1932

Abstract

Viroids are small, single-stranded, circular RNAs infecting plants. Composed of only a few hundred nucleotides and being unable to code for proteins, viroids represent the lowest level of complexity for an infectious agent, even below that of the smallest known viruses. Despite the relatively small size, viroids contain RNA structural elements embracing all the information needed to interact with host factors involved in their infectious cycle, thus providing models for studying structure-function relationships of RNA. Viroids are specifically targeted to nuclei (family ) or chloroplasts (family ), where replication based on rolling-circle mechanisms takes place. They move locally and systemically through plasmodesmata and phloem, respectively, and may elicit symptoms in the infected host, with pathogenic pathways linked to RNA silencing and other plant defense responses. In this review, recent advances in the dissection of the complex interplay between viroids and plants are presented, highlighting knowledge gaps and perspectives for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-091919-092331
2021-09-29
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/virology/8/1/annurev-virology-091919-092331.html?itemId=/content/journals/10.1146/annurev-virology-091919-092331&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hammond RW 2017. Economic significance of viroids in vegetable and field crops. Viroids and Satellites A Hadidi, R Flores, JW Randles, P Palukaitis 5–13 Cambridge, UK: Academic
    [Google Scholar]
  2. 2. 
    Diener TO. 1971. Potato spindle tuber “virus”: IV. A replicating, low molecular weight RNA. Virology 45:411–28
    [Google Scholar]
  3. 3. 
    Semancik JS, Weathers LG. 1972. Exocortis disease: evidence for a new species of “infectious” low molecular weight RNA in plants. Nat. New Biol. 237:242–44
    [Google Scholar]
  4. 4. 
    Di Serio F, Owens RA, Li SF, Matoušek J, Pallás V et al. 2021. ICTV virus taxonomy profile: Pospiviroidae. . J. Gen. Virol. 102:jgv001543
    [Google Scholar]
  5. 5. 
    Di Serio F, Li SF, Matoušek J, Owens RA, Pallás V et al. 2018. ICTV virus taxonomy profile: Avsunviroidae. J. Gen. Virol 99:611–12
    [Google Scholar]
  6. 6. 
    Steger G, Perreault JP. 2016. Structure and associated biological functions of viroids. Adv. Virus Res. 94:141–72
    [Google Scholar]
  7. 7. 
    Di Serio F, De Stradis A, Delgado S, Flores R, Navarro B. 2013. Cytopathic effects incited by viroid RNAs and putative underlying mechanisms. Front. Plant Sci. 3:288
    [Google Scholar]
  8. 8. 
    Flores R, Navarro B, Delgado S, Serra P, Di Serio F. 2020. Viroid pathogenesis: a critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiol. Rev. 44:386–98
    [Google Scholar]
  9. 9. 
    Gago-Zachert S. 2016. Viroids, infectious long non-coding RNAs with autonomous replication. Virus Res 212:12–24
    [Google Scholar]
  10. 10. 
    Adkar-Purushothama CR, Perreault JP 2020. Current overview on viroid–host interactions. Wiley Interdiscip. Rev. RNA 11:e1570
    [Google Scholar]
  11. 11. 
    Di Serio F, Ambrós S, Sano T, Flores R, Navarro B. 2018. Viroid diseases in pome and stone fruit trees and Koch's postulates: a critical assessment. Viruses 10:E612
    [Google Scholar]
  12. 12. 
    Navarro B, Rubino L, Di Serio F 2017. Small circular satellite RNAs. Viroids and Satellites A Hadidi, R Flores, JW Randles, P Palukaitis 659–70 Cambridge, UK: Academic
    [Google Scholar]
  13. 13. 
    Daròs JA, Flores R 1995. Identification of a retroviroid-like element from plants. PNAS 92:6856–60
    [Google Scholar]
  14. 14. 
    Wu Q, Wang Y, Cao M, Pantaleo V, Burgyan J et al. 2012. Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. PNAS 109:3938–43
    [Google Scholar]
  15. 15. 
    Zhang Z, Qi S, Tang N, Zhang X, Chen S et al. 2014. Discovery of replicating circular RNAs by RNA-seq and computational algorithms. PLOS Pathog 10:e1004553
    [Google Scholar]
  16. 16. 
    Jiang J, Zhang Z, Hu B, Hu G, Wang H et al. 2017. Identification of a viroid-like RNA in a lychee transcriptome shotgun assembly. Virus Res 240:1–7
    [Google Scholar]
  17. 17. 
