1932

Abstract

RNA turnover and processing in bacteria are governed by the structurally divergent but functionally convergent RNA degradosome, and the mechanisms have been researched extensively in Gram-positive and Gram-negative bacteria. An emerging research field focuses on how bacterial viruses hijack all aspects of the bacterial metabolism, including the host machinery of RNA metabolism. This review addresses research on phage-based influence on RNA turnover, which can act either indirectly or via dedicated effector molecules that target degradosome assemblies. The structural divergence of host RNA turnover mechanisms likely explains the limited number of phage proteins directly targeting these specialized, host-specific complexes. The unique and nonconserved structure of DIP, a phage-encoded inhibitor of the degradosome, illustrates this hypothesis. However, the natural occurrence of phage-encoded mechanisms regulating RNA turnover indicates a clear evolutionary benefit for this mode of host manipulation. Further exploration of the viral dark matter of unknown phage proteins may reveal more structurally novel interference strategies that, in turn, could be exploited for biotechnological applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015644
2019-09-29
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015644.html?itemId=/content/journals/10.1146/annurev-virology-092818-015644&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aït-Bara S, Carpousis AJ. 2015. RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Mol. Microbiol. 97:61021–35
    [Google Scholar]
  2. 2. 
    Deutscher MP. 2006. Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:2659–66
    [Google Scholar]
  3. 3. 
    Okamoto K, Sugino Y, Nomura M 1962. Synthesis and turnover of phage messenger RNA in E. coli infected with bacteriophage T4 in the presence of chloromycetin. J. Mol. Biol. 5:5527–34
    [Google Scholar]
  4. 4. 
    Klimuk E, Akulenko N, Makarova KS, Ceyssens P, Volchenkov I et al. 2013. Host RNA polymerase inhibitors encoded by ϕKMV-like phages of Pseudomonas. Virology 436:167–74
    [Google Scholar]
  5. 5. 
    Yang H, Ma Y, Wang Y, Yang H, Shen W, Chen X 2014. Transcription regulation mechanisms of bacteriophages. Bioengineered 5:5300–4
    [Google Scholar]
  6. 6. 
    Lemire S, Yehl KM, Lu TK 2018. Phage-based applications in synthetic biology. Annu. Rev. Virol. 5:453–76
    [Google Scholar]
  7. 7. 
    Ceyssens P-J, Minakhin L, Van den Bossche A, Yakunina M, Klimuk E et al. 2014. Development of giant bacteriophage ϕKZ is independent of the host transcription apparatus. J. Virol. 88:1810501–10
    [Google Scholar]
  8. 8. 
    Lavysh D, Sokolova M, Slashcheva M, Severinov K 2017. Transcription profiling of Bacillus subtilis cells infected with AR9, a giant phage encoding two multisubunit RNA polymerases. mBio 8:1e02041–16
    [Google Scholar]
  9. 9. 
    Yakunina M, Artamonova T, Borukhov S, Makarova KS, Severinov K, Minakhin L 2015. A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage. Nucleic Acids Res 43:2110411–20
    [Google Scholar]
  10. 10. 
    Forrest D. 2018. Unusual relatives of the multisubunit RNA polymerase. Biochem. Soc. Trans. 47:1219–28
    [Google Scholar]
  11. 11. 
    Lenneman BR, Rothman-Denes LB. 2015. Structural and biochemical investigation of bacteriophage N4-encoded RNA polymerases. Biomolecules 5:647–67
    [Google Scholar]
  12. 12. 
    Van den Bossche A, Hardwick SW, Ceyssens PJ, Hendrix H, Voet M et al. 2016. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome. eLife 5:e16413
    [Google Scholar]
  13. 13. 
    Dendooven T, Van den Bossche A, Hendrix H, Ceyssens PJ, Voet M et al. 2017. Viral interference of the bacterial RNA metabolism machinery. RNA Biol 14:16–10
    [Google Scholar]
  14. 14. 
    Dendooven T, Luisi BF. 2017. RNA search engines empower the bacterial intranet. Biochem. Soc. Trans. 45:987–97
    [Google Scholar]
  15. 15. 
    Storz G, Vogel J, Wassarman KM 2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43:6880–91
    [Google Scholar]
  16. 16. 
    Dutta T, Srivastava S. 2018. Small RNA-mediated regulation in bacteria: a growing palette of diverse mechanisms. Gene 656:60–72
    [Google Scholar]
  17. 17. 
    Bandyra KJ, Luisi BF. 2018. RNase E and the high-fidelity orchestration of RNA metabolism. Microbiol. Spectr. 6:2RWR–0008-2017
    [Google Scholar]
  18. 18. 
