1932

Abstract

Genetic alleles that contribute to enhanced susceptibility or resistance to viral infections and virally induced diseases have often been first identified in mice before humans due to the significant advantages of the murine system for genetic studies. Herein we review multiple discoveries that have revealed significant insights into virus-host interactions, all made using genetic mapping tools in mice. Factors that have been identified include innate and adaptive immunity genes that contribute to host defense against pathogenic viruses such as herpes viruses, flaviviruses, retroviruses, and coronaviruses. Understanding the genetic mechanisms that affect infectious disease outcomes will aid the development of personalized treatment and preventive strategies for pathogenic infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015544
2019-09-29
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015544.html?itemId=/content/journals/10.1146/annurev-virology-092818-015544&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kenney AD, Dowdle JA, Bozzacco L, McMichael TM, St. Gelais C et al. 2017. Human genetic determinants of viral diseases. Annu. Rev. Genet. 51:241–63
    [Google Scholar]
  2. 2. 
    Blackwell JM, Jamieson SE, Burgner D 2009. HLA and infectious diseases. Clin. Microbiol. Rev. 22:370–85
    [Google Scholar]
  3. 3. 
    Kauppi L, Jeffreys AJ, Keeney S 2004. Where the crossovers are: recombination distributions in mammals. Nat. Rev. Genet. 5:413–24
    [Google Scholar]
  4. 4. 
    Davisson MT, Bergstrom DE, Reinholdt LG, Donahue LR 2012. Discovery genetics—the history and future of spontaneous mutation research. Curr. Protoc. Mouse Biol. 2:103–18
    [Google Scholar]
  5. 5. 
    Strong LC. 1978. Inbred mice in science. Origin of Inbred Mice HI Morse 45–68 New York: Academic
    [Google Scholar]
  6. 6. 
    Bonhomme F, Guenet JL, Dod B, Moriwaki K, Bulfield G 1987. The polyphyletic origin of laboratory inbred mice and their rate of evolution. Biol. J. Linn. Soc 30:51–58
    [Google Scholar]
  7. 7. 
    Wiltshire T, Pletcher MT, Batalov S, Barnes SW, Tarantino LM et al. 2003. Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. PNAS 100:3380–85
    [Google Scholar]
  8. 8. 
    Russell WL, Kelly EM, Hunsicker PR, Bangham JW, Maddux SC, Phipps EL 1979. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. PNAS 76:5818–19
    [Google Scholar]
  9. 9. 
    Takeda J, Keng VW, Horie K 2007. Germline mutagenesis mediated by Sleeping Beauty transposon system in mice. Genome Biol 8:Suppl. 1S14
    [Google Scholar]
  10. 10. 
    Li L, Liu P, Sun L, Bin Z, Fei J 2016. PiggyBac transposon-based polyadenylation-signal trap for genome-wide mutagenesis in mice. Sci. Rep. 6:27788
    [Google Scholar]
  11. 11. 
    Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD et al. 2004. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36:1133–37
    [Google Scholar]
  12. 12. 
    Medzhitov R, Janeway CA Jr 1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–98
    [Google Scholar]
  13. 13. 
    Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11:373–84
    [Google Scholar]
  14. 14. 
    Ichinohe T, Pang IK, Iwasaki A 2010. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 11:404–10
    [Google Scholar]
  15. 15. 
    Pertel T, Hausmann S, Morger D, Zuger S, Guerra J et al. 2011. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472:361–65
    [Google Scholar]
  16. 16. 
    Fletcher AJ, Vaysburd M, Maslen S, Zeng J, Skehel JM et al. 2018. Trivalent RING assembly on retroviral capsids activates TRIM5 ubiquitination and innate immune signaling. Cell Host Microbe 24:761–75
    [Google Scholar]
  17. 17. 
    Booth TW, Scalzo AA, Carrello C, Lyons PA, Farrell HE et al. 1993. Molecular and biological characterization of new strains of murine cytomegalovirus isolated from wild mice. Arch. Virol. 132:209–20
    [Google Scholar]
  18. 18. 
