1932

Abstract

Consumption of animal products such as meat, milk, and eggs in first-world countries has leveled off, but it is rising precipitously in developing countries. Agriculture will have to increase its output to meet demand, opening the door to increased automation and technological innovation; intensified, sustainable farming; and precision livestock farming (PLF) applications. Early indicators of medical problems, which use sensors to alert cattle farmers early concerning individual animals that need special care, are proliferating. Wearable technologies dominate the market. In less-value-per-animal systems like sheep, goat, pig, poultry, and fish, one sensor, like a camera or robot per herd/flock/school, rather than one sensor per animal, will become common. PLF sensors generate huge amounts of data, and many actors benefit from PLF data. No standards currently exist for sharing sensor-generated data, limiting the use of commercial sensors. Technologies providing accurate data can enhance a well-managed farm. Development of methods to turn the data into actionable solutions is critical.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-020518-114851
2019-02-15
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/animal/7/1/annurev-animal-020518-114851.html?itemId=/content/journals/10.1146/annurev-animal-020518-114851&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Halachmi I, Guarino M 2016. Editorial: precision livestock farming: a “per animal” approach using advanced monitoring technologies. Animal 10:1482–83
    [Google Scholar]
  2. 2. 
    Peles E 1978. Apparatus for sampling a liquid and automatic milking machine Aust. Patent No. Au1978041401
  3. 3. 
    Brayer E 1982. Control apparatus for milking machines US Patent No. 4348984
  4. 4. 
    Wathes CM, Kristensen HH, Aerts JM, Berckmans D 2008. Is precision livestock farming an engineer's daydream or nightmare, an animal's friend or foe, and a farmer's panacea or pitfall. Comput. Electron. Agric. 64:2–10
    [Google Scholar]
  5. 5. 
    Firk R, Stamer E, Junge W, Krieter J 2002. Automation of oestrus detection in dairy cows: a review. Livest. Prod. Sci. 75:219–32
    [Google Scholar]
  6. 6. 
    Soriani N, Trevisi E, Calamari L 2012. Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period. J. Anim. Sci. 90:4544–54
    [Google Scholar]
  7. 7. 
    Calamari L, Soriani N, Panella G, Petrera F, Minuti A, Trevisi E 2014. Rumination time around calving: an early signal to detect cows at greater risk of disease. J. Dairy Sci. 97:3635–47
    [Google Scholar]
  8. 8. 
    Gáspárdy A, Efrat G, Bajcsy Á, Fekete S 2014. Electronic monitoring of rumination activity as an indicator of health status and production traits in high-yielding dairy cows. Acta Vet. Hung. 62:452–62
    [Google Scholar]
  9. 9. 
    Schirmann K, von Keyserlingk MA, Weary D, Veira D, Heuwieser W 2009. Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 92:6052–55
    [Google Scholar]
  10. 10. 
    Schirmann K, Chapinal N, Weary DM, Heuwieser W, Von Keyserlingk MA 2012. Rumination and its relationship to feeding and lying behavior in Holstein dairy cows. J. Dairy Sci. 95:3212–17
    [Google Scholar]
  11. 11. 
    Schmilovitch Z, Katz G, Halachmi I, Hoffman A, Kutscher M et al. 2001. Spectroscopic fluid analyzer US Patent Appl. No 146404
  12. 12. 
    Rutten C, Velthuis A, Steeneveld W, Hogeveen H 2013. Invited review: sensors to support health management on dairy farms. J. Dairy Sci. 96:1928–52
    [Google Scholar]
  13. 13. 
    Banhazi TM, Lehr H, Black J, Crabtree H, Schofield P et al. 2012. Precision livestock farming: an international review of scientific and commercial aspects. Int. J. Agric. Biol. Eng. 5:1–9
    [Google Scholar]
  14. 14. 
    Ferguson JD, Galligan DT, Thomsen N 1994. Principal descriptors of body condition score in Holstein cows. J. Dairy Sci. 77:2695–703
    [Google Scholar]
  15. 15. 
    Hady PJ, Domecq JJ, Kaneene JB 1994. Frequency and precision of body condition scoring in dairy cattle. J. Dairy Sci. 77:1543–47
    [Google Scholar]
  16. 16. 
    Spain J 1996. Optimal body condition score at calving for production and health Presented at Western Canadian Dairy Seminar, Alberta, Can.
  17. 17. 
    Cameron RE, Dyk PB, Herdt TH, Kaneene JB, Miller R et al. 1998. Dry cow diet, management, and energy balance as risk factors for displaced abomasum in high producing dairy herds. J. Dairy Sci. 81:132–39
    [Google Scholar]
  18. 18. 