    Chao Y, Li L, Girodat D, Förstner KU, Said N et al. 2017. In vivo cleavage map illuminates the central role of RNase E in coding and non-coding RNA pathways. Mol. Cell 65:139–51
    [Google Scholar]
  19. 19. 
    Callaghan AJ, Marcaida MJ, Stead JA, McDowall KJ, Scott WG, Luisi BF 2005. Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature 437:70621187–91
    [Google Scholar]
  20. 20. 
    Callaghan AJ, Aurikko JP, Ilag LL, Grossmann JG, Chandran V et al. 2004. Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J. Mol. Biol. 340:5965–79
    [Google Scholar]
  21. 21. 
    Bruce HA, Du D, Matak-Vinkovic D, Bandyra KJ, Broadhurst RW et al. 2018. Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes. Nucleic Acids Res 46:1387–402
    [Google Scholar]
  22. 22. 
    Khemici V, Linder P. 2018. RNA helicases in RNA decay. Biochem. Soc. Trans. 46:163–72
    [Google Scholar]
  23. 23. 
    Bernstein JA, Lin P-H, Cohen SN, Lin-Chao S 2004. Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. PNAS 101:92758–63
    [Google Scholar]
  24. 24. 
    Nurmohamed S, Vaidialingam B, Callaghan AJ, Luisi BF 2009. Crystal structure of Escherichia coli polynucleotide phosphorylase core bound to RNase E, RNA and manganese: implications for catalytic mechanism and RNA degradosome assembly. J. Mol. Biol. 389:117–33
    [Google Scholar]
  25. 25. 
    Bandyra KJ, Sinha D, Syrjanen J, Luisi BF, De Lay NR 2016. The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes. RNA 22:3360–72
    [Google Scholar]
  26. 26. 
    Cameron TA, Matz LM, De Lay NR 2018. Polynucleotide phosphorylase: not merely an RNase but a pivotal post-transcriptional regulator. PLOS Genet 14:10e1007654
    [Google Scholar]
  27. 27. 
    Massé E, Escorcia FE, Gottesman S 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:192374–83
    [Google Scholar]
  28. 28. 
    Morita T, Maki K, Aiba H 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19:182176–86
    [Google Scholar]
  29. 29. 
    Gonzalez GM, Durica-Mitic S, Hardwick SW, Moncrieffe MC, Resch M et al. 2017. Structural insights into RapZ-mediated regulation of bacterial amino-sugar metabolism. Nucleic Acids Res 45:1810845–60
    [Google Scholar]
  30. 30. 
    Gao J, Lee K, Zhao M, Qiu J, Zhan X et al. 2006. Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol. Microbiol. 61:2394–406
    [Google Scholar]
  31. 31. 
    Górna MW, Pietras Z, Tsai YIC, Callaghan AJ, Hernández H et al. 2010. The regulatory protein RraA modulates RNA-binding and helicase activities of the E. coli RNA degradosome. RNA 16:3553–62
    [Google Scholar]
  32. 32. 
    Li Z, Pandit S, Deutscher MP 1999. RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J 18:102878–85
    [Google Scholar]
  33. 33. 
    Tock MR, Walsh AP, Carroll G, McDowall KJ 2000. The CafA protein required for the 5′-maturation of 16 S rRNA is a 5′-end-dependent ribonuclease that has context-dependent broad sequence specificity. J. Biol. Chem. 275:128726–32
    [Google Scholar]
  34. 34. 
    Lee K, Bernstein J, Cohen S 2002. RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol. Microbiol 43:61445–56
    [Google Scholar]
  35. 35. 
    Mathy N, Bénard L, Pellegrini O, Daou R, Wen T, Condon C 2007. 5′-to-3′ exoribonuclease activity in Bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell 129:4681–92
    [Google Scholar]
  36. 36. 
    Shahbabian K, Jamalli A, Zig L, Putzer H 2009. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 28:223523–33
    [Google Scholar]
  37. 37. 
    Redder P. 2018. Molecular and genetic interactions of the RNA degradation machineries in Firmicute bacteria. WIREs RNA 9:2e1460
    [Google Scholar]
  38. 38. 
    Redko Y, Aubert S, Stachowicz A, Lenormand P, Namane A et al. 2013. A minimal bacterial RNase J-based degradosome is associated with translating ribosomes. Nucleic Acids Res 41:1288–301
    [Google Scholar]
  39. 39. 
    Tsai YC, Du D, Domínguez-Malfavón L, Dimastrogiovanni D, Cross J et al. 2012. Recognition of the 70S ribosome and polysome by the RNA degradosome in Escherichia coli. Nucleic Acids Res 40:2010417–31
    [Google Scholar]
  40. 40. 
    Hardwick SW, Chan VSY, Broadhurst RW, Luisi BF 2011. An RNA degradosome assembly in Caulobacter crescentus. Nucleic Acids Res 39:41449–59
    [Google Scholar]
  41. 41. 
