1932

Abstract

Biological sex affects the outcome of diverse respiratory viral infections. The pathogenesis of respiratory infections caused by viruses ranging from respiratory syncytial virus to influenza viruses and severe acute respiratory syndrome coronavirus 2 differs between the sexes across the life course. Generally, males are more susceptible to severe outcomes from respiratory viral infections at younger and older ages. During reproductive years (i.e., after puberty and prior to menopause), females are often at greater risk than males for severe outcomes. Pregnancy and biological sex affect the pathogenesis of respiratory viral infections. In addition to sex differences in the pathogenesis of disease, there are consistent sex differences in responses to treatments, with females often developing greater immune responses but experiencing more adverse reactions than males. Animal models provide mechanistic insights into the causes of sex differences in respiratory virus pathogenesis and treatment outcomes, where available.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-091919-092720
2021-09-29
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/virology/8/1/annurev-virology-091919-092720.html?itemId=/content/journals/10.1146/annurev-virology-091919-092720&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dasaraju PV, Liu C. 1996. Infections of the respiratory system. Medical Microbiology S Baron Galveston, TX: Univ. Tex. Med. Branch, 4th ed..
    [Google Scholar]
  2. 2. 
    Troy NM, Bosco A. 2016. Respiratory viral infections and host responses; insights from genomics. Respir. Res. 17:156
    [Google Scholar]
  3. 3. 
    Gannon CJ, Pasquale M, Tracy JK, McCarter RJ, Napolitano LM. 2004. Male gender is associated with increased risk for postinjury pneumonia. Shock 21:410–14
    [Google Scholar]
  4. 4. 
    Casimir GJ, Heldenbergh F, Hanssens L, Mulier S, Heinrichs C et al. 2010. Gender differences and inflammation: an in vitro model of blood cells stimulation in prepubescent children. J. Inflamm. 7:28
    [Google Scholar]
  5. 5. 
    Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ et al. 2020. Sex and gender: modifiers of health, disease, and medicine. Lancet 396:565–82
    [Google Scholar]
  6. 6. 
    Nichols WG, Peck Campbell AJ, Boeckh M 2008. Respiratory viruses other than influenza virus: impact and therapeutic advances. Clin. Microbiol. Rev. 21:274–90
    [Google Scholar]
  7. 7. 
    Moriyama M, Hugentobler WJ, Iwasaki A. 2020. Seasonality of respiratory viral infections. Annu. Rev. Virol. 7:83–101
    [Google Scholar]
  8. 8. 
    Vom Steeg LG, Klein SL. 2016. SeXX matters in infectious disease pathogenesis. PLOS Pathog 12:e1005374
    [Google Scholar]
  9. 9. 
    Klein SL, Flanagan KL. 2016. Sex differences in immune responses. Nat. Rev. Immunol. 16:626–38
    [Google Scholar]
  10. 10. 
    Morgan R, Klein SL. 2019. The intersection of sex and gender in the treatment of influenza. Curr. Opin. Virol. 35:35–41
    [Google Scholar]
  11. 11. 
    Flanagan KL, Fink AL, Plebanski M, Klein SL. 2017. Sex and gender differences in the outcomes of vaccination over the life course. Annu. Rev. Cell Dev. Biol. 33:577–99
    [Google Scholar]
  12. 12. 
    Hause AM, Avadhanula V, Maccato ML, Pinell PM, Bond N et al. 2018. A cross-sectional surveillance study of the frequency and etiology of acute respiratory illness among pregnant women. J. Infect. Dis. 218:528–35
    [Google Scholar]
  13. 13. 
    Marquez EJ, Chung CH, Marches R, Rossi RJ, Nehar-Belaid D et al. 2020. Sexual-dimorphism in human immune system aging. Nat. Commun. 11:751
    [Google Scholar]
  14. 14. 