    Mannini A, Medearis DN Jr 1961. Mouse salivary gland virus infections. Am. J. Hyg. 73:329–43
    [Google Scholar]
  19. 19. 
    Webb JR, Lee SH, Vidal SM 2002. Genetic control of innate immune responses against cytomegalovirus: MCMV meets its match. Genes Immun 3:250–62
    [Google Scholar]
  20. 20. 
    Crozat K, Georgel P, Rutschmann S, Mann N, Du X et al. 2006. Analysis of the MCMV resistome by ENU mutagenesis. Mamm. Genome 17:398–406
    [Google Scholar]
  21. 21. 
    Moresco EM, Beutler B. 2011. Resisting viral infection: the gene by gene approach. Curr. Opin. Virol. 1:513–18
    [Google Scholar]
  22. 22. 
    Tabeta K, Georgel P, Janssen E, Du X, Hoebe K et al. 2004. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. PNAS 101:3516–21
    [Google Scholar]
  23. 23. 
    Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P et al. 2006. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7:156–64
    [Google Scholar]
  24. 24. 
    Pelka K, Bertheloot D, Reimer E, Phulphagar K, Schmidt SV et al. 2018. The chaperone UNC93B1 regulates Toll-like receptor stability independently of endosomal TLR transport. Immunity 48:911–22
    [Google Scholar]
  25. 25. 
    Crane MJ, Gaddi PJ, Salazar-Mather TP 2012. UNC93B1 mediates innate inflammation and antiviral defense in the liver during acute murine cytomegalovirus infection. PLOS ONE 7:e39161
    [Google Scholar]
  26. 26. 
    Casrouge A, Zhang SY, Eidenschenk C, Jouanguy E, Puel A et al. 2006. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314:308–12
    [Google Scholar]
  27. 27. 
    Cerwenka A, Lanier LL. 2016. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 16:112–23
    [Google Scholar]
  28. 28. 
    Moussa P, Marton J, Vidal SM, Fodil-Cornu N 2012. Genetic dissection of NK cell responses. Front. Immunol. 3:425
    [Google Scholar]
  29. 29. 
    Lee SH, Webb JR, Vidal SM 2002. Innate immunity to cytomegalovirus: the Cmv1 locus and its role in natural killer cell function. Microbes Infect 4:1491–503
    [Google Scholar]
  30. 30. 
    Shellam GR, Allan JE, Papadimitriou JM, Bancroft GJ 1981. Increased susceptibility to cytomegalovirus infection in beige mutant mice. PNAS 78:5104–8
    [Google Scholar]
  31. 31. 
    Bancroft GJ, Shellam GR, Chalmer JE 1981. Genetic influences on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: correlation with patterns of resistance. J. Immunol. 126:988–94
    [Google Scholar]
  32. 32. 
    Bukowski JF, Woda BA, Welsh RM 1984. Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J. Virol. 52:119–28
    [Google Scholar]
  33. 33. 
    Welsh RM, Dundon PL, Eynon EE, Brubaker JO, Koo GC, O'Donnell CL 1990. Demonstration of the antiviral role of natural killer cells in vivo with a natural killer cell-specific monoclonal antibody (NK 1.1). Nat. Immun. Cell Growth Regul. 9:112–20
    [Google Scholar]
  34. 34. 
    Scalzo AA. 1990. Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J. Exp. Med. 171:1469–83
    [Google Scholar]
  35. 35. 
    Forbes CA, Brown MG, Cho R, Shellam GR, Yokoyama WM, Scalzo AA 1997. The Cmv1 host resistance locus is closely linked to the Ly49 multigene family within the natural killer cell gene complex on mouse chromosome 6. Genomics 41:406–13
    [Google Scholar]
  36. 36. 
