1932

Abstract

(CTV) is the most destructive viral pathogen of citrus. During the past century, CTV induced grave epidemics in citrus-growing areas worldwide that have resulted in a loss of more than 100 million trees. At present, the virus continues to threaten citrus production in many different countries. Research on CTV is accompanied by distinctive challenges stemming from the large size of its RNA genome, the narrow host range limited to slow-growing species and relatives, and the complexity of CTV populations. Despite these hurdles, remarkable progress has been made in understanding the CTV-host interactions and in converting the virus into a tool for crop protection and improvement. This review focuses on recent advances that have shed light on the mechanisms underlying CTV infection. Understanding these mechanisms is pivotal for the development of means to control CTV diseases and, ultimately, turn this virus into an ally.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100520-114412
2022-09-29
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/virology/9/1/annurev-virology-100520-114412.html?itemId=/content/journals/10.1146/annurev-virology-100520-114412&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bar-Joseph M, Garnsey SM, Gonsalves D. 1979. The closteroviruses: a distinct group of elongated plant viruses. Adv. Virus Res. 25:93–168
    [Crossref] [Google Scholar]
  2. 2.
    Dolja VV, Karasev AV, Koonin EV. 1994. Molecular biology and evolution of closteroviruses: sophisticated build-up of large RNA genomes. Annu. Rev. Phytopathol. 32:261–85
    [Crossref] [Google Scholar]
  3. 3.
    Dolja VV, Kreuze JF, Valkonen JP. 2006. Comparative and functional genomics of closteroviruses. Virus Res 117:38–51
    [Crossref] [Google Scholar]
  4. 4.
    Agranovsky AA. 1996. Principles of molecular organization, expression, and evolution of closteroviruses: over the barriers. Adv. Virus Res. 47:119–58
    [Crossref] [Google Scholar]
  5. 5.
    Karasev AV. 2000. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathol. 38:293–324
    [Crossref] [Google Scholar]
  6. 6.
    Agranovsky AA. 2016. Closteroviruses: molecular biology, evolution and interactions with cells. Plant Viruses: Evolution and Management R Gaur, N Petrov, B Patil, M Stoyanova 231–52 Singapore: Springer
    [Google Scholar]
  7. 7.
    Schneider H. 1957. The anatomy of tristeza-virus-infected citrus. Int. Organ. Citrus Virol. Conf. Proc. (1957–2010) 1:73–84
    [Google Scholar]
  8. 8.
    Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Peña L. 2008. Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol. Plant Pathol. 9:251–68
    [Crossref] [Google Scholar]
  9. 9.
    Sun YD, Folimonova SY. 2019. The p33 protein of Citrus tristeza virus affects viral pathogenicity by modulating a host immune response. New Phytol 221:2039–53
    [Crossref] [Google Scholar]
  10. 10.
    Sun YD, Folimonova SY. 2022. Location matters: from changing a presumption about the Citrus tristeza virus tissue tropism to understanding the stem pitting disease. New Phytol 233:631–38
    [Crossref] [Google Scholar]
  11. 11.
    Albiach-Martí MR. 2013. The complex genetics of Citrus tristeza virus. Current Issues in Molecular Virology: Viral Genetics and Biotechnological Applications V Romanowski 1–26 London: InTechOpen
    [Google Scholar]
  12. 12.
    Dawson W, Garnsey S, Tatineni S, Folimonova S, Harper S, Gowda S. 2013. Citrus tristeza virus-host interactions. Front. Microbiol. 4:88
    [Crossref] [Google Scholar]
  13. 13.
    Dawson WO, Bar-Joseph M, Garnsey SM, Moreno P. 2015. Citrus tristeza virus: making an ally from an enemy. Annu. Rev. Phytopathol. 53:137–55
    [Crossref] [Google Scholar]
  14. 14.
    Dawson WO, Folimonova SY 2013. Virus-based transient expression vectors for woody crops: a new frontier for vector design and use. Annu. Rev. Phytopathol. 51:321–37
    [Crossref] [Google Scholar]
  15. 15.