    Englund JA, Chu HY. 2018. Respiratory virus infection during pregnancy: Does it matter?. J. Infect. Dis. 218:512–15
    [Google Scholar]
  15. 15. 
    Philpott EK, Englund JA, Katz J, Tielsch J, Khatry S et al. 2017. Febrile rhinovirus illness during pregnancy is associated with low birth weight in Nepal. Open Forum Infect. Dis. 4:ofx073
    [Google Scholar]
  16. 16. 
    Klein SL, Hodgson A, Robinson DP. 2012. Mechanisms of sex disparities in influenza pathogenesis. J. Leukoc. Biol. 92:67–73
    [Google Scholar]
  17. 17. 
    Falagas ME, Mourtzoukou EG, Vardakas KZ. 2007. Sex differences in the incidence and severity of respiratory tract infections. Respir. Med. 101:1845–63
    [Google Scholar]
  18. 18. 
    Fairweather D, Rose NR. 2004. Women and autoimmune diseases. Emerg. Infect. Dis. 10:2005–11
    [Google Scholar]
  19. 19. 
    Muenchhoff M, Goulder PJ. 2014. Sex differences in pediatric infectious diseases. J. Infect. Dis. 209:Suppl. 3S120–26
    [Google Scholar]
  20. 20. 
    Carroll ML, Yerkovich ST, Pritchard AL, Davies JM, Upham JW. 2010. Adaptive immunity to rhinoviruses: Sex and age matter. Respir. Res. 11:184
    [Google Scholar]
  21. 21. 
    Aguilar HC, Lee B. 2011. Emerging paramyxoviruses: molecular mechanisms and antiviral strategies. Expert Rev. Mol. Med. 13:e6
    [Google Scholar]
  22. 22. 
    Simoes EA. 2003. Environmental and demographic risk factors for respiratory syncytial virus lower respiratory tract disease. J. Pediatr. 143:S118–26
    [Google Scholar]
  23. 23. 
    Malinczak CA, Fonseca W, Rasky AJ, Ptaschinski C, Morris S et al. 2019. Sex-associated TSLP-induced immune alterations following early-life RSV infection leads to enhanced allergic disease. Mucosal Immunol 12:969–79
    [Google Scholar]
  24. 24. 
    Almqvist C, Worm M, Leynaert B Work. Group GALENWPG 2008. Impact of gender on asthma in childhood and adolescence: a GA2LEN review. Allergy 63:47–57
    [Google Scholar]
  25. 25. 
    Treanor J, Falsey A. 1999. Respiratory viral infections in the elderly. Antivir. Res. 44:79–102
    [Google Scholar]
  26. 26. 
    Gonik B. 2019. The burden of respiratory syncytial virus infection in adults and reproductive-aged women. Glob. Health Sci. Pract. 7:515–20
    [Google Scholar]
  27. 27. 
    Milder E, Arnold JC. 2009. Human metapneumovirus and human bocavirus in children. Pediatr. Res. 65:78R–83R
    [Google Scholar]
  28. 28. 
    Ebihara T, Endo R, Kikuta H, Ishiguro N, Yoshioka M et al. 2003. Seroprevalence of human metapneumovirus in Japan. J. Med. Virol. 70:281–83
    [Google Scholar]
  29. 29. 
    van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R et al. 2001. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 7:719–24
    [Google Scholar]
  30. 30. 
    Freymouth F, Vabret A, Legrand L, Eterradossi N, Lafay-Delaire F et al. 2003. Presence of the new human metapneumovirus in French children with bronchiolitis. Pediatr. Infect. Dis. J. 22:92–94
    [Google Scholar]
  31. 31. 
    Esper F, Boucher D, Weibel C, Martinello RA, Kahn JS. 2003. Human metapneumovirus infection in the United States: clinical manifestations associated with a newly emerging respiratory infection in children. Pediatrics 111:1407–10
    [Google Scholar]
  32. 32. 