    Brown MG, Zhang J, Du Y, Stoll J, Yokoyama WM, Scalzo AA 1999. Localization on a physical map of the NKC-linked Cmv1 locus between Ly49b and the Prp gene cluster on mouse chromosome 6. J. Immunol. 163:1991–99
    [Google Scholar]
  37. 37. 
    Ortaldo JR, Winkler-Pickett R, Mason AT, Mason LH 1998. The Ly-49 family: regulation of cytotoxicity and cytokine production in murine CD3+ cells. J. Immunol. 160:1158–65
    [Google Scholar]
  38. 38. 
    Daniels KA, Devora G, Lai WC, O'Donnell CL, Bennett M, Welsh RM 2001. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49h. J. Exp. Med. 194:29–44
    [Google Scholar]
  39. 39. 
    Lee SH, Girard S, Macina D, Busa M, Zafer A et al. 2001. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat. Genet. 28:42–45
    [Google Scholar]
  40. 40. 
    Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL et al. 2001. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292:934–37
    [Google Scholar]
  41. 41. 
    Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL 2002. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–26
    [Google Scholar]
  42. 42. 
    Brown MG, Scalzo AA, Stone LR, Clark PY, Du Y et al. 2001. Natural killer gene complex (Nkc) allelic variability in inbred mice: evidence for Nkc haplotypes. Immunogenetics 53:584–91
    [Google Scholar]
  43. 43. 
    Bauer S, Groh V, Wu J, Steinle A, Phillips JH et al. 1999. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–29
    [Google Scholar]
  44. 44. 
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–97
    [Google Scholar]
  45. 45. 
    Medzhitov R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135–45
    [Google Scholar]
  46. 46. 
    Chesebro B, Wehrly K. 1979. Identification of a non-H-2 gene (Rfv-3) influencing recovery from viremia and leukemia induced by Friend virus complex. PNAS 76:425–29
    [Google Scholar]
  47. 47. 
    Hasenkrug KJ, Valenzuela A, Letts VA, Nishio J, Chesebro B, Frankel WN 1995. Chromosome mapping of Rfv3, a host resistance gene to Friend murine retrovirus. J. Virol. 69:2617–20
    [Google Scholar]
  48. 48. 
    Super HJ, Hasenkrug KJ, Simmons S, Brooks DM, Konzek R et al. 1999. Fine mapping of the friend retrovirus resistance gene, Rfv3, on mouse chromosome 15. J. Virol. 73:7848–52
    [Google Scholar]
  49. 49. 
    Miyazawa M, Tsuji-Kawahara S, Kanari Y 2008. Host genetic factors that control immune responses to retrovirus infections. Vaccine 26:2981–96
    [Google Scholar]
  50. 50. 
    Santiago ML, Montano M, Benitez R, Messer RJ, Yonemoto W et al. 2008. Apobec3 encodes Rfv3, a gene influencing neutralizing antibody control of retrovirus infection. Science 321:1343–46
    [Google Scholar]
  51. 51. 
    Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I et al. 2002. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79:285–96
    [Google Scholar]
  52. 52. 
    Stavrou S, Ross SR. 2015. APOBEC3 proteins in viral immunity. J. Immunol. 195:4565–70
    [Google Scholar]
  53. 53. 
    Case LK, Petell L, Yurkovetskiy L, Purdy A, Savage KJ, Golovkina TV 2008. Replication of beta- and gammaretroviruses is restricted in I/LnJ mice via the same genetic mechanism. J. Virol. 82:1438–47
    [Google Scholar]
  54. 54. 
    Purdy A, Case L, Duvall M, Overstrom-Coleman M, Monnier N et al. 2003. Unique resistance of I/LnJ mice to a retrovirus is due to sustained interferon γ-dependent production of virus-neutralizing antibodies. J. Exp. Med. 197:233–43
    [Google Scholar]
  55. 55. 
    Case LK, Purdy A, Golovkina TV 2005. Molecular and cellular basis of the retrovirus resistance in I/LnJ mice. J. Immunol. 175:7543–49
    [Google Scholar]
  56. 56. 