    Folimonova SY. 2020. Citrus tristeza virus: A large RNA virus with complex biology turned into a valuable tool for crop protection. PLOS Pathog 16:e1008416
    [Crossref] [Google Scholar]
  16. 16.
    Bar-Joseph M, Harper SJ, Dawson WO. 2021. Citrus tristeza virus (Closteroviridae). Encyclopedia of Virology DH Bamford, M Zuckerman 327–35 Cambridge, MA: Academic. , 4th ed..
    [Google Scholar]
  17. 17.
    Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E et al. 2018. Genomics of the origin and evolution of Citrus. Nature 554:311–16
    [Crossref] [Google Scholar]
  18. 18.
    Talon M, Wu GA, Gmitter FG, Rokhsar DS 2020. The origin of citrus. The Genus Citrus M Talon, M Caruso, FG Gmitter 9–31 Duxford, UK: Woodhead
    [Google Scholar]
  19. 19.
    Liu Q, Zhang S, Mei S, Zhou Y, Wang J et al. 2021. Viromics unveils extraordinary genetic diversity of the family Closteroviridae in wild citrus. PLOS Pathog 17:e1009751
    [Crossref] [Google Scholar]
  20. 20.
    Webber HJ. 1967. History and development of the citrus industry. The Citrus Industry: History, World Distribution, Botany and Varieties, Vol. 1 W Reuther 1–39 Berkeley, CA: Univ. California
    [Google Scholar]
  21. 21.
    Wallace JM. 1978. Virus and virus-like diseases. The Citrus Industry: Crop Protection, Vol. 4 W Reuther, CE Calavan, GE Carman 67–184 Berkeley, CA: Univ. California
    [Google Scholar]
  22. 22.
    Bar-Joseph M, Marcus R, Lee RF 1989. The continuous challenge of citrus tristeza virus control. Annu. Rev. Phytopathol. 27:291–316
    [Crossref] [Google Scholar]
  23. 23.
    Garnsey SM, Gottwald TR, Hilf ME, Matos L, Borbón J. 2000. Emergence and spread of severe strains of citrus tristeza virus isolates in the Dominican Republic. Int. Organ. Citrus Virol. Conf. Proc. (1957–2010) 14:57–68
    [Google Scholar]
  24. 24.
    Gottwald T, Polek M, Riley K. 2002. History, present incidence, and spatial distribution of Citrus tristeza virus in the California Central Valley. Int. Organ. Citrus Virol. Conf. Proc. (1957–2010) 15:83–94
    [Google Scholar]
  25. 25.
    Davino S, Davino M, Sambade A, Guardo M, Caruso A. 2003. The first Citrus tristeza virus outbreak found in a relevant citrus producing area of Sicily, Italy. Plant Dis. 87:314
    [Crossref] [Google Scholar]
  26. 26.
    Marais L. 1994. Citrus tristeza virus and its effect on the southern Africa citrus industry. Citrus Ind 75:58–60
    [Google Scholar]
  27. 27.
    Cook G, Coetzee B, Bester R, Breytenbach JHJ, Steyn C et al. 2020. Citrus tristeza virus isolates of the same genotype differ in stem pitting severity in grapefruit. Plant Dis 104:2362–68
    [Crossref] [Google Scholar]
  28. 28.
    Cook G, Breytenbach JHJ, Steyn C, de Bruyn R, van Vuuren SP et al. 2021. Grapefruit field trial evaluation of Citrus tristeza virus T68-strain sources. Plant Dis 105:361–67
    [Crossref] [Google Scholar]
  29. 29.
    Int. Plant Prot. Conv 2016. ISPM 27. Annex 15. Citrus Tristeza Virus Rome: IPPC
  30. 30.
    Pappu HR, Karasev AV, Anderson EJ, Pappu SS, Hilf ME et al. 1994. Nucleotide sequence and organization of eight 3′ open reading frames of the citrus tristeza closterovirus genome. Virology 199:35–46
    [Crossref] [Google Scholar]
  31. 31.
    Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME et al. 1995. Complete sequence of the Citrus tristeza virus RNA genome. Virology 208:511–20
    [Crossref] [Google Scholar]
  32. 32.