    Peiris JS, Tang WH, Chan KH, Khong PL, Guan Y et al. 2003. Children with respiratory disease associated with metapneumovirus in Hong Kong. Emerg. Infect. Dis. 9:628–33
    [Google Scholar]
  33. 33. 
    Williams JV, Harris PA, Tollefson SJ, Halburnt-Rush LL, Pingsterhaus JM et al. 2004. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N. Engl. J. Med. 350:443–50
    [Google Scholar]
  34. 34. 
    Papenburg J, Hamelin ME, Ouhoummane N, Carbonneau J, Ouakki M et al. 2012. Comparison of risk factors for human metapneumovirus and respiratory syncytial virus disease severity in young children. J. Infect. Dis. 206:178–89
    [Google Scholar]
  35. 35. 
    Oong XY, Chook JB, Ng KT, Chow WZ, Chan KG et al. 2018. The role of human metapneumovirus genetic diversity and nasopharyngeal viral load on symptom severity in adults. Virol. J. 15:91
    [Google Scholar]
  36. 36. 
    Vermillion MS, Ursin RL, Kuok DIT, Vom Steeg LG, Wohlgemuth N et al. 2018. Production of amphiregulin and recovery from influenza is greater in males than females. Biol. Sex Differ. 9:24
    [Google Scholar]
  37. 37. 
    Jensen-Fangel S, Mohey R, Johnsen SP, Andersen PL, Sorensen HT, Ostergaard L. 2004. Gender differences in hospitalization rates for respiratory tract infections in Danish youth. Scand. J. Infect. Dis. 36:31–36
    [Google Scholar]
  38. 38. 
    Wang XL, Yang L, Chan KH, Chan KP, Cao PH et al. 2015. Age and sex differences in rates of influenza-associated hospitalizations in Hong Kong. Am. J. Epidemiol. 182:335–44
    [Google Scholar]
  39. 39. 
    Wong KC, Luscombe GM, Hawke C. 2019. Influenza infections in Australia 2009–2015: Is there a combined effect of age and sex on susceptibility to virus subtypes?. BMC Infect. Dis. 19:42
    [Google Scholar]
  40. 40. 
    Vom Steeg LG, Klein SL. 2019. Sex and sex steroids impact influenza pathogenesis across the life course. Semin. Immunopathol. 41:189–94
    [Google Scholar]
  41. 41. 
    Noymer A. 2009. Testing the influenza-tuberculosis selective mortality hypothesis with Union Army data. Soc. Sci. Med. 68:1599–608
    [Google Scholar]
  42. 42. 
    Nhamoyebonde S, Leslie A. 2014. Biological differences between the sexes and susceptibility to tuberculosis. J. Infect. Dis. 209:Suppl. 3S100–6
    [Google Scholar]
  43. 43. 
    Chamekh M, Casimir G. 2019. Editorial: sexual dimorphism of the immune inflammatory response in infectious and non-infectious diseases. Front. Immunol. 10:107
    [Google Scholar]
  44. 44. 
    Robinson DP, Lorenzo ME, Jian W, Klein SL. 2011. Elevated 17β-estradiol protects females from influenza A virus pathogenesis by suppressing inflammatory responses. PLOS Pathog 7:e1002149
    [Google Scholar]
  45. 45. 
    Robinson DP, Huber SA, Moussawi M, Roberts B, Teuscher C et al. 2011. Sex chromosome complement contributes to sex differences in coxsackievirus B3 but not influenza A virus pathogenesis. Biol. Sex Differ. 2:8
    [Google Scholar]
  46. 46. 
    Robinson DP, Hall OJ, Nilles TL, Bream JH, Klein SL. 2014. 17β-estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs. J. Virol. 88:4711–20
    [Google Scholar]
  47. 47. 
    Hall OJ, Limjunyawong N, Vermillion MS, Robinson DP, Wohlgemuth N et al. 2016. Progesterone-based therapy protects against influenza by promoting lung repair and recovery in females. PLOS Pathog 12:e1005840
    [Google Scholar]
  48. 48. 