    Golovkina TV. 2000. A novel mechanism of resistance to mouse mammary tumor virus infection. J. Virol. 74:2752–59
    [Google Scholar]
  57. 57. 
    Kane M, Case LK, Wang C, Yurkovetskiy L, Dikiy S, Golovkina TV 2011. Innate immune sensing of retroviral infection via Toll-like receptor 7 occurs upon viral entry. Immunity 35:135–45
    [Google Scholar]
  58. 58. 
    Denzin LK, Khan AA, Virdis F, Wilks J, Kane M et al. 2017. Neutralizing antibody responses to viral infections are linked to the non-classical MHC class II gene H2-Ob. Immunity 47:310–22
    [Google Scholar]
  59. 59. 
    Karlsson L, Surh CD, Sprent J, Peterson PA 1991. A novel class II MHC molecule with unusual tissue distribution. Nature 351:485–88
    [Google Scholar]
  60. 60. 
    Denzin LK, Sant'Angelo DB, Hammond C, Surman MJ, Cresswell P 1997. Negative regulation by HLA-DO of MHC class II-restricted antigen processing. Science 278:106–9
    [Google Scholar]
  61. 61. 
    Denzin LK. 2013. Inhibition of HLA-DM mediated MHC class II peptide loading by HLA-DO promotes self tolerance. Front. Immunol. 4:465
    [Google Scholar]
  62. 62. 
    Mellins ED, Stern LJ. 2014. HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr. Opin. Immunol. 26:115–22
    [Google Scholar]
  63. 63. 
    Blum JS, Wearsch PA, Cresswell P 2013. Pathways of antigen processing. Annu. Rev. Immunol. 31:443–73
    [Google Scholar]
  64. 64. 
    Guce AI, Mortimer SE, Yoon T, Painter CA, Jiang W et al. 2013. HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive mechanism. Nat. Struct. Mol. Biol. 20:90–98
    [Google Scholar]
  65. 65. 
    Oldstone MB, Dixon FJ, Mitchell GF, McDevitt HO 1973. Histocompatibility-linked genetic control of disease susceptibility: murine lymphocytic choriomeningitis virus infection. J. Exp. Med. 137:1201–12
    [Google Scholar]
  66. 66. 
    Cespedes IS, Toka FN, Schollenberger A, Gierynska M, Niemialtowski M 2001. Pathogenesis of mousepox in H-2d mice: evidence for MHC class I-restricted CD8+ and MHC class II-restricted CD4+ CTL antiviral activity in the lymph nodes, spleen and skin, but not in the conjunctivae. Microbes Infect 3:1063–72
    [Google Scholar]
  67. 67. 
    Clatch RJ, Melvold RW, Miller SD, Lipton HL 1985. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease in mice is influenced by the H-2D region: correlation with TEMV-specific delayed-type hypersensitivity. J. Immunol. 135:1408–14
    [Google Scholar]
  68. 68. 
    Xie X, Dighe A, Clark P, Sabastian P, Buss S, Brown MG 2007. Deficient major histocompatibility complex-linked innate murine cytomegalovirus immunity in MA/My.L-H2b mice and viral downregulation of H-2k class I proteins. J. Virol. 81:229–36
    [Google Scholar]
  69. 69. 
    Chalmer JE, Mackenzie JS, Stanley NF 1977. Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse. J. Gen. Virol. 37:107–14
    [Google Scholar]
  70. 70. 
    Bieniasz PD. 2004. Intrinsic immunity: a front-line defense against viral attack. Nat. Immunol. 5:1109–15
    [Google Scholar]
  71. 71. 
    Malim MH, Bieniasz PD. 2012. HIV restriction factors and mechanisms of evasion. Cold Spring Harb. Perspect. Med. 2:a006940
    [Google Scholar]
  72. 72. 