    Kang SH, Atallah OO, Sun YD, Folimonova SY. 2018. Functional diversification upon leader protease domain duplication in the Citrus tristeza virus genome: role of RNA sequences and the encoded proteins. Virology 514:192–202
    [Crossref] [Google Scholar]
  33. 33.
    Hilf ME, Karasev AV, Pappu HR, Gumpf DJ, Niblett CL, Garnsey SM. 1995. Characterization of Citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–82
    [Crossref] [Google Scholar]
  34. 34.
    Karasev AV, Hilf ME, Garnsey SM, Dawson WO. 1997. Transcriptional strategy of closteroviruses: mapping the 5′ termini of the Citrus tristeza virus subgenomic RNAs. J. Virol. 71:6233–36
    [Crossref] [Google Scholar]
  35. 35.
    Tatineni S, Robertson CJ, Garnsey SM, Bar-Joseph M, Gowda S, Dawson WO. 2008. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology 376:297–307
    [Crossref] [Google Scholar]
  36. 36.
    Tatineni S, Robertson CJ, Garnsey SM, Dawson WO. 2011. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. PNAS 108:17366–71
    [Crossref] [Google Scholar]
  37. 37.
    Kang SH, Bak A, Kim OK, Folimonova SY. 2015. Membrane association of a nonconserved viral protein confers virus ability to extend its host range. Virology 482:208–17
    [Crossref] [Google Scholar]
  38. 38.
    Bak A, Folimonova SY. 2015. The conundrum of a unique protein encoded by Citrus tristeza virus that is dispensable for infection of most hosts yet shows characteristics of a viral movement protein. Virology 485:86–95
    [Crossref] [Google Scholar]
  39. 39.
    Kang SH, Dao TNM, Kim OK, Folimonova SY. 2017. Self-interaction of Citrus tristeza virus p33 protein via N-terminal helix. Virus Res 233:29–34
    [Crossref] [Google Scholar]
  40. 40.
    Sun YD, Zhang L, Folimonova SY. 2021. Citrus miraculin-like protein hijacks a viral movement-related p33 protein and induces cellular oxidative stress in defence against Citrus tristeza virus. Plant Biotechnol. J. 19:977–91
    [Crossref] [Google Scholar]
  41. 41.
    Folimonova SY. 2012. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J. Virol. 86:5554–61
    [Crossref] [Google Scholar]
  42. 42.
    Atallah OO, Kang SH, El-Mohtar CA, Shilts T, Bergua M, Folimonova SY. 2016. A 5′-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion. Virology 489:108–15
    [Crossref] [Google Scholar]
  43. 43.
    Bergua M, Zwart MP, El-Mohtar C, Shilts T, Elena SF, Folimonova SY 2014. A viral protein mediates superinfection exclusion at the whole-organism level but is not required for exclusion at the cellular level. J. Virol. 88:11327–38
    [Crossref] [Google Scholar]
  44. 44.
    Shilts T, El-Mohtar C, Dawson WO, Killiny N 2020. Citrus tristeza virus p33 protein is required for efficient transmission by the aphid Aphis (Toxoptera) citricidus (Kirkaldy). Viruses 12:1131–45
    [Crossref] [Google Scholar]
  45. 45.
    Alzhanova DV, Hagiwara Y, Peremyslov VV, Dolja VV. 2000. Genetic analysis of the cell-to-cell movement of beet yellows closterovirus. Virology 268:192–200
    [Crossref] [Google Scholar]
  46. 46.
    Satyanarayana T, Gowda S, Mawassi M, Albiach-Martí MR, Ayllón MA et al. 2000. Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–65
    [Crossref] [Google Scholar]
  47. 47.
    Satyanarayana T, Gowda S, Ayllón MA, Dawson WO. 2004. Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. PNAS 101:799–804
    [Crossref] [Google Scholar]
  48. 48.
    Peremyslov VV, Hagiwara Y, Dolja VV. 1999. HSP70 homolog functions in cell-to-cell movement of a plant virus. PNAS 96:14771–76
    [Crossref] [Google Scholar]
  49. 49.