    Vom Steeg LG, Vermillion MS, Hall OJ, Alam O, McFarland R et al. 2016. Age and testosterone mediate influenza pathogenesis in male mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 311:L1234–44
    [Google Scholar]
  49. 49. 
    Lorenzo ME, Hodgson A, Robinson DP, Kaplan JB, Pekosz A, Klein SL. 2011. Antibody responses and cross protection against lethal influenza A viruses differ between the sexes in C57BL/6 mice. Vaccine 29:9246–55
    [Google Scholar]
  50. 50. 
    Larcombe AN, Foong RE, Bozanich EM, Berry LJ, Garratt LW et al. 2011. Sexual dimorphism in lung function responses to acute influenza A infection. Influenza Other Respir. Viruses 5:334–42
    [Google Scholar]
  51. 51. 
    Hoffmann J, Otte A, Thiele S, Lotter H, Shu Y, Gabriel G. 2015. Sex differences in H7N9 influenza A virus pathogenesis. Vaccine 33:6949–54
    [Google Scholar]
  52. 52. 
    Sun J, Madan R, Karp CL, Braciale TJ. 2009. Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat. Med. 15:277–84
    [Google Scholar]
  53. 53. 
    Tate MD, Schilter HC, Brooks AG, Reading PC. 2011. Responses of mouse airway epithelial cells and alveolar macrophages to virulent and avirulent strains of influenza A virus. Viral Immunol. 24:77–88
    [Google Scholar]
  54. 54. 
    Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG et al. 2011. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12:1045–54
    [Google Scholar]
  55. 55. 
    Vermillion MS, Ursin RL, Attreed SE, Klein SL. 2018. Estriol reduces pulmonary immune cell recruitment and inflammation to protect female mice from severe influenza. Endocrinology 159:3306–20
    [Google Scholar]
  56. 56. 
    Robinson DP, Klein SL. 2012. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 62:263–71
    [Google Scholar]
  57. 57. 
    Hall OJ, Nachbagauer R, Vermillion MS, Fink AL, Phuong V et al. 2017. Progesterone-based contraceptives reduce adaptive immune responses and protection against sequential influenza A virus infections. J. Virol. 91:8e02160-16
    [Google Scholar]
  58. 58. 
    Vom Steeg LG, Dhakal S, Woldetsadik YA, Park HS, Mulka KR et al. 2020. Androgen receptor signaling in the lungs mitigates inflammation and improves the outcome of influenza in mice. PLOS Pathog 16:e1008506
    [Google Scholar]
  59. 59. 
    Krammer F. 2020. SARS-CoV-2 vaccines in development. Nature 586:516–27
    [Google Scholar]
  60. 60. 
    Zumla A, Hui DS, Perlman S. 2015. Middle East respiratory syndrome. Lancet 386:995–1007
    [Google Scholar]
  61. 61. 
    Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. 2020. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 20:442–47
    [Google Scholar]
  62. 62. 
    Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–80.e8
    [Google Scholar]
  63. 63. 
    Liu J, Ji H, Zheng W, Wu X, Zhu JJ et al. 2010. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol. Sex Differ. 1:6
    [Google Scholar]
  64. 64. 
    Chen J, Subbarao K. 2007. The immunobiology of SARS. Annu. Rev. Immunol. 25:443–72
    [Google Scholar]
  65. 65. 
    Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST et al. 2003. Lung pathology of fatal severe acute respiratory syndrome. Lancet 361:1773–78
    [Google Scholar]
  66. 66. 
    Alghamdi IG, Hussain II, Almalki SS, Alghamdi MS, Alghamdi MM, El-Sheemy MA. 2014. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int. J. Gen. Med. 7:417–23
    [Google Scholar]
  67. 67. 