    Fox DG, Van Amburgh ME, Tylutki TP 1999. Predicting requirements for growth, maturity, and body reserves in dairy cattle. J. Dairy Sci. 82:1968–77
    [Google Scholar]
  19. 19. 
    Wallace MA, Stouffer JR, Westervelt RG 1977. Relationships of ultrasonic and carcass measurements with retail yield in beef cattle. Livest. Prod. Sci. 4:153–64
    [Google Scholar]
  20. 20. 
    Mizrach A, Flitsanov U, Maltz E, Spahr SL, Novakofski JE, Murphy MR 1999. Ultrasonic assessment of body condition changes of the dairy cow during lactation. Trans. ASAE 42:805–12
    [Google Scholar]
  21. 21. 
    Coffey MP, Mottram TB, McFarlane N 2003. A feasibility study on the automatic recording of condition score in dairy cows. Proceedings of the Annual Meeting of the British Society of Animal Science131 Penicuik, UK: Br. Soc. Anim. Sci.
    [Google Scholar]
  22. 22. 
    Ferguson JD, Azzaro G, Licitra G 2006. Body condition assessment using digital images. J. Dairy Sci. 89:3833–41
    [Google Scholar]
  23. 23. 
    Pryce JE, Harris BL, Johnson DL, Montgomery WA 2006. Body condition score as a candidate trait in the breeding worth dairy index. N. Z. Soc. Anim. Prod. 66:103–6
    [Google Scholar]
  24. 24. 
    Bewley JM, Peacock AM, Lewis O, Boyce RE, Roberts DJ et al. 2008. Potential for estimation of body condition scores in dairy cattle from digital images. J. Dairy Sci. 91:3439–53
    [Google Scholar]
  25. 25. 
    Halachmi I, Polak P, Roberts DJ, Klopčič M 2008. Cow body shape and automation of condition scoring. J. Dairy Sci. 91:4444–51
    [Google Scholar]
  26. 26. 
    Bercovich A, Edan Y, Alchanatis V, Moallem U, Parmet Y et al. 2013. Development of an automatic cow body condition scoring using body shape signature and Fourier descriptors. J. Dairy Sci. 96:8047–59
    [Google Scholar]
  27. 27. 
    Halachmi I, Klopčič M, Polak P, Roberts DJ, Bewley JM 2013. Automatic assessment of dairy cattle body condition score using thermal imaging. Comput. Electron. Agric. 99:35–40
    [Google Scholar]
  28. 28. 
    Spoliansky R, Edan Y, Parmet Y, Halachmi I 2016. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. J. Dairy Sci. 99:7714–25
    [Google Scholar]
  29. 29. 
    Gade R, Moeslund TB 2014. Thermal cameras and applications: a survey. Mach. Vis. Appl. 25:245–62
    [Google Scholar]
  30. 30. 
    Hurnik J, Boer SD, Webster A 1984. Detection of health disorders in dairy cattle utilizing a thermal infrared scanning technique. Can. J. Anim. Sci. 64:1071–73
    [Google Scholar]
  31. 31. 
    Yanmaz LE, Okumus Z, Dogan E 2007. Instrumentation of thermography and its applications in horses. J. Anim. Vet. Adv. 6:858–62
    [Google Scholar]
  32. 32. 
    Steensels M, Maltz E, Bahr C, Berckmans D, Antler A, Halachmi I 2017. Towards practical application of sensors for monitoring animal health: design and validation of a model to detect ketosis. J. Dairy Res. 84:139–45
    [Google Scholar]
  33. 33. 
    Steensels M, Antler A, Bahr C, Berckmans D, Maltz E, Halachmi I 2016. A decision-tree model to detect post-calving diseases based on rumination, activity, milk yield, BW and voluntary visits to the milking robot. Animal 10:1493–500
    [Google Scholar]
  34. 34. 
    Schmilovitch Z, Katz G, Maltz E, Kutscher MI, Sarig M et al. 2007. Spectroscopic fluid analyzer US Patent No. US7236237B2
  35. 35. 
    Steensels M, Maltz E, Bahr C, Berckmans D, Antler A, Halachmi I 2017. Towards practical application of sensors for monitoring animal health: the effect of post-calving health problems on rumination duration, activity and milk yield. J. Dairy Sci. 84:132–38
    [Google Scholar]
  36. 36. 