    Blanco-Melo D, Venkatesh S, Bieniasz PD 2012. Intrinsic cellular defenses against human immunodeficiency viruses. Immunity 37:399–411
    [Google Scholar]
  73. 73. 
    Lindenmann J, Lane CA, Hobson D 1963. The resistance of A2G mice to myxoviruses. J. Immunol. 90:942–51
    [Google Scholar]
  74. 74. 
    Haller O, Arnheiter H, Gresser I, Lindenmann J 1979. Genetically determined, interferon-dependent resistance to influenza virus in mice. J. Exp. Med. 149:601–12
    [Google Scholar]
  75. 75. 
    Lindenmann J. 1978. Inborn resistance of mice to myxoviruses: Macrophages express phenotype in vitro. J. Exp. Med. 147:531–40
    [Google Scholar]
  76. 76. 
    Fiske RA, Klein PA. 1975. Effect of immunosuppression on the genetic resistance of A2G mice to neurovirulent influenza virus. Infect. Immun. 11:576–87
    [Google Scholar]
  77. 77. 
    Horisberger MA, Staeheli P, Haller O 1983. Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus. PNAS 80:1910–14
    [Google Scholar]
  78. 78. 
    Staeheli P, Colonno RJ, Cheng YS 1983. Different mRNAs induced by interferon in cells from inbred mouse strains A/J and A2G. J. Virol. 47:563–67
    [Google Scholar]
  79. 79. 
    Staeheli P, Pravtcheva D, Lundin LG, Acklin M, Ruddle F et al. 1986. Interferon-regulated influenza virus resistance gene Mx is localized on mouse chromosome 16. J. Virol. 58:967–69
    [Google Scholar]
  80. 80. 
    Staeheli P, Grob R, Meier E, Sutcliffe JG, Haller O 1988. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol. Cell. Biol. 8:4518–23
    [Google Scholar]
  81. 81. 
    Jin HK, Takada A, Kon Y, Haller O, Watanabe T 1999. Identification of the murine Mx2 gene: Interferon-induced expression of the Mx2 protein from the feral mouse gene confers resistance to vesicular stomatitis virus. J. Virol. 73:4925–30
    [Google Scholar]
  82. 82. 
    Haller O, Staeheli P, Schwemmle M, Kochs G 2015. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol 23:154–63
    [Google Scholar]
  83. 83. 
    Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T et al. 2013. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502:563–66
    [Google Scholar]
  84. 84. 
    Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC et al. 2013. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–62
    [Google Scholar]
  85. 85. 
    Schilling M, Bulli L, Weigang S, Graf L, Naumann S et al. 2018. Human MxB protein is a pan-herpesvirus restriction factor. J. Virol. 92:e01056–18
    [Google Scholar]
  86. 86. 
    Liu Z, Pan Q, Ding S, Qian J, Xu F et al. 2013. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 14:398–410
    [Google Scholar]
  87. 87. 
    Crameri M, Bauer M, Caduff N, Walker R, Steiner F et al. 2018. MxB is an interferon-induced restriction factor of human herpesviruses. Nat. Commun. 9:1980
    [Google Scholar]
  88. 88. 
    Lynch CJ, Hughes TP. 1936. The inheritance of susceptibility to yellow fever encephalitis in mice. Genetics 21:104–12
    [Google Scholar]
  89. 89. 
    Green MC. 1989. Catalog of mutant genes and polymorphic loci. Genetic Variants and Strains of the Laboratory Mouse MF Lyon, AG Searle 12–403 New York: Oxford Univ. Press
    [Google Scholar]
  90. 90. 
    Sangster MY, Heliams DB, MacKenzie JS, Shellam GR 1993. Genetic studies of flavivirus resistance in inbred strains derived from wild mice: evidence for a new resistance allele at the flavivirus resistance locus (Flv). J. Virol. 67:340–47
    [Google Scholar]
  91. 91. 
    Sangster MY, Shellam GR. 1986. Genetically controlled resistance to flaviviruses within the house mouse complex of species. Curr. Top. Microbiol. Immunol. 127:313–18
    [Google Scholar]
  92. 92. 