    Bayas CA, Wang J, Lee MK, Schrader JM, Shapiro L, Moerner WE 2018. Spatial organization and dynamics of RNase E and ribosomes in Caulobacter crescentus. PNAS 115:16E3712–21
    [Google Scholar]
  42. 42. 
    Strahl H, Turlan C, Khalid S, Bond PJ, Kebalo JM et al. 2015. Membrane recognition and dynamics of the RNA degradosome. PLOS Genet 11:2e1004961
    [Google Scholar]
  43. 43. 
    Moffitt JR, Pandey S, Boettiger AN, Wang S, Zhuang X 2016. Spatial organization shapes the turnover of a bacterial transcriptome. eLife 5:e13065
    [Google Scholar]
  44. 44. 
    Garrey SM, Mackie GA. 2011. Roles of the 5′-phosphate sensor domain in RNase E. Mol. Microbiol. 80:61613–24
    [Google Scholar]
  45. 45. 
    Clarke JE, Kime L, Romero AD, McDowall KJ 2014. Direct entry by RNase E is a major pathway for the degradation and processing of RNA in Escherichia coli. Nucleic Acids Res 42:1811733–51
    [Google Scholar]
  46. 46. 
    Stead MB, Marshburn S, Mohanty BK, Mitra J, Castillo LP et al. 2011. Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays. Nucleic Acids Res 39:83188–203
    [Google Scholar]
  47. 47. 
    Tamura M, Lee K, Miller CA, Moore CJ, Shirako Y et al. 2006. RNase E maintenance of proper FtsZ/FtsA ratio required for nonfilamentous growth of Escherichia coli cells but not for colony-forming ability. J. Bacteriol. 188:145145–52
    [Google Scholar]
  48. 48. 
    Takada A, Nagai K, Wachi M 2005. A decreased level of FtsZ is responsible for inviability of RNase E-deficient cells. Genes Cells 10:7733–41
    [Google Scholar]
  49. 49. 
    Miyakoshi M, Matera G, Maki K, Sone Y, Vogel J 2018. Functional expansion of a TCA cycle operon mRNA by a 3′ end-derived small RNA. Nucleic Acids Res 47:42075–88
    [Google Scholar]
  50. 50. 
    De Mets F, Van Melderen L, Gottesman S 2018. Regulation of acetate metabolism and coordination with the TCA cycle via a processed small RNA. PNAS 116:1043–52
    [Google Scholar]
  51. 51. 
    Koskella B, Brockhurst MA. 2014. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38:916–31
    [Google Scholar]
  52. 52. 
    Scanlan PD, Hall AR, Blackshields G, Friman V, Davis MRJr. et al. 2015. Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol. Biol. Evol. 32:61425–35
    [Google Scholar]
  53. 53. 
    Roucourt B, Lavigne R. 2009. The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environ. Microbiol. 11:2789–805
    [Google Scholar]
  54. 54. 
    Gerstmans H, Rodr L, Lavigne R, Briers Y 2016. From endolysins to Artilysin®s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem. Soc. Trans. 44:123–28
    [Google Scholar]
  55. 55. 
    Pirnay J, Verbeken G, Ceyssens P, Huys I, De Vos D et al. 2018. The magistral phage. Viruses 10:64
    [Google Scholar]
  56. 56. 
    Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W et al. 2014. Engineered endolysin-based “Artilysins” to combat multidrug-resistant Gram-negative pathogens. mBio 5:4e01379–14
    [Google Scholar]
  57. 57. 
    Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay J et al. 2014. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob. Agents Chemother 58:73774–84
    [Google Scholar]
  58. 58. 
    Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJ et al. 2018. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 16:760–73
    [Google Scholar]
  59. 59. 
    Rousset F, Cui L, Siouve E, Becavin C, Depardieu F, Bikard D 2018. Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLOS Genet 14:11e1007749
    [Google Scholar]
  60. 60. 
    Conter A, Boucché J-P, Dassain M 1996. Identification of a new inhibitor of essential division gene ftsZ as the kil gene of defective prophage Rac. J. Bacteriol. 178:175100–4
    [Google Scholar]
  61. 61. 
    Sho TY, Rothman-Denes LB. 2011. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader. Mol. Microbiol. 79:1325–38
    [Google Scholar]
  62. 62. 
    De Smet J, Hendrix H, Blasdel BG, Danis-Wlodarczyk K, Lavigne R 2017. Pseudomonas predators: understanding and exploiting phage-host interactions. Nat. Rev. Microbiol. 15:9517–30
    [Google Scholar]
  63. 63. 
    Bandyra KJ, Luisi BF. 2013. Licensing and due process in the turnover of bacterial RNA. RNA Biol 10:4627–35
    [Google Scholar]
  64. 64. 