    Killiny N, Harper SJ, Alfaress S, El Mohtar C, Dawson WO. 2016. Minor coat and heat shock proteins are involved in the binding of Citrus tristeza virus to the foregut of its aphid vector, Toxoptera citricida. Appl. Environ. Microbiol. 82:6294–302
    [Crossref] [Google Scholar]
  50. 50.
    Lu R, Folimonov A, Shintaku M, Li WX, Falk BW et al. 2004. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. PNAS 101:15742–47
    [Crossref] [Google Scholar]
  51. 51.
    Tatineni S, Dawson WO. 2012. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J. Virol. 86:7850–57
    [Crossref] [Google Scholar]
  52. 52.
    Flores R, Ruiz-Ruiz S, Soler N, Sánchez-Navarro J, Fagoaga C et al. 2013. Citrus tristeza virus p23: a unique protein mediating key virus–host interactions. Front. Microbiol. 4:98
    [Google Scholar]
  53. 53.
    Satyanarayana T, Gowda S, Ayllón MA, Albiach-Martí MR, Rabindran S, Dawson WO. 2002. The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. J. Virol. 76:473–83
    [Crossref] [Google Scholar]
  54. 54.
    Fagoaga C, Pensabene-Bellavia G, Moreno P, Navarro L, Flores R, Peña L. 2011. Ectopic expression of the p23 silencing suppressor of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts. Mol. Plant Pathol. 12:898–910
    [Crossref] [Google Scholar]
  55. 55.
    Fagoaga C, López C, Moreno P, Navarro L, Flores R, Peña L. 2005. Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol. Plant-Microbe Interact. 18:435–45
    [Crossref] [Google Scholar]
  56. 56.
    Cevik B. 2013. The RNA-dependent RNA polymerase of Citrus tristeza virus forms oligomers. Virology 447:121–30
    [Crossref] [Google Scholar]
  57. 57.
    Gowda S, Satyanarayana T, Davis CL, Navas-Castillo J, Albiach-Martí MR et al. 2000. The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology 274:246–54
    [Crossref] [Google Scholar]
  58. 58.
    Nchongboh CG, Wu GW, Hong N, Wang GP 2014. Protein-protein interactions between proteins of Citrus tristeza virus isolates. Virus Genes 49:456–65
    [Crossref] [Google Scholar]
  59. 59.
    Ruiz-Ruiz S, Spanò R, Navarro L, Moreno P, Peña L, Flores R. 2018. Citrus tristeza virus co-opts glyceraldehyde 3-phosphate dehydrogenase for its infectious cycle by interacting with the viral-encoded protein p23. Plant Mol. Biol. 98:363–73
    [Crossref] [Google Scholar]
  60. 60.
    Dao TNM, Kang SH, Bak A, Folimonova SY. 2020. A non-conserved p33 protein of Citrus tristeza virus interacts with multiple viral partners. Mol. Plant-Microbe Interact. 33:859–70
    [Crossref] [Google Scholar]
  61. 61.
    Kang SH, Aknadibossian V, Kharel L, Mudiyanselage SDD, Wang Y, Folimonova SY. 2021. The intriguing conundrum of a nonconserved multifunctional protein of Citrus tristeza virus that interacts with a viral long non-coding RNA. Viruses 13:2129–46
    [Crossref] [Google Scholar]
  62. 62.
    Kang SH, Sun YD, Atallah OO, Huguet-Tapia JC, Noble JD, Folimonova SY. 2019. A long non-coding RNA of Citrus tristeza virus: role in the virus interplay with the host immunity. Viruses 11:436–59
    [Crossref] [Google Scholar]
  63. 63.
    Folimonova SY, Achor D, Bar-Joseph M. 2020. Walking together: cross-protection, genome conservation, and the replication machinery of Citrus tristeza virus. Viruses 12:1353–70
    [Crossref] [Google Scholar]
  64. 64.
    Bar-Joseph M, Mawassi M 2013. The defective RNAs of Closteroviridae. Front. Microbiol. 4:132
    [Crossref] [Google Scholar]
  65. 65.