    Webster LT, Clow AD. 1936. Experimental encephalitis (St. Louis type) in mice with high inborn resistance: a chronic subclinical infection. J. Exp. Med. 63:827–45
    [Google Scholar]
  93. 93. 
    Goodman GT, Koprowski H. 1962. Study of the mechanism of innate resistance to virus infection. J. Cell Comp. Physiol. 59:333–73
    [Google Scholar]
  94. 94. 
    Brinton MA, Arnheiter H, Haller O 1982. Interferon independence of genetically controlled resistance to flaviviruses. Infect. Immun. 36:284–88
    [Google Scholar]
  95. 95. 
    Sangster MY, Urosevic N, Mansfield JP, Mackenzie JS, Shellam GR 1994. Mapping the Flv locus controlling resistance to flaviviruses on mouse chromosome 5. J. Virol. 68:448–52
    [Google Scholar]
  96. 96. 
    Urosevic N, Mansfield JP, Mackenzie JS, Shellam GR 1995. Low resolution mapping around the flavivirus resistance locus (Flv) on mouse chromosome 5. Mamm. Genome 6:454–58
    [Google Scholar]
  97. 97. 
    Perelygin AA, Scherbik SV, Zhulin IB, Stockman BM, Li Y, Brinton MA 2002. Positional cloning of the murine flavivirus resistance gene. PNAS 99:9322–27
    [Google Scholar]
  98. 98. 
    Mashimo T, Lucas M, Simon-Chazottes D, Frenkiel MP, Montagutelli X et al. 2002. A nonsense mutation in the gene encoding 2′-5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. PNAS 99:11311–16
    [Google Scholar]
  99. 99. 
    Scherbik SV, Kluetzman K, Perelygin AA, Brinton MA 2007. Knock-in of the Oas1br allele into a flavivirus-induced disease susceptible mouse generates the resistant phenotype. Virology 368:232–37
    [Google Scholar]
  100. 100. 
    Mashimo T, Simon-Chazottes D, Guenet JL 2008. Innate resistance to flavivirus infections and the functions of 2′-5′ oligoadenylate synthetases. Curr. Top. Microbiol. Immunol. 321:85–100
    [Google Scholar]
  101. 101. 
    Scherbik SV, Paranjape JM, Stockman BM, Silverman RH, Brinton MA 2006. RNase L plays a role in the antiviral response to West Nile virus. J. Virol. 80:2987–99
    [Google Scholar]
  102. 102. 
    Rios JJ, Fleming JG, Bryant UK, Carter CN, Huber JC et al. 2010. OAS1 polymorphisms are associated with susceptibility to West Nile encephalitis in horses. PLOS ONE 5:e10537
    [Google Scholar]
  103. 103. 
    Lim JK, Lisco A, McDermott DH, Huynh L, Ward JM et al. 2009. Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLOS Pathog 5:e1000321
    [Google Scholar]
  104. 104. 
    Li CZ, Kato N, Chang JH, Muroyama R, Shao RX et al. 2009. Polymorphism of OAS-1 determines liver fibrosis progression in hepatitis C by reduced ability to inhibit viral replication. Liver Int 29:1413–21
    [Google Scholar]
  105. 105. 
    Garcia-Alvarez M, Berenguer J, Jimenez-Sousa MA, Pineda-Tenor D, Aldamiz-Echevarria T et al. 2017. Mx1, OAS1 and OAS2 polymorphisms are associated with the severity of liver disease in HIV/HCV-coinfected patients: a cross-sectional study. Sci. Rep 7:41516
    [Google Scholar]
  106. 106. 
    Suzuki S. 1975. FV-4: a new gene affecting the splenomegaly induction by Friend leukemia virus. Jpn. J. Exp. Med. 45:473–78
    [Google Scholar]
  107. 107. 