    Schlageter-Tello A, Bokkers EA, Groot Koerkamp PW, Van Hertem T, Viazzi S et al. 2014. Manual and automatic locomotion scoring systems in dairy cows: a review. Prev. Vet. Med. 116:12–25
    [Google Scholar]
  37. 37. 
    Schlageter-Tello A, Bokkers EA, Groot Koerkamp PW, Van Hertem T, Viazzi S et al. 2014. Effect of merging levels of locomotion scores for dairy cows on intra- and interrater reliability and agreement. J. Dairy Sci. 97:5533–42
    [Google Scholar]
  38. 38. 
    Booth CJ, Warnick LD, Gröhn YT, Maizon DO, Guard CL, Janssen D 2004. Effect of lameness on culling in dairy cows. J. Dairy Sci. 87:4115–22
    [Google Scholar]
  39. 39. 
    Esslemont RJ, Kossaibati MA 1997. Culling in 50 dairy herds in England. Vet. Rec. 140:36–39
    [Google Scholar]
  40. 40. 
    Cha E, Hertl JA, Bar D, Gröhn YT 2010. The cost of different types of lameness in dairy cows calculated by dynamic programming. Prev. Vet. Med. 97:1–8
    [Google Scholar]
  41. 41. 
    Rajkondawar PG, Tasch U, Lefcourt AM, Erez B, Dyer RM, Varner MA 2002. A system for identifying lameness in dairy cattle. Appl. Eng. Agric. 18:87–96
    [Google Scholar]
  42. 42. 
    Rajkondawar PG, Liu M, Dyer RM, Neerchal NK, Tasch U et al. 2006. Comparison of models to identify lame cows based on gait and lesion scores, and limb movement variables. J. Dairy Sci. 89:4267–75
    [Google Scholar]
  43. 43. 
    Van Nuffel A, Vangeyte J, Mertens KC, Pluym L, De Campeneere S et al. 2013. Exploration of measurement variation of gait variables for early lameness detection in cattle using the GAITWISE. Livest. Sci. 156:88–95
    [Google Scholar]
  44. 44. 
    Chapinal N, de Passillé AM, Rushen J, Wagner S 2010. Automated methods for detecting lameness and measuring analgesia in dairy cattle. J. Dairy Sci. 93:2007–13
    [Google Scholar]
  45. 45. 
    van der Tol PPJ, Metz JHM, Noordhuizen-Stassen EN, Back W, Braam CR, Weijs WA 2003. The vertical ground reaction force and the pressure distribution on the claws of dairy cows while walking on a flat substrate. J. Dairy Sci. 86:2875–83
    [Google Scholar]
  46. 46. 
    Pastell M, Hänninen L, de Passillé AM, Rushen J 2010. Measures of weight distribution of dairy cows to detect lameness and the presence of hoof lesions. J. Dairy Sci. 93:954–60
    [Google Scholar]
  47. 47. 
    Song X, Leroy T, Vranken E, Maertens W, Sonck B, Berckmans D 2008. Automatic detection of lameness in dairy cattle—vision-based trackway analysis in cow's locomotion. Comput. Electron. Agric. 64:39–44
    [Google Scholar]
  48. 48. 
    Poursaberi A, Bahr C, Pluk A, Van Nuffel A, Berckmans D 2010. Real-time automatic lameness detection based on back posture extraction in dairy cattle: shape analysis of cow with image processing techniques. Comput. Electron. Agric. 74:110–19
    [Google Scholar]
  49. 49. 
    Pluk A, Bahr C, Leroy T, Poursaberi A, Song X et al. 2010. Evaluation of step overlap as an automatic measure in dairy cow locomotion. Trans. ASABE 53:1305–12
    [Google Scholar]
  50. 50. 
    Van Hertem T, Maltz E, Antler A, Romanini CEB, Viazzi S et al. 2013. Lameness detection based on multivariate continuous sensing of milk yield, rumination, and neck activity. J. Dairy Sci. 96:4286–98
    [Google Scholar]
  51. 51. 
    Van Hertem T, Alchanatis V, Antler A, Maltz E, Halachmi I et al. 2013. Comparison of segmentation algorithms for cow contour extraction from natural barn background in side view images. Comput. Electron. Agric. 91:65–74
    [Google Scholar]
  52. 52. 
    Schlageter-Tello A, Bokkers EAM, Groot Koerkamp PWG, Van Hertem T, Viazzi S et al. 2015. Comparison of locomotion scoring for dairy cows by experienced and inexperienced raters using live or video observation methods. Anim. Welf. 24:69–79
    [Google Scholar]
  53. 53. 