    Leichtfried T, Dobrovolny S, Reisenzein H, Steinkellner S, Gottsberger RA. 2019. Apple chlorotic fruit spot viroid: a putative new pathogenic viroid on apple characterized by next-generation sequencing. Arch. Virol. 164:3137–40
    [Google Scholar]
  18. 18. 
    Bester R, Malan SS, Maree HJ. 2020. A plum marbling conundrum: identification of a new viroid associated with marbling and corky flesh in Japanese plums. Phytopathology 110:1476–82
    [Google Scholar]
  19. 19. 
    Yang Y, Xing F, Li S, Che HY, Wu ZG et al. 2020. Dendrobium viroid, a new monocot-infecting apscaviroid. Virus Res 282:197958
    [Google Scholar]
  20. 20. 
    Delan-Forino C, Maurel MC, Torchet C. 2011. Replication of Avocado sunblotch viroid in the yeast Saccharomyces cerevisiae. J. Virol. 85:3229–38
    [Google Scholar]
  21. 21. 
    Latifi A, Bernard C, da Silva L, Andéol Y, Elleuch A et al. 2016. Replication of avocado sunblotch viroid in the cyanobacterium Nostoc sp. PCC 7120. J. Plant Pathol. Microbiol. 7:341
    [Google Scholar]
  22. 22. 
    Wei S, Bian R, Andika IB, Niu E, Liu Q et al. 2019. Symptomatic plant viroid infections in phytopathogenic fungi. PNAS 116:13042–50
    [Google Scholar]
  23. 23. 
    Serra P, Carbonell A, Navarro B, Gago-Zachert S, Li S et al. 2020. Symptomatic plant viroid infections in phytopathogenic fungi: a request for a critical reassessment. PNAS 117:10126–28
    [Google Scholar]
  24. 24. 
    Minoia S, Navarro B, Covelli L, Barone M, García-Becedas MT et al. 2014. Viroid-like RNAs from cherry trees affected by leaf scorch disease: further data supporting their association with mycoviral double-stranded RNAs. Arch. Virol. 159:589–93
    [Google Scholar]
  25. 25. 
    Flores R, Serra P, Delgado S, Navarro B, Di Serio F 2019. Human hepatitis D virus and plant viroids: trans-kingdom similarities between small infectious circular RNAs. Hepatitis D Virology, Management and Methodology M Rizzetto, A Smedile 15–29 Rome: Pensiero Sci.
    [Google Scholar]
  26. 26. 
    Chang WS, Pettersson JH, Le Lay C, Shi M, Lo N et al. 2019. Novel hepatitis D-like agents in vertebrates and invertebrates. Virus Evol 5:vez021
    [Google Scholar]
  27. 27. 
    Ding B, Itaya A. 2007. Viroid: a useful model for studying the basic principles of infection and RNA biology. Mol. Plant Microbe Interact. 20:7–20
    [Google Scholar]
  28. 28. 
    Keese P, Symons RH 1985. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. PNAS 82:4582–86
    [Google Scholar]
  29. 29. 
    Symons RH. 1981. Avocado sunblotch viroid: primary sequence and proposed secondary structure. Nucleic Acids Res 9:6527–37
    [Google Scholar]
  30. 30. 
    Hernandez C, Flores R 1992. Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. PNAS 89:3711–15
    [Google Scholar]
  31. 31. 
    Dubé A, Bolduc F, Bisaillon M, Perreault JP. 2011. Mapping studies of the Peach latent mosaic viroid reveal novel structural features. Mol. Plant Pathol. 12:688–701
    [Google Scholar]
  32. 32. 
    Moreno M, Vázquez L, López-Carrasco A, Martín-Gago JA, Flores R, Briones C. 2019. Direct visualization of the native structure of viroid RNAs at single-molecule resolution by atomic force microscopy. RNA Biol 16:295–308
    [Google Scholar]
  33. 33. 
    Gago S, De la Peña M, Flores R. 2005. A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability. RNA 11:1073–83
    [Google Scholar]
  34. 34. 
    Flores R, Gago-Zachert S, Serra P, Sanjuán R, Elena SF. 2014. Viroids: survivors from the RNA world?. Annu. Rev. Microbiol. 68:395–414
    [Google Scholar]
  35. 35. 