    Leong HN, Earnest A, Lim HH, Chin CF, Tan C et al. 2006. SARS in Singapore—predictors of disease severity. Ann. Acad. Med. Singap. 35:326–31
    [Google Scholar]
  68. 68. 
    Karlberg J, Chong DS, Lai WY. 2004. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do?. Am. J. Epidemiol. 159:229–31
    [Google Scholar]
  69. 69. 
    Leung GM, Hedley AJ, Ho LM, Chau P, Wong IO et al. 2004. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. Ann. Intern. Med. 141:662–73
    [Google Scholar]
  70. 70. 
    Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S 2017. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 198:4046–53
    [Google Scholar]
  71. 71. 
    Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ et al. 2020. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med 382:1708–20
    [Google Scholar]
  72. 72. 
    Zhou F, Yu T, Du R, Fan G, Liu Y et al. 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395:1054–62
    [Google Scholar]
  73. 73. 
    Dudley JP, Lee NT. 2020. Disparities in age-specific morbidity and mortality from SARS-CoV-2 in China and the Republic of Korea. Clin. Infect. Dis. 71:863–65
    [Google Scholar]
  74. 74. 
    Sex, Gender and Covid-19 Project 2020. The COVID-19 sex-disaggregated data tracker. Global Health 50/50 accessed on Jan. 15, 2021. https://globalhealth5050.org/the-sex-gender-and-covid-19-project/
    [Google Scholar]
  75. 75. 
    Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C et al. 2020. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11:6317
    [Google Scholar]
  76. 76. 
    Fink AL, Engle K, Ursin RL, Tang WY Klein SL. 2018. Biological sex affects vaccine efficacy and protection against influenza in mice. PNAS 115:12477–82
    [Google Scholar]
  77. 77. 
    Souyris M, Cenac C, Azar P, Daviaud D, Canivet A et al. 2018. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3:eaap8855
    [Google Scholar]
  78. 78. 
    Griesbeck M, Ziegler S, Laffont S, Smith N, Chauveau L et al. 2015. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-α production in women. J. Immunol. 195:5327–36
    [Google Scholar]
  79. 79. 
    Seillet C, Laffont S, Tremollieres F, Rouquie N, Ribot C et al. 2012. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor α signaling. Blood 119:454–64
    [Google Scholar]
  80. 80. 
    van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T et al. 2020. Presence of genetic variants among young men with severe COVID-19. JAMA 324:7663–73
    [Google Scholar]
  81. 81. 
    Lieberman NAP, Peddu V, Xie H, Shrestha L, Huang ML et al. 2020. In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age. PLOS Biol 18:e3000849
    [Google Scholar]
  82. 82. 
    Meng Y, Wu P, Lu W, Liu K, Ma K et al. 2020. Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: a retrospective study of 168 severe patients. PLOS Pathog 16:e1008520
    [Google Scholar]
  83. 83. 
    Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S et al. 2020. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 26:1636–43
    [Google Scholar]
  84. 84. 
    Vahidy FS, Nicolas JC, Meeks JR, Khan O, Pan A et al. 2020. Racial and ethnic disparities in SARS-CoV-2 pandemic: analysis of a COVID-19 observational registry for a diverse US metropolitan population. BMJ Open 10:e039849
    [Google Scholar]
  85. 85. 
    Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C et al. 2020. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 588:7837315–20
    [Google Scholar]
  86. 86. 
    Klein SL, Pekosz A, Park HS, Ursin RL, Shapiro JR et al. 2020. Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. J. Clin. Investig. 130:116141–50
    [Google Scholar]
  87. 87. 
    Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Viant C et al. 2021. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci. Transl. Med. 13:577eabf1555
    [Google Scholar]
  88. 88. 
    Grzelak L, Velay A, Madec Y, Gallais F, Staropoli I et al. 2021. Sex differences in the evolution of neutralizing antibodies to SARS-CoV-2. J. Infect. Dis 2021.jiab127
    [Google Scholar]
  89. 89. 
    Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH et al. 2020. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370:6515eabd4585
    [Google Scholar]
  90. 90. 
    Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M et al. 2020. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370:6515eabd4570
    [Google Scholar]
  91. 91. 
    Zheng S, Fan J, Yu F, Feng B, Lou B et al. 2020. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January–March 2020: retrospective cohort study. BMJ 369:m1443
    [Google Scholar]
  92. 92. 
    Xu K, Chen Y, Yuan J, Yi P, Ding C et al. 2020. Factors associated with prolonged viral RNA shedding in patients with coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 71:15799–806
    [Google Scholar]
  93. 93. 
    Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD et al. 2020. Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight 5:19e142032
    [Google Scholar]
  94. 94. 
    Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A et al. 2020. Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat. Commun. 11:6122
    [Google Scholar]
  95. 95. 
    Pollard AJ, Bijker EM. 2020. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21:83–100
    [Google Scholar]
  96. 96. 
    Klein SL, Marriott I, Fish EN. 2015. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 109:9–15
    [Google Scholar]
  97. 97. 
    Abdullah M, Chai PS, Chong MY, Tohit ER, Ramasamy R et al. 2012. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell Immunol 272:214–19
    [Google Scholar]
  98. 98. 
    Klein SL, Jedlicka A, Pekosz A. 2010. The Xs and Y of immune responses to viral vaccines. Lancet Infect. Dis. 10:338–49
    [Google Scholar]
  99. 99. 
    Umlauf BJ, Haralambieva IH, Ovsyannikova IG, Kennedy RB, Pankratz VS et al. 2012. Associations between demographic variables and multiple measles-specific innate and cell-mediated immune responses after measles vaccination. Viral. Immunol. 25:29–36
    [Google Scholar]
  100. 100. 
    Zhang X, Castelli FA, Zhu X, Wu M, Maillere B, BenMohamed L. 2008. Gender-dependent HLA-DR-restricted epitopes identified from herpes simplex virus type 1 glycoprotein D. Clin. Vaccine Immunol. 15:1436–49
    [Google Scholar]
  101. 101. 
    Cook IF, Barr I, Hartel G, Pond D, Hampson AW. 2006. Reactogenicity and immunogenicity of an inactivated influenza vaccine administered by intramuscular or subcutaneous injection in elderly adults. Vaccine 24:2395–402
    [Google Scholar]
  102. 102. 
    Shiau S, Kuhn L, Strehlau R, Martens L, McIlleron H et al. 2014. Sex differences in responses to antiretroviral treatment in South African HIV-infected children on ritonavir-boosted lopinavir- and nevirapine-based treatment. BMC Pediatr 14:39
    [Google Scholar]
  103. 103. 
    Abi-Gerges N, Philp K, Pollard C, Wakefield I, Hammond TG, Valentin JP. 2004. Sex differences in ventricular repolarization: from cardiac electrophysiology to Torsades de Pointes. Fundam. Clin. Pharmacol. 18:139–51
    [Google Scholar]
  104. 104. 
    Dudas RA, Karron RA. 1998. Respiratory syncytial virus vaccines. Clin. Microbiol. Rev. 11:430–39
    [Google Scholar]
  105. 105. 
    Madhi SA, Polack FP, Piedra PA, Munoz FM, Trenholme AA et al. 2020. Respiratory syncytial virus vaccination during pregnancy and effects in infants. N. Engl. J. Med. 383:426–39
    [Google Scholar]
  106. 106. 
    Mazur NI, Higgins D, Nunes MC, Melero JA, Langedijk AC et al. 2018. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. Lancet Infect. Dis 18:e295–311
    [Google Scholar]
  107. 107. 
    McNamara PS, Smyth RL. 2002. The pathogenesis of respiratory syncytial virus disease in childhood. Br. Med. Bull. 61:13–28
    [Google Scholar]
  108. 108. 
    Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K et al. 2018. Influenza. Nat. Rev. Dis. Primers 4:3
    [Google Scholar]
  109. 109. 
    Okoli GN, Otete HE, Beck CR, Nguyen-Van-Tam JS. 2014. Use of neuraminidase inhibitors for rapid containment of influenza: a systematic review and meta-analysis of individual and household transmission studies. PLOS ONE 9:e113633
    [Google Scholar]
  110. 110. 
    Maltezou HC, Drakoulis N, Siahanidou T, Karalis V, Zervaki E et al. 2012. Safety and pharmacokinetics of oseltamivir for prophylaxis of neonates exposed to influenza H1N1. Pediatr. Infect. Dis. J. 31:527–29
    [Google Scholar]
  111. 111. 
    Blanchon T, Mentre F, Charlois-Ou C, Dornic Q, Mosnier A et al. 2013. Factors associated with clinical and virological response in patients treated with oseltamivir or zanamivir for influenza A during the 2008–2009 winter. Clin. Microbiol. Infect. 19:196–203
    [Google Scholar]
  112. 112. 
    Engler RJ, Nelson MR, Klote MM, VanRaden MJ, Huang CY et al. 2008. Half- versus full-dose trivalent inactivated influenza vaccine (2004–2005): age, dose, and sex effects on immune responses. Arch. Intern. Med. 168:2405–14
    [Google Scholar]
  113. 113. 
    Furman D, Hejblum BP, Simon N, Jojic V, Dekker CL et al. 2014. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. PNAS 111:869–74
    [Google Scholar]
  114. 114. 
    Potluri T, Fink AL, Sylvia KE, Dhakal S, Vermillion MS et al. 2019. Age-associated changes in the impact of sex steroids on influenza vaccine responses in males and females. NPJ Vaccines 4:29
    [Google Scholar]
  115. 115. 
    Ursin RL, Liu H, Powell HR, Westerbeck J, Shaw-Saliba K et al. 2020. Differential antibody recognition of H3N2 vaccine and seasonal influenza virus strains based on age, vaccine status, and sex in the 2017–18 season. J. Infect. Dis. 222:81371–82
    [Google Scholar]
  116. 116. 
    Gulati S, Smith DF, Cummings RD, Couch RB, Griesemer SB et al. 2013. Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread. PLOS One 8:e66325
    [Google Scholar]
  117. 117. 
    Nichol KL, Margolis KL, Lind A, Murdoch M, McFadden R et al. 1996. Side effects associated with influenza vaccination in healthy working adults: a randomized, placebo-controlled trial. Arch. Intern. Med. 156:1546–50
    [Google Scholar]
  118. 118. 
    Kim JH, Cho HY, Hennessey KA, Lee HJ, Bae GR, Kim HC. 2012. Adverse events following immunization (AEFI) with the novel influenza A (H1N1) 2009 vaccine: findings from the national registry of all vaccine recipients and AEFI and the passive surveillance system in South Korea. Jpn. J. Infect. Dis. 65:99–104
    [Google Scholar]
  119. 119. 
    Robinson ME, Riley JL 3rd, Myers CD, Papas RK, Wise EA et al. 2001. Gender role expectations of pain: relationship to sex differences in pain. J. Pain 2:251–57
    [Google Scholar]
  120. 120. 
    Zivkovic I, Petrovic R, Arsenovic-Ranin N, Petrusic V, Minic R et al. 2018. Sex bias in mouse humoral immune response to influenza vaccine depends on the vaccine type. Biologicals 52:18–24
    [Google Scholar]
  121. 121. 
    Zivkovic I, Bufan B, Petrusic V, Minic R, Arsenovic-Ranin N et al. 2015. Sexual diergism in antibody response to whole virus trivalent inactivated influenza vaccine in outbred mice. Vaccine 33:5546–52
    [Google Scholar]
  122. 122. 