    Viazzi S, Bahr C, Van Hertem T, Schlageter-Tello A, Romanini CEB et al. 2014. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows. Comput. Electron. Agric. 100:139–47
    [Google Scholar]
  54. 54. 
    Van Hertem T, Viazzi S, Steensels M, Maltz E, Antler A et al. 2014. Automatic lameness detection based on consecutive 3D-video recordings. Biosyst. Eng. 119:108–16
    [Google Scholar]
  55. 55. 
    Van Hertem T, Bahr C, Tello AS, Viazzi S, Steensels M et al. 2016. Lameness detection in dairy cattle: single predictor v. multivariate analysis of image-based posture processing and behaviour and performance sensing. Animal 10:1525–32
    [Google Scholar]
  56. 56. 
    Van Hertem T, Schlageter Tello A, Viazzi S, Steensels M, Bahr C et al. 2018. Implementation of an automatic 3D vision monitor for dairy cow locomotion in a commercial farm. Biosyst. Eng. 173:166–75
    [Google Scholar]
  57. 57. 
    Halachmi I, Meir YB, Miron J, Maltz E 2016. Feeding behavior improves prediction of dairy cow voluntary feed intake but cannot serve as the sole indicator. Animal 10:1501–6
    [Google Scholar]
  58. 58. 
    Broell F, Noda T, Wright S, Domenici P, Steffensen JF et al. 2013. Accelerometer tags: detecting and identifying activities in fish and the effect of sampling frequency. J. Exp. Biol. 216:1255–64
    [Google Scholar]
  59. 59. 
    Marchioro GF, Cornou C, Kristensen AR, Madsen J 2011. Sows’ activity classification device using acceleration data—a resource constrained approach. Comput. Electron. Agric. 77:110–17
    [Google Scholar]
  60. 60. 
    Alsaaod M, Niederhauser JJ, Beer G, Zehner N, Schuepbach-Regula G, Steiner A 2015. Development and validation of a novel pedometer algorithm to quantify extended characteristics of the locomotor behavior of dairy cows. J. Dairy Sci. 98:6236–42
    [Google Scholar]
  61. 61. 
    Müller R, Schrader L 2003. A new method to measure behavioural activity levels in dairy cows. Appl. Anim. Behav. Sci. 83:247–58
    [Google Scholar]
  62. 62. 
    Nielsen LR, Pedersen AR, Herskin MS, Munksgaard L 2010. Quantifying walking and standing behaviour of dairy cows using a moving average based on output from an accelerometer. Appl. Anim. Behav. Sci. 127:12–19
    [Google Scholar]
  63. 63. 
    Martiskainen P, Järvinen M, Skön J-P, Tiirikainen J, Kolehmainen M, Mononen J 2009. Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 119:32–38
    [Google Scholar]
  64. 64. 
    Thorup VM, Nielsen BL, Robert P-E, Giger-Reverdin S, Konka J et al. 2016. Lameness affects cow feeding but not rumination behavior as characterized from sensor data. Front. Vet. Sci. 3:37
    [Google Scholar]
  65. 65. 
    Vázquez Diosdado JA, Barker ZE, Hodges HR, Amory JR, Croft DP et al. 2015. Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system. Anim. Biotelemetry 3:15
    [Google Scholar]
  66. 66. 
    Oudshoorn FW, Cornou C, Hellwing ALF, Hansen HH, Munksgaard L et al. 2013. Estimation of grass intake on pasture for dairy cows using tightly and loosely mounted di- and tri-axial accelerometers combined with bite count. Comput. Electron. Agric. 99:227–35
    [Google Scholar]
  67. 67. 
    Smith D, Dutta R, Hellicar A, Bishop-Hurley G, Rawnsley R et al. 2015. Bag of Class Posteriors, a new multivariate time series classifier applied to animal behaviour identification. Expert Syst. Appl. 42:3774–84
    [Google Scholar]
  68. 68. 
    Arcidiacono C, Porto SMC, Mancino M, Cascone G 2017. Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data. Comput. Electron. Agric. 134:124–34
    [Google Scholar]
  69. 69. 
    Borchers MR, Chang YM, Tsai IC, Wadsworth BA, Bewley JM 2016. A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors. J. Dairy Sci. 99:7458–66
    [Google Scholar]
  70. 70. 
    Pereira GM, Heins BJ, Endres MI 2018. Technical note: validation of an ear-tag accelerometer sensor to determine rumination, eating, and activity behaviors of grazing dairy cattle. J. Dairy Sci. 101:2492–95
    [Google Scholar]
  71. 71. 