    López-Carrasco A, Flores R. 2017. Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: a “naked” rod-like conformation similar but not identical to that observed in vitro. RNA Biol 14:1046–54
    [Google Scholar]
  36. 36. 
    López-Carrasco A, Flores R. 2017. The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins. J. Gen. Virol. 98:1913–22
    [Google Scholar]
  37. 37. 
    Itaya A, Zhong X, Bundschuh R, Qi Y, Wang Y et al. 2007. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J. Virol. 81:2980–94
    [Google Scholar]
  38. 38. 
    Gomez G, Pallas V. 2007. Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. Plant J 51:1041–49
    [Google Scholar]
  39. 39. 
    Zhong X, Leontis N, Qian S, Itaya A, Qi Y et al. 2006. Tertiary structural and functional analyses of a viroid RNA motif by isostericity matrix and mutagenesis reveal its essential role in replication. . J. Virol. 80:8566–81
    [Google Scholar]
  40. 40. 
    Gas ME, Hernández C, Flores R, Daròs JA. 2007. Processing of nuclear viroids in vivo: an interplay between RNA conformations. PLOS Pathog 3:e182
    [Google Scholar]
  41. 41. 
    Freidhoff P, Bruist MF. 2019. In silico survey of the central conserved regions in viroids of the Pospiviroidae family for conserved asymmetric loop structures. RNA 25:985–1003
    [Google Scholar]
  42. 42. 
    Zhong X, Archual AJ, Amin AA, Ding B. 2008. A genomic map of viroid RNA motifs critical for replication and systemic trafficking. Plant Cell 20:35–47
    [Google Scholar]
  43. 43. 
    Zhong X, Tao X, Stombaugh J, Leontis N, Ding B. 2007. Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. EMBO J 26:3836–46
    [Google Scholar]
  44. 44. 
    Takeda R, Petrov AI, Leontis NB, Ding B. 2011. A three-dimensional RNA motif in Potato spindle tuber viroid mediates trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana. Plant Cell 23:258–72
    [Google Scholar]
  45. 45. 
    Takeda R, Zirbel CL, Leontis NB, Wang Y, Ding B. 2018. Allelic RNA motifs in regulating systemic trafficking of potato spindle tuber viroid. Viruses 10:4160
    [Google Scholar]
  46. 46. 
    Wu J, Leontis NB, Zirbel CL, Bisaro DM, Ding B. 2019. A three-dimensional RNA motif mediates directional trafficking of Potato spindle tuber viroid from epidermal to palisade mesophyll cells in Nicotiana benthamiana. PLOS Pathog 15:e1008147
    [Google Scholar]
  47. 47. 
    Wang Y, Zirbel CL, Leontis NB, Ding B. 2018. RNA 3-dimensional structural motifs as a critical constraint of viroid RNA evolution. PLOS Pathog 14:e1006801
    [Google Scholar]
  48. 48. 
    Wu J, Zhou C, Li J, Li C, Tao X et al. 2020. Functional analysis reveals G/U pairs critical for replication and trafficking of an infectious non-coding viroid RNA. Nucleic Acids Res 48:3134–55
    [Google Scholar]
  49. 49. 
    Varani G, McClain WH. 2000. The G × U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep 1:18–23
    [Google Scholar]
  50. 50. 
    Riesner D, Henco K, Rokohl U, Klotz G, Kleinschmidt AK et al. 1979. Structure and structure formation of viroids. J. Mol. Biol. 133:85–115
    [Google Scholar]
  51. 51. 
    Carbonell A, De la Peña M, Flores R, Gago S. 2006. Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: Differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads. Nucleic Acids Res 34:5613–22
    [Google Scholar]
  52. 52. 
    Flores R, Hernandez C, De la Peña M, Vera A, Daros JA. 2001. Hammerhead ribozyme structure and function in plant RNA replication. Methods Enzymol 341:540–52
    [Google Scholar]
  53. 53. 
    De la Peña M, Gago S, Flores R. 2003. Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J 22:5561–70
    [Google Scholar]
  54. 54. 
    Dufour D, De la Peña M, Gago S, Flores R, Gallego J. 2009. Structure–function analysis of the ribozymes of chrysanthemum chlorotic mottle viroid: a loop–loop interaction motif conserved in most natural hammerheads. Nucleic Acids Res 37:368–81
    [Google Scholar]
  55. 55. 
    Diener TO. 1989. Circular RNAs: relics of precellular evolution?. PNAS 86:9370–74
    [Google Scholar]
  56. 56. 