    Chevallereau A, Blasdel BG, De Smet J, Monot M, Zimmermann M et al. 2016. Next-generation “-omics” approaches reveal a massive alteration of host RNA metabolism during bacteriophage infection of Pseudomonas aeruginosa.. PLOS Genet 12:e1006134
    [Google Scholar]
  65. 65. 
    Blasdel BG, Chevallereau A, Monot M, Lavigne R, Debarbieux L 2017. Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera. 1191988–96
  66. 66. 
    Marchand I, Nicholson AW, Dreyfus M 2001. Bacteriophage T7 protein kinase phosphorylates RNase E and stabilizes mRNAs synthesized by T7 RNA polymerase. Mol. Microbiol. 42:3767–76
    [Google Scholar]
  67. 67. 
    Mudd EA, Krisch HM. 1990. Escherichia coil RNase E has a role in the decay of bacteriophage T4 mRNA. Genes Dev 4:873–81
    [Google Scholar]
  68. 68. 
    Ueno H, Yonesaki T. 2004. Phage-induced change in the stability of mRNAs. Virology 329:134–41
    [Google Scholar]
  69. 69. 
    Uzan M. 2009. RNA processing and decay in bacteriophage T4. Prog. Mol. Biol. Transl. Sci. 85:43–89
    [Google Scholar]
  70. 70. 
    Qi D, Alawneh AM, Yonesaki T, Otsuka Y 2015. Rapid degradation of host mRNAs by stimulation of RNase E activity by Srd of bacteriophage T4. Genetics 201:3977–87
    [Google Scholar]
  71. 71. 
    Stazic D, Lindell D, Steglich C 2011. Antisense RNA protects mRNA from RNase E degradation by RNA–RNA duplex formation during phage infection. Nucleic Acids Res 39:114890–99
    [Google Scholar]
  72. 72. 
    Stazic D, Pekarski I, Kopf M, Lindell D, Steglich C 2016. A novel strategy for exploitation of host RNase E activity by a marine cyanophage. Genetics 203:1149–59
    [Google Scholar]
  73. 73. 
    Klovins J, Van Duin J, Olsthoorn RCL 1997. Rescue of the RNA phage genome from RNase III cleavage. Nucleic Acids Res 25:214201–8
    [Google Scholar]
  74. 74. 
    Krylov V, Pleteneva E, Bourkaltseva M, Shaburova O, Volckaert G et al. 2003. Myoviridae bacteriophages of Pseudomonas aeruginosa: a long and complex evolutionary pathway. Res. Microbiol. 154:4269–75
    [Google Scholar]
  75. 75. 
    Zhou L, Zhao M, Wolf RZ, Graham DE, Georgiou G 2009. Transcriptional regulation of the Escherichia coli gene rraB, encoding a protein inhibitor of RNase E. J. Bacteriol. 191:216665–74
    [Google Scholar]
  76. 76. 
    Marcaida MJ, DePristo MA, Chandran V, Carpousis AJ, Luisi BF 2006. The RNA degradosome: life in the fast lane of adaptive molecular evolution. Trends Biochem. Sci. 31:7359–65
    [Google Scholar]
  77. 77. 
    DePristo MA, Weinreich DM, Hartl DL 2005. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat. Rev. Genet. 6:9678–87
    [Google Scholar]
  78. 78. 
    Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW et al. 2002. Evolutionary rate heterogeneity in proteins with long disordered regions. J. Mol. Evol. 55:1104–10
    [Google Scholar]
  79. 79. 
    Aït-Bara S, Carpousis AJ, Quentin Y 2015. RNase E in the γ-Proteobacteria: conservation of intrinsically disordered noncatalytic region and molecular evolution of microdomains. Mol. Genet. Genom. 290:3847–62
    [Google Scholar]
  80. 80. 
    Werner F. 2008. Structural evolution of multisubunit RNA polymerases. Trends Microbiol 16:6247–50
    [Google Scholar]
  81. 81. 
    Murakami KS. 2015. Structural biology of bacterial RNA polymerase. Biomolecules 5:848–64
    [Google Scholar]
  82. 82. 
    Twort FW. 1915. An investigation on the nature of ultra-microscopic viruses. Lancet 186:48141241–43
    [Google Scholar]
  83. 83. 
    Keen EC. 2016. A century of phage research: bacteriophages and the shaping of modern biology. Bioessays 37:16–9
    [Google Scholar]
  84. 84. 
    Fokine A, Battisti AJ, Bowman VD, Efimov AV, Kurochkina LP et al. 2007. Cryo-EM study of the Pseudomonas bacteriophage φKZ. Structure 15:1099–104
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015644
Loading
/content/journals/10.1146/annurev-virology-092818-015644
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error