    Nguyen DC, Masseoud F, Lu X, Scinicariello F, Sambhara S, Attanasio R. 2011. 17β-estradiol restores antibody responses to an influenza vaccine in a postmenopausal mouse model. Vaccine 29:2515–18
    [Google Scholar]
  123. 123. 
    Jones BG, Penkert RR, Xu B, Fan Y, Neale G et al. 2016. Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression. Mol. Immunol. 77:97–102
    [Google Scholar]
  124. 124. 
    Dhakal S, Deshpande S, McMahon M, Strohmeier S, Krammer F, Klein SL. 2020. Female-biased effects of aging on a chimeric hemagglutinin stalk-based universal influenza virus vaccine in mice. Vaccine In press. https://doi.org/10.1016/j.vaccine.2020.11.057
    [Crossref] [Google Scholar]
  125. 125. 
    Nachbagauer R, Feser J, Naficy A, Bernstein DI, Guptill J et al. 2020. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat. Med. 27:1106–14
    [Google Scholar]
  126. 126. 
    Lin JT, Zhang JS, Su N, Xu JG, Wang N et al. 2007. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir. Ther. 12:1107–13
    [Google Scholar]
  127. 127. 
    Schiffer V, Janssen E, van Bussel BCT, Jorissen LLM, Tas J et al. 2020. The “sex gap” in COVID-19 trials: a scoping review. EClinicalMedicine 29:100652
    [Google Scholar]
  128. 128. 
    Beigel JH, Tomashek KM, Dodd LE. 2020. Remdesivir for the treatment of Covid-19—preliminary report. Reply. N. Engl. J. Med 383:994
    [Google Scholar]
  129. 129. 
    Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. 2020. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 11:29
    [Google Scholar]
  130. 130. 
    Umeh OC, Currier JS, Park JG, Cramer Y, Hermes AE, Fletcher CV. 2011. Sex differences in lopinavir and ritonavir pharmacokinetics among HIV-infected women and men. J. Clin. Pharmacol. 51:1665–73
    [Google Scholar]
  131. 131. 
    Smith KY, Tierney C, Mollan K, Venuto CS, Budhathoki C et al. 2014. Outcomes by sex following treatment initiation with atazanavir plus ritonavir or efavirenz with abacavir/lamivudine or tenofovir/emtricitabine. Clin. Infect. Dis. 58:555–63
    [Google Scholar]
  132. 132. 
    Pfizer/BioNTech 2020. Emergency Use Authorization (EUA) for an Unapproved Product Review Memorandum Memo. US FDA, Silver Spring, MD:
  133. 133. 
    FDA 2020. Vaccines and Related Biological Products Adbisory Committee Meeting for December 17, 2020 Meet Announc., US FDA, Silver Spring, MD: https://www.fda.gov/advisory-committees/advisory-committee-calendar/vaccines-and-related-biological-products-advisory-committee-december-17-2020-meeting-announcement
  134. 134. 
    Zhu FC, Guan XH, Li YH, Huang JY, Jiang T et al. 2020. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 396:479–88
    [Google Scholar]
  135. 135. 
    Edlow AG, Li JZ, Collier AY, Atyeo C, James KE et al. 2020. Assessment of maternal and neonatal SARS-CoV-2 viral load, transplacental antibody transfer, and placental pathology in pregnancies during the COVID-19 pandemic. JAMA Netw. Open 3:e2030455
    [Google Scholar]
  136. 136. 
    Fox A, Marino J, Amanat F, Krammer F, Hahn-Holbrook J et al. 2020. Robust and specific secretory IgA against SARS-CoV-2 detected in human milk. iScience 23:101735
    [Google Scholar]
  137. 137. 
    Klein SL, Creisher PS, Burd I. 2021. COVID-19 vaccine testing in pregnant females is necessary. J. Clin. Investig 131:5e147553
    [Google Scholar]
/content/journals/10.1146/annurev-virology-091919-092720
Loading
/content/journals/10.1146/annurev-virology-091919-092720
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error