    Gilbert W. 1986. Origin of life: the RNA world. Nature 319:618
    [Google Scholar]
  57. 57. 
    Yi C, Pan T. 2011. Cellular dynamics of RNA modification. Acc. Chem. Res. 44:1380–88
    [Google Scholar]
  58. 58. 
    Domdey H, Jank P, Sänger L, Gross HJ. 1978. Studies on the primary and secondary structure of potato spindle tuber viroid: products of digestion with ribonuclease A and ribonuclease T1, and modification with bisulfite. Nucleic Acids Res 5:1221–36
    [Google Scholar]
  59. 59. 
    Di Serio F, Torchetti EM, Daròs JA, Navarro B. 2019. Reassessment of viroid RNA cytosine methylation status at the single nucleotide level. Viruses 11:357
    [Google Scholar]
  60. 60. 
    Frye M, Jaffrey SR, Pan T, Rechavi G, Suzuki T. 2016. RNA modifications: What have we learned and where are we headed?. Nat. Rev. Genet. 17:365–72
    [Google Scholar]
  61. 61. 
    Branch AD, Robertson HD. 1984. A replication cycle for viroids and other small infectious RNAs. Science 223:45055
    [Google Scholar]
  62. 62. 
    Daròs JA, Marcos JF, Hernández C, Flores R 1994. Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. PNAS 91:12813–17
    [Google Scholar]
  63. 63. 
    Flores R, Gas ME, Molina-Serrano D, Nohales , Carbonell A et al. 2009. Viroid replication: rolling-circles, enzymes and ribozymes. Viruses 1:317–34
    [Google Scholar]
  64. 64. 
    Muhlbach HP, Sanger HL. 1979. Viroid replication is inhibited by α-amanitin. Nature 278:185–88
    [Google Scholar]
  65. 65. 
    Warrilow D, Symons RH. 1999. Citrus exocortis viroid RNA is associated with the largest subunit of RNA polymerase II in tomato in vivo. Arch. Virol. 144:2367–75
    [Google Scholar]
  66. 66. 
    Navarro JA, Vera A, Flores R. 2000. A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 268:218–25
    [Google Scholar]
  67. 67. 
    Rodio ME, Delgado S, De Stradis A, Gómez MD, Flores R, Di Serio F. 2007. A viroid RNA with a specific structural motif inhibits chloroplast development. Plant Cell 19:3610–26
    [Google Scholar]
  68. 68. 
    Lucifora J, Delphin M. 2020. Current knowledge on Hepatitis Delta Virus replication. Antivir. Res. 179:104812
    [Google Scholar]
  69. 69. 
    Gago S, Elena SF, Flores R, Sanjuán R. 2009. Extremely high mutation rate of a hammerhead viroid. Science 323:1308
    [Google Scholar]
  70. 70. 
    López-Carrasco A, Ballesteros C, Sentandreu V, Delgado S, Gago-Zachert S et al. 2017. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLOS Pathog 13:e1006547
    [Google Scholar]
  71. 71. 
    Wassarman K, Saecker R. 2006. Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science 314:1601–3
    [Google Scholar]
  72. 72. 
    Wagner SD, Yakovchuk P, Gilman B, Ponicsan SL, Drullinger LF et al. 2013. RNA polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA. EMBO J 32:781–90
    [Google Scholar]
  73. 73. 
    Wang Y, Qu J, Ji S, Wallace AJ, Wu J et al. 2016. A land plant-specific transcription factor directly enhances transcription of a pathogenic noncoding RNA template by DNA-dependent RNA polymerase II. Plant Cell 28:1094–107
    [Google Scholar]
  74. 74. 
    Bojić T, Beeharry Y, Zhang DJ, Pelchat M. 2012. Tomato RNA polymerase II interacts with the rod-like conformation of the left terminal domain of the potato spindle tuber viroid positive RNA genome. J. Gen. Virol. 93:1591–600
    [Google Scholar]
  75. 75. 
    Kolonko N, Bannach O, Aschermann K, Hu KH, Moors M et al. 2006. Transcription of potato spindle tuber viroid by RNA polymerase II starts in the left terminal loop. Virology 347:392–404
    [Google Scholar]
  76. 76. 
    Eiras M, Nohales MA, Kitajima EW, Flores R, Daròs JA. 2011. Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Arch. Virol. 156:529–33
    [Google Scholar]
  77. 77. 