    Ikeda H, Odaka T. 1983. Cellular expression of murine leukemia virus gp70-related antigen on thymocytes of uninfected mice correlates with Fv-4 gene-controlled resistance to Friend leukemia virus infection. Virology 128:127–39
    [Google Scholar]
  108. 108. 
    Ikeda H, Sugimura H. 1989. Fv-4 resistance gene: a truncated endogenous murine leukemia virus with ecotropic interference properties. J. Virol. 63:5405–12
    [Google Scholar]
  109. 109. 
    Johnson WE. 2015. Endogenous retroviruses in the genomics era. Annu. Rev. Virol. 2:135–59
    [Google Scholar]
  110. 110. 
    Blanco-Melo D, Gifford RJ, Bieniasz PD 2017. Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors. eLife 6:e22519
    [Google Scholar]
  111. 111. 
    Lilly F. 1967. Susceptibility to two strains of Friend leukemia virus in mice. Science 155:461–62
    [Google Scholar]
  112. 112. 
    Pincus T, Hartley JW, Rowe WP 1971. A major genetic locus affecting resistance to infection with murine leukemia viruses. I. Tissue culture studies of naturally occurring viruses. J. Exp. Med. 133:1219–33
    [Google Scholar]
  113. 113. 
    Hartley JW, Rowe WP, Huebner RJ 1970. Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures. J. Virol. 5:221–25
    [Google Scholar]
  114. 114. 
    Lilly F. 1970. Fv-2: identification and location of a second gene governing the spleen focus response to Friend leukemia virus in mice. J. Natl. Cancer Inst. 45:163–69
    [Google Scholar]
  115. 115. 
    Rowe WP, Humphrey JB, Lilly F 1973. A major genetic locus affecting resistance to infection with murine leukemia viruses. 3. Assignment of the Fv-1 locus to linkage group 8 of the mouse. J. Exp. Med. 137:850–53
    [Google Scholar]
  116. 116. 
    DesGroseillers L, Jolicoeur P. 1983. Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses. J. Virol. 48:685–96
    [Google Scholar]
  117. 117. 
    Boone LR, Innes CL, Heitman CK 1990. Abrogation of Fv-1 restriction by genome-deficient virions produced by a retrovirus packaging cell line. J. Virol. 64:3376–81
    [Google Scholar]
  118. 118. 
    Bassin RH, Duran-Troise G, Gerwin BI, Rein A 1978. Abrogation of Fv-1b restriction with murine leukemia viruses inactivated by heat or by gamma irradiation. J. Virol. 26:306–15
    [Google Scholar]
  119. 119. 
    Best S, Le Tissier P, Towers G, Stoye JP 1996. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382:826–29
    [Google Scholar]
  120. 120. 
    Young GR, Yap MW, Michaux JR, Steppan SJ, Stoye JP 2018. Evolutionary journey of the retroviral restriction gene Fv1. PNAS 115:10130–35
    [Google Scholar]
  121. 121. 
    Yap MW, Colbeck E, Ellis SA, Stoye JP 2014. Evolution of the retroviral restriction gene Fv1: inhibition of non-MLV retroviruses. PLOS Pathog 10:e1003968
    [Google Scholar]
  122. 122. 
    Bieniasz PD. 2003. Restriction factors: a defense against retroviral infection. Trends Microbiol 11:286–91
    [Google Scholar]
  123. 123. 
    Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J 2004. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427:848–53
    [Google Scholar]
  124. 124. 
    Jia X, Zhao Q, Xiong Y 2015. HIV suppression by host restriction factors and viral immune evasion. Curr. Opin. Struct. Biol. 31:106–14
    [Google Scholar]
  125. 125. 
    Rasmussen AL, Okumura A, Ferris MT, Green R, Feldmann F et al. 2014. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science 346:987–91
    [Google Scholar]
  126. 126. 
    Savant S, La Porta S, Budnik A, Busch K, Hu J et al. 2015. The orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in tip and stalk cells. Cell Rep 12:1761–73
    [Google Scholar]
  127. 127. 
