viruses 13:4605
    [Crossref] [Google Scholar]
  81. 81.
    Rosenfeld AB, Doobin DJ, Warren AL, Racaniello VR, Vallee RB. 2017. Replication of early and recent Zika virus isolates throughout mouse brain development. PNAS 114:12273–78
    [Crossref] [Google Scholar]
  82. 82.
    Clarke P, Leser JS, Tyler KL. 2021. Intrinsic innate immune responses control viral growth and protect against neuronal death in an ex vivo model of West Nile virus-induced central nervous system disease. J. Virol. 95:e0083521
    [Crossref] [Google Scholar]
  83. 83.
    Buttner C, Heer M, Traichel J, Schwemmle M, Heimrich B. 2019. Zika virus-mediated death of hippocampal neurons is independent from maturation state. Front. Cell Neurosci. 13:389
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-virology-091919-065806
Loading
/content/journals/10.1146/annurev-virology-091919-065806
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error