    Jiang J, Smith HN, Ren D, Mudiyanselage SDD, Dawe AL et al. 2018. Potato spindle tuber viroid modulates its replication through a direct interaction with a splicing regulator. J. Virol. 92:e01004-18
    [Google Scholar]
  78. 78. 
    Mudiyanselage SDD, Wang Y. 2020. Evidence supporting that RNA polymerase II catalyzes de novo transcription using potato spindle tuber viroid circular RNA templates. Viruses 12:371
    [Google Scholar]
  79. 79. 
    López-Carrasco A, Gago-Zachert S, Mileti G, Minoia S, Flores R, Delgado S. 2016. The transcription initiation sites of eggplant latent viroid strands map within distinct motifs in their in vivo RNA conformations. RNA Biol 13:83–97
    [Google Scholar]
  80. 80. 
    Gas ME, Molina-Serrano D, Hernández C, Flores R, Daròs JA. 2008. Monomeric linear RNA of Citrus exocortis viroid resulting from processing in vivo has 5′-phosphomonoester and 3′-hydroxyl termini: implications for the ribonuclease and RNA ligase involved in replication. J. Virol. 82:10321–25
    [Google Scholar]
  81. 81. 
    Hutchins C, Rathjen PD, Forster AC, Symons RH. 1986. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res 14:3627–40
    [Google Scholar]
  82. 82. 
    Daròs JA, Flores R. 2002. A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. EMBO J 21:749–59
    [Google Scholar]
  83. 83. 
    Nohales , Molina-Serrano D, Flores R, Daròs JA. 2012. Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J. Virol. 86:8269–76
    [Google Scholar]
  84. 84. 
    Cordero T, Ortolá B, Darós JA. 2018. Mutational analysis of Eggplant latent viroid RNA circularization by the eggplant tRNA ligase in Escherichia coli. Front. Microbiol. 9:635
    [Google Scholar]
  85. 85. 
    Nohales , Flores R, Daròs JA 2012. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. PNAS 109:13805–10
    [Google Scholar]
  86. 86. 
    Wang Y, Ding B. 2010. Viroids: small probes for exploring the vast universe of RNA trafficking in plants. J. Integr. Plant Biol. 52:28–39
    [Google Scholar]
  87. 87. 
    Woo YM, Itaya A, Owens RA, Tang L. 1999. Characterization of nuclear import of potato spindle tuber viroid RNA in permeabilized protoplasts. Plant J 17:627–35
    [Google Scholar]
  88. 88. 
    Seo H, Wang Y, Park WJ 2020. Time-resolved observation of the destination of microinjected potato spindle tuber viroid (PSTVd) in the abaxial leaf epidermal cells of Nicotiana benthamiana. Microorganisms 8:2044
    [Google Scholar]
  89. 89. 
    Abraitiene A, Zhao Y, Hammond R. 2008. Nuclear targeting by fragmentation of the Potato spindle tuber viroid genome. Biochem. Biophys. Res. Commun. 368:470–75
    [Google Scholar]
  90. 90. 
    Martínez de Alba AE, Sägesser R, Tabler M, Tsagris M. 2003. A bromodomain-containing protein from tomato specifically binds potato spindle tuber viroid RNA in vitro and in vivo. J Virol 77:9685–94
    [Google Scholar]
  91. 91. 
    Kalantidis K, Denti MA, Tzortzakaki S, Marinou E, Tabler M, Tsagris M. 2007. Virp1 is a host protein with a major role in Potato spindle tuber viroid infection in Nicotiana plants. J. Virol. 81:12872–80
    [Google Scholar]
  92. 92. 
    Chaturvedi S, Kalantidis K, Rao AL. 2014. A bromodomain-containing host protein mediates the nuclear importation of a satellite RNA of Cucumber mosaic virus. J. Virol. 88:1890–96
    [Google Scholar]
  93. 93. 
    Qi Y, Ding B. 2003. Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. Plant Cell 15:2566–77
    [Google Scholar]
  94. 94. 
    Mathieu O, Yukawa Y, Prieto JL, Vaillant I, Sugiura M, Tourmente S. 2003. Identification and characterization of transcription factor IIIA and ribosomal protein L5 from Arabidopsis thaliana. Nucleic Acids Res 31:2424–33
    [Google Scholar]
  95. 95. 