    Raj M, Langley M, McArthur SJ, Jean F 2017. Moonlighting glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is required for efficient hepatitis C virus and dengue virus infections in human Huh-7.5.1 cells. J. Gen. Virol. 98:977–91
    [Crossref] [Google Scholar]
  66. 66.
    Huang TS, Nagy PD. 2011. Direct inhibition of tombusvirus plus-strand RNA synthesis by a dominant negative mutant of a host metabolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, in yeast and plants. J. Virol. 85:9090–102
    [Crossref] [Google Scholar]
  67. 67.
    Kaido M, Abe K, Mine A, Hyodo K, Taniguchi T et al. 2014. GAPDH-a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PLOS Pathog 10:e1004505
    [Crossref] [Google Scholar]
  68. 68.
    White MR, Garcin ED. 2016. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein. Wiley Interdiscip. Rev. RNA 7:53–70
    [Crossref] [Google Scholar]
  69. 69.
    Yang Z, Zhang Y, Wang G, Wen S, Wang Y et al. 2021. The p23 of Citrus tristeza virus interacts with host FKBP-type peptidyl-prolylcis-trans isomerase 17-2 and is involved in the intracellular movement of the viral coat protein. Cells 10:934–48
    [Crossref] [Google Scholar]
  70. 70.
    Gollan PJ, Bhave M, Aro EM. 2012. The FKBP families of higher plants: exploring the structures and functions of protein interaction specialists. FEBS Lett 586:3539–47
    [Crossref] [Google Scholar]
  71. 71.
    Ambrós S, Gómez-Muñoz N, Giménez-Santamarina S, Sánchez-Vicente J, Navarro-López J et al. 2021. Molecular signatures of silencing suppression degeneracy from a complex RNA virus. PLOS Comput. Biol. 17:e1009166
    [Crossref] [Google Scholar]
  72. 72.
    Carbonell A, Carrington JC. 2015. Antiviral roles of plant ARGONAUTES. Curr. Opin. Plant Biol. 27:111–17
    [Crossref] [Google Scholar]
  73. 73.
    Goodwin PH, Xie W, Valliani M. 2012. Three genes of miraculin-like proteins from Nicotiana benthamiana with dissimilar putative structures show highly similar patterns of induction following bacterial and fungal infections. Eur. J. Plant Pathol. 134:795–810
    [Crossref] [Google Scholar]
  74. 74.
    Podda A, Simili M, Del Carratore R, Mouhaya W, Morillon R, Maserti BE. 2014. Expression profiling of two stress-inducible genes encoding for miraculin-like proteins in citrus plants under insect infestation or salinity stress. J. Plant Physiol. 171:45–54
    [Crossref] [Google Scholar]
  75. 75.
    Kitajima EW, Silva DM, Oliveira AR, Müller GW, Costa AS. 1964. Thread-like particles associated with tristeza disease of citrus. Nature 201:1011–12
    [Crossref] [Google Scholar]
  76. 76.
    Brlansky RH, Howd DS, Broadbent P, Damsteegt VD. 2002. Histology of sweet orange stem pitting caused by an Australian isolate of Citrus tristeza virus. Plant Dis 86:1169–74
    [Crossref] [Google Scholar]
  77. 77.
    Welsh MF, May J 1967. Virus-induced wood pitting in the root systems of apple seedlings, and its effects on tree vigor. Can. J. Plant Sci. 47:51–59
    [Crossref] [Google Scholar]
  78. 78.
    Smith SH, Stouffer RF, Soulen DM. 1973. Induction of stem pitting in peaches by mechanical inoculation with tomato ringspot virus. Phytopathology 63:1404–6
    [Crossref] [Google Scholar]
  79. 79.
    Martelli GP, Adams MJ, Kreuze JF, Dolja VV. 2007. Family Flexiviridae: a case study in virion and genome plasticity. Annu. Rev. Phytopathol. 45:73–100
    [Crossref] [Google Scholar]
  80. 80.
    Opalka N, Brugidou C, Bonneau C, Nicole M, Beachy RN et al. 1998. Movement of rice yellow mottle virus between xylem cells through pit membranes. PNAS 95:3323–28
    [Crossref] [Google Scholar]
  81. 81.