    Ghosh CC, David S, Zhang R, Berghelli A, Milam K et al. 2016. Gene control of tyrosine kinase TIE2 and vascular manifestations of infections. PNAS 113:2472–77
    [Google Scholar]
  128. 128. 
    Higgins SJ, De Ceunynck K, Kellum JA, Chen X, Gu X et al. 2018. Tie2 protects the vasculature against thrombus formation in systemic inflammation. J. Clin. Invest. 128:1471–84
    [Google Scholar]
  129. 129. 
    Vikkula M, Boon LM, Carraway KL 3rd, Calvert JT, Diamonti AJ et al. 1996. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87:1181–90
    [Google Scholar]
  130. 130. 
    Zheng Q, Du J, Zhang Z, Xu J, Fu L et al. 2013. Association study between of Tie2/angiopoietin-2 and VEGF/KDR pathway gene polymorphisms and vascular malformations. Gene 523:195–98
    [Google Scholar]
  131. 131. 
    Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY et al. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–25
    [Google Scholar]
  132. 132. 
    Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF et al. 2003. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361:1767–72
    [Google Scholar]
  133. 133. 
    Ip WK, Chan KH, Law HK, Tso GH, Kong EK et al. 2005. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J. Infect. Dis. 191:1697–704
    [Google Scholar]
  134. 134. 
    Gralinski LE, Ferris MT, Aylor DL, Whitmore AC, Green R et al. 2015. Genome wide identification of SARS-CoV susceptibility loci using the Collaborative Cross. PLOS Genet 11:e1005504
    [Google Scholar]
  135. 135. 
    Ozato K, Shin DM, Chang TH, Morse HC 3rd 2008. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 8:849–60
    [Google Scholar]
  136. 136. 
    Gralinski LE, Menachery VD, Morgan AP, Totura AL, Beall A et al. 2017. Allelic variation in the Toll-like receptor adaptor protein Ticam2 contributes to SARS-coronavirus pathogenesis in mice. G3 Genes Genomes Genet 7:1653–63
    [Google Scholar]
  137. 137. 
    Seya T, Oshiumi H, Sasai M, Akazawa T, Matsumoto M 2005. TICAM-1 and TICAM-2: toll-like receptor adapters that participate in induction of type 1 interferons. Int. J. Biochem. Cell Biol. 37:524–29
    [Google Scholar]
  138. 138. 
    Pavlovic J, Haller O, Staeheli P 1992. Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle. J. Virol. 66:2564–69
    [Google Scholar]
  139. 139. 
    Golovkina TV, Chervonsky AV, Dudley JP, Ross SR 1992. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69:637–45
    [Google Scholar]
  140. 140. 
    Held W, Waanders G, Shakhov AN, Scarpellino L, Acha-Orbea H, MacDonald HR 1993. Superantigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission. Cell 74:529–40
    [Google Scholar]
  141. 141. 
    Fang M, Lanier LL, Sigal LJ 2008. A role for NKG2D in NK cell-mediated resistance to poxvirus disease. PLOS Pathog 4:e30
    [Google Scholar]
  142. 142. 
    Fang M, Orr MT, Spee P, Egebjerg T, Lanier LL, Sigal LJ 2011. CD94 is essential for NK cell-mediated resistance to a lethal viral disease. Immunity 34:579–89
    [Google Scholar]
  143. 143. 
    Stier MT, Spindler KR. 2012. Polymorphisms in Ly6 genes in Msq1 encoding susceptibility to mouse adenovirus type 1. Mamm. Genome 23:250–58
    [Google Scholar]
  144. 144. 
    Zinkernagel RM, Pfau CJ, Hengartner H, Althage A 1985. Susceptibility to murine lymphocytic choriomeningitis maps to class I MHC genes—a model for MHC/disease associations. Nature 316:814–17
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015544
Loading
/content/journals/10.1146/annurev-virology-092818-015544
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error