    Gómez G, Pallas V. 2010. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants. PLOS ONE 5:e12269
    [Google Scholar]
  96. 96. 
    Baek E, Par M, Yoon JY, Palukaitis P. 2017. Chrysanthemum chlorotic mottle viroid-mediated trafficking of foreign mRNA into chloroplasts. Res. Plant Dis. 23:288–93
    [Google Scholar]
  97. 97. 
    Ding B, Kwon MO, Hammond R, Owens R. 1997. Cell-to-cell movement of potato spindle tuber viroid. Plant J 12:931–36
    [Google Scholar]
  98. 98. 
    Palukaitis P. 1987. Potato spindle tuber viroid: investigation of the long-distance, intra-plant transport route. Virology 158:239–41
    [Google Scholar]
  99. 99. 
    Zhu Y, Green L, Woo YM, Owens R, Ding B. 2001. Cellular basis of potato spindle tuber viroid systemic movement. Virology 279:69–77
    [Google Scholar]
  100. 100. 
    Qi Y, Pelissier T, Itaya A, Hunt E, Wassenegger M, Ding B. 2004. Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. Plant Cell 16:1741–52
    [Google Scholar]
  101. 101. 
    Gómez G, Pallás V. 2001. Identification of an in vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants. Mol. Plant Microbe Interact. 14:910–13
    [Google Scholar]
  102. 102. 
    Gómez G, Pallás V. 2004. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA. J. Virol. 78:10104–10
    [Google Scholar]
  103. 103. 
    Owens RA, Blackburn M, Ding B. 2001. Possible involvement of the phloem lectin in long-distance viroid movement. Mol. Plant Microbe Interact. 14:905–9
    [Google Scholar]
  104. 104. 
    Solovyev AG, Makarova SS, Remizowa MV, Lim HS, Hammond J et al. 2013. Possible role of the Nt-4/1 protein in macromolecular transport in vascular tissue. Plant Signal Behav 8:e25784
    [Google Scholar]
  105. 105. 
    Borges F, Martienssen RA. 2015. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16:727–41
    [Google Scholar]
  106. 106. 
    Fukudome A, Fukuhara T. 2017. Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. J. Plant. Res. 130:33–44
    [Google Scholar]
  107. 107. 
    Carbonell A. 2017. Plant ARGONAUTEs: features, functions, and unknowns. Methods Mol. Biol. 1640:1–21
    [Google Scholar]
  108. 108. 
    Hammann C, Steger G. 2012. Viroid-specific small RNA in plant disease. RNA Biol 9:809–19
    [Google Scholar]
  109. 109. 
    Katsarou K, Mavrothalassiti E, Dermauw W, Van Leeuwen T, Kalantidis K. 2016. Combined activity of DCL2 and DCL3 is crucial in the defense against Potato spindle tuber viroid. PLOS Pathog 12:e1005936
    [Google Scholar]
  110. 110. 
    Suzuki T, Ikeda S, Kasai A, Taneda A, Fujibayashi M et al. 2019. RNAi-mediated down-regulation of Dicer-like 2 and 4 changes the response of ‘moneymaker’ tomato to potato spindle tuber viroid infection from tolerance to lethal systemic necrosis, accompanied by up-regulation of miR398, 398a-3p and production of excessive amount of reactive oxygen species. Viruses 11:344
    [Google Scholar]
  111. 111. 
    Navarro B, Pantaleo V, Gisel A, Moxon S, Dalmay T et al. 2009. Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction. PLOS ONE 4:e7686
    [Google Scholar]
  112. 112. 
    Di Serio F, Martínez de Alba AE, Navarro B, Gisel A, Flores R 2010. RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J. Virol. 84:2477–89
    [Google Scholar]
  113. 113. 
    Minoia S, Carbonell A, Di Serio F, Gisel A, Carrington JC et al. 2014. Specific argonautes bind selectively small RNAs derived from potato spindle tuber viroid and attenuate viroid accumulation in vivo. J. Virol. 88:11933–45
    [Google Scholar]
  114. 114. 
    Naoi T, Kitabayashi S, Kasai A, Sugawara K, Adkar-Purushothama CR et al. 2020. Suppression of RNA-dependent RNA polymerase 6 in tomatoes allows potato spindle tuber viroid to invade basal part but not apical part including pluripotent stem cells of shoot apical meristem. PLOS ONE 15:e0236481
    [Google Scholar]
  115. 115. 