    Verchot J, Driskel BA, Zhu Y, Hunger RM, Littlefield LJ. 2001. Evidence that soilborne wheat mosaic virus moves long distance through the xylem in wheat. Protoplasma 218:57–66
    [Crossref] [Google Scholar]
  82. 82.
    Bar-Joseph M, Josephs R, Cohen J. 1977. Carnation yellow fleck virus particles “in vivo.” A structural analysis. Virology 81:144–51
    [Crossref] [Google Scholar]
  83. 83.
    Will T, van Bel AJE. 2006. Physical and chemical interactions between aphids and plants. J. Exp. Bot. 57:729–37
    [Crossref] [Google Scholar]
  84. 84.
    Folimonova SY. 2013. Developing an understanding of cross-protection by Citrus tristeza virus. Front. Microbiol. 4:76
    [Crossref] [Google Scholar]
  85. 85.
    Folimonova SY, Robertson CJ, Shilts T, Folimonov AS, Hilf ME et al. 2010. Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. J. Virol. 84:1314–25
    [Crossref] [Google Scholar]
  86. 86.
    Harper S. 2013. Citrus tristeza virus: evolution of complex and varied genotypic groups. Front. Microbiol. 4:93
    [Crossref] [Google Scholar]
  87. 87.
    Bergua M, Kang SH, Folimonova SY. 2016. Understanding superinfection exclusion by complex populations of Citrus tristeza virus. Virology 499:331–39
    [Crossref] [Google Scholar]
  88. 88.
    Folimonova SY, Harper SJ, Leonard MT, Triplett EW, Shilts T. 2014. Superinfection exclusion by Citrus tristeza virus does not correlate with the production of viral small RNAs. Virology 468–470:462–71
    [Crossref] [Google Scholar]
  89. 89.
    Poudel M, Mendes R, Costa LAS, Bueno CG, Meng Y et al. 2021. The role of plant-associated bacteria, fungi, and viruses in drought stress mitigation. Front. Microbiol. 12:743512
    [Crossref] [Google Scholar]
  90. 90.
    Roossinck MJ. 2011. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9:99–108
    [Crossref] [Google Scholar]
  91. 91.
    Mietzsch M, Agbandje-McKenna M. 2017. The good that viruses do. Annu. Rev. Virol. 4:iii–v
    [Crossref] [Google Scholar]
  92. 92.
    Abrahamian P, Hammond RW, Hammond J. 2020. Plant virus–derived vectors: applications in agricultural and medical biotechnology. Annu. Rev. Virol. 7:513–35
    [Crossref] [Google Scholar]
  93. 93.
    Folimonov AS, Folimonova SY, Bar-Joseph M, Dawson WO 2007. A stable RNA virus-based vector for citrus trees. Virology 368:205–16
    [Crossref] [Google Scholar]
  94. 94.
    El-Mohtar C, Dawson WO. 2014. Exploring the limits of vector construction based on Citrus tristeza virus. Virology 448:274–83
    [Crossref] [Google Scholar]
  95. 95.
    Dutt M, El-Mohtar CA, Wang N 2020. Biotechnological approaches for the resistance to citrus diseases. The Citrus Genome A Gentile, S La Malfa, Z Deng 245–57 Cham, Switz: Springer
    [Google Scholar]
  96. 96.
    Wang N. 2019. The citrus Huanglongbing crisis and potential solutions. Mol. Plant 12:607–9
    [Crossref] [Google Scholar]
  97. 97.
    Bové JM. 2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88:7–37
    [Google Scholar]
  98. 98.
    Hajeri S, Killiny N, El-Mohtar C, Dawson WO, Gowda S 2014. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J. Biotechnol. 176:42–49
    [Crossref] [Google Scholar]
  99. 99.
    EPPO (Eur. Mediterr. Plant Prot. Organ.) 2021. Citrus tristeza virus. EPPO datasheets on pests recommended for regulation. https://gd.eppo.int/taxon/CTV000/datasheet
/content/journals/10.1146/annurev-virology-100520-114412
Loading
/content/journals/10.1146/annurev-virology-100520-114412
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error