    Dadami E, Dalakouras A, Wassenegger M 2017. Viroids and RNA silencing. Viroids and Satellites A Hadidi, R Flores, JW Randles, P Palukaitis 115–124 Cambridge, UK: Academic
    [Google Scholar]
  116. 116. 
    Serra P, Bani Hashemian SM, Fagoaga C, Romero J, Ruiz-Ruiz S et al. 2014. Virus-viroid interactions: Citrus Tristeza Virus enhances the accumulation of Citrus Dwarfing Viroid in Mexican lime via virus-encoded silencing suppressors. J. Virol. 88:1394–97
    [Google Scholar]
  117. 117. 
    Minoia S, Navarro B, Delgado S, Di Serio F, Flores R. 2015. Viroid RNA turnover: characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo. Nucleic Acids Res 43:2313–25
    [Google Scholar]
  118. 118. 
    Kilchert C, Vasiljeva L. 2013. mRNA quality control goes transcriptional. Biochem. Soc. Trans. 41:1666–72
    [Google Scholar]
  119. 119. 
    Matoušek J, Steinbachová L, Drábková LZ, Kocábek T, Potěšil D et al. 2020. Elimination of viroids from tobacco pollen involves a decrease in propagation rate and an increase of the degradation processes. Int. J. Mol. Sci. 21:3029
    [Google Scholar]
  120. 120. 
    Flores R, Hernández C, Martínez de Alba AE, Daròs JA, Di Serio F 2005. Viroids and viroid-host interactions. Annu. Rev. Phytopathol. 43:117–39
    [Google Scholar]
  121. 121. 
    Papaefthimiou I, Hamilton A, Denti M, Baulcombe D, Tsagris M, Tabler M. 2001. Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Res 29:2395–400
    [Google Scholar]
  122. 122. 
    Wang MB, Bian XY, Wu LM, Liu LX, Smith NA et al. 2004. On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. PNAS 101:3275–80
    [Google Scholar]
  123. 123. 
    Malfitano M, Di Serio F, Covelli L, Ragozzino A, Hernández C, Flores R. 2003. Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology 313:492–501
    [Google Scholar]
  124. 124. 
    Delgado S, Navarro B, Serra P, Gentit P, Cambra et al. 2019. How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biol 16:906–17
    [Google Scholar]
  125. 125. 
    Navarro B, Gisel A, Rodio ME, Delgado S, Ricardo F, Di Serio F 2012. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide degradation of a host mRNA as predicted by RNA silencing. Plant J 70:991–1003
    [Google Scholar]
  126. 126. 
    Bao S, Owens RA, Sun Q, Song H, Liu Y et al. 2019. Silencing of transcription factor encoding gene StTCP23 by small RNAs derived from the virulence modulating region of potato spindle tuber viroid is associated with symptom development in potato. PLOS Pathog 15:e1008110
    [Google Scholar]
  127. 127. 
    Zhang Z, Xia C, Matsuda T, Taneda A, Murosaki F et al. 2020. Effects of host-adaptive mutations on hop stunt viroid pathogenicity and small RNA biogenesis. Int. J. Mol. Sci. 21:7383
    [Google Scholar]
  128. 128. 
    Owens RA, Gómez G, Lisón P, Conejero V 2017. Changes in the host proteome and transcriptome induced by viroid infection. Viroids and Satellites A Hadidi, R Flores, JW Randles, P Palukaitis 105–14 Cambridge, UK: Academic
    [Google Scholar]
  129. 129. 
    Zheng Y, Wang Y, Ding B, Fei Z. 2017. Comprehensive transcriptome analyses reveal that potato spindle tuber viroid triggers genome-wide changes in alternative splicing, inducible trans-acting activity of phased secondary small interfering RNAs, and immune responses. J. Virol. 91:e00247-17
    [Google Scholar]
  130. 130. 
    Góra-Sochacka A, Więsyk A, Fogtman A, Lirski M, Zagórski-Ostoja W. 2019. Root transcriptomic analysis reveals global changes induced by systemic infection of Solanum lycopersicum with mild and severe variants of potato spindle tuber viroid. Viruses 11:992
    [Google Scholar]
  131. 131. 
    Thibaut O, Bragard C. 2018. Innate immunity activation and RNAi interplay in citrus exocortis viroid—tomato pathosystem. Viruses 10:587
    [Google Scholar]
  132. 132. 
    Štajner N, Radišek S, Mishra AK, Nath VS, Matoušek J, Jakše J. 2019. Evaluation of disease severity and global transcriptome response induced by Citrus bark cracking viroid, Hop latent viroid, and their co-infection in hop (Humulus lupulus L.). Int. J. Mol. Sci. 20:3154
    [Google Scholar]
  133. 133. 
    Wang Y, Wu J, Qiu Y, Atta S, Zhou C, Cao M. 2019. Global transcriptomic analysis reveals insights into the response of ‘Etrog’ citron (Citrus medica L.) to citrus exocortis viroid infection. Viruses 11:453
    [Google Scholar]
  134. 134. 
    Takino H, Kitajima S, Hirano S, Oka M, Matsuura T et al. 2019. Global transcriptome analyses reveal that infection with chrysanthemum stunt viroid (CSVd) affects gene expression profile of chrysanthemum plants, but the genes involved in plant hormone metabolism and signaling may not be silencing target of CSVd-siRNAs. Plant Gene 18:100181
    [Google Scholar]
  135. 135. 
    Bent AF, Mackey D. 2007. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45:399–436
    [Google Scholar]
  136. 136. 
    Niehl A, Wyrsch I, Boller T, Heinlein M. 2016. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol 211:1008–19
    [Google Scholar]
  137. 137. 
    Hiddinga HJ, Crum CJ, Hu J, Roth DA. 1988. Viroid-induced phosphorylation of a host protein related to a dsRNA-dependent protein kinase. Science 241:451–53
    [Google Scholar]
  138. 138. 
    Diener TO, Hammond RW, Black T, Katze MG. 1993. Mechanism of viroid pathogenesis: differential activation of the interferon-induced, double-stranded RNA-activated, Mr 68,000 protein kinase by viroid strains of varying pathogenicity. Biochimie 75:533–38
    [Google Scholar]
  139. 139. 
    Hammond RW, Zhao Y. 2000. Characterization of a tomato protein kinase gene induced by infection by Potato spindle tuber viroid. Mol. Plant Microbe Interact. 13:903–10
    [Google Scholar]
  140. 140. 
    Herranz MC, Niehl A, Rosales M, Fiore N, Zamorano A et al. 2013. A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid. Virol. J. 10:164
    [Google Scholar]
  141. 141. 
    Lisón P, Tárraga S, López-Gresa P, Saurí A, Torres C et al. 2013. A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. Proteomics 13:833–44
    [Google Scholar]
  142. 142. 
    Adkar-Purushothama CR, Iyer PS, Perreault JP. 2017. Potato spindle tuber viroid infection triggers degradation of chloride channel protein CLC-b-like and Ribosomal protein S3a-like mRNAs in tomato plants. Sci. Rep. 7:8341
    [Google Scholar]
  143. 143. 
    Jakab G, Kiss T, Solymosy F. 1986. Viroid pathogenicity and pre-rRNA processing: a model amenable to experimental testing. Biochim. Biophys. Acta 868:190–97
    [Google Scholar]
  144. 144. 
    Cottilli P, Belda-Palazón B, Adkar-Purushothama CR, Perreault JP, Schleiff E et al. 2019. Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Res 47:8649–61
    [Google Scholar]
  145. 145. 
    Wassenegger M, Heimes S, Riedel L, Sänger HL. 1994. RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–76
    [Google Scholar]
  146. 146. 
    Torchetti EM, Pegoraro M, Navarro B, Catoni M, Di Serio F, Noris E. 2016. A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA. Sci. Rep. 6:35101
    [Google Scholar]
  147. 147. 
    Lv DQ, Liu SW, Zhao JH, Zhou BJ, Wang SP et al. 2016. Replication of a pathogenic non-coding RNA increases DNA methylation in plants associated with a bromodomain-containing viroid-binding protein. Sci. Rep. 6:35751
    [Google Scholar]
  148. 148. 
    Martinez G, Castellano M, Tortosa M, Pallas V, Gomez G. 2014. A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Res 42:1553–62
    [Google Scholar]
  149. 149. 
    Castellano M, Pallás V, Gómez G. 2016. A pathogenic long noncoding RNA redesigns the epigenetic landscape of the infected cells by subverting host Histone Deacetylase 6 activity. New Phytol 211:1311–22
    [Google Scholar]
/content/journals/10.1146/annurev-virology-091919-092331
Loading
/content/journals/10.1146/annurev-virology-091919-092331
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error