    Chapinal N, Passille AM, Pastell M, Hänninen L, Munksgaard L, Rushen J 2011. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle. J. Dairy Sci. 94:2895–901
    [Google Scholar]
  72. 72. 
    Pastell M, Tiusanen J, Hakojärvi M, Hänninen L 2009. A wireless accelerometer system with wavelet analysis for assessing lameness in cattle. Biosyst. Eng. 104:545–51
    [Google Scholar]
  73. 73. 
    Alsaaod M, Luternauer M, Hausegger T, Kredel R, Steiner A 2017. The cow pedogram—analysis of gait cycle variables allows the detection of lameness and foot pathologies. J. Dairy Sci. 100:1417–26
    [Google Scholar]
  74. 74. 
    Trénel P, Jensen MB, Decker EL, Skjøth F 2009. Technical note: quantifying and characterizing behavior in dairy calves using the IceTag automatic recording device. J. Dairy Sci. 92:3397–401
    [Google Scholar]
  75. 75. 
    Luu J, Johnsen JF, Passillé AM, Rushen J 2013. Which measures of acceleration best estimate the duration of locomotor play by dairy calves?. Appl. Anim. Behav. Sci. 148:21–27
    [Google Scholar]
  76. 76. 
    Hokkanen A-H, Hänninen L, Tiusanen J, Pastell M 2011. Predicting sleep and lying time of calves with a support vector machine classifier using accelerometer data. Appl. Anim. Behav. Sci. 134:10–15
    [Google Scholar]
  77. 77. 
    Kour H, Patison KP, Corbet NJ, Swain DL 2018. Validation of accelerometer use to measure suckling behaviour in Northern Australian beef calves. Appl. Anim. Behav. Sci. 202:1–6
    [Google Scholar]
  78. 78. 
    Cornou C, Lundbye-Christensen S 2008. Classifying sows’ activity types from acceleration patterns: an application of the Multi-Process Kalman Filter. Appl. Anim. Behav. Sci. 111:262–73
    [Google Scholar]
  79. 79. 
    Escalante HJ, Rodriguez SV, Cordero J, Kristensen AR, Cornou C 2013. Sow-activity classification from acceleration patterns: a machine learning approach. Comput. Electron. Agric. 93:17–26
    [Google Scholar]
  80. 80. 
    Ringgenberg N, Bergeron R, Devillers N 2010. Validation of accelerometers to automatically record sow postures and stepping behaviour. Appl. Anim. Behav. Sci. 128:37–44
    [Google Scholar]
  81. 81. 
    Thompson R, Matheson SM, Plötz T, Edwards SA, Kyriazakis I 2016. Porcine lie detectors: automatic quantification of posture state and transitions in sows using inertial sensors. Comput. Electron. Agric. 127:521–30
    [Google Scholar]
  82. 82. 
    Cornou C, Lundbye-Christensen S, Kristensen AR 2011. Modelling and monitoring sows’ activity types in farrowing house using acceleration data. Comput. Electron. Agric. 76:316–24
    [Google Scholar]
  83. 83. 
    Pastell M, Hietaoja J, Yun J, Tiusanen J, Valros A 2016. Predicting farrowing of sows housed in crates and pens using accelerometers and CUSUM charts. Comput. Electron. Agric. 127:197–203
    [Google Scholar]
  84. 84. 
    Traulsen I, Scheel C, Auer W, Burfeind O, Krieter J 2018. Using acceleration data to automatically detect the onset of farrowing in sows. Sensors 18:170
    [Google Scholar]
  85. 85. 
    Conte S, Bergeron R, Gonyou H, Brown J, Rioja-Lang FC et al. 2014. Measure and characterization of lameness in gestating sows using force plate, kinematic, and accelerometer methods. J. Anim. Sci. 92:5693–703
    [Google Scholar]
  86. 86. 
    Scheel C, Traulsen I, Auer W, Müller K, Stamer E, Krieter J 2017. Detecting lameness in sows from ear tag-sampled acceleration data using wavelets. Animal 11:2076–83
    [Google Scholar]
  87. 87. 
    Gleerup KB, Forkman B, Lindegaard C, Andersen PH 2015. An equine pain face. Vet. Anaesth. Analg. 42:103–14
    [Google Scholar]
  88. 88. 
    Siivonen J, Taponen S, Hovinen M, Pastell M, Lensink BJ et al. 2011. Impact of acute clinical mastitis on cow behaviour. Appl. Anim. Behav. Sci. 132:101–6
    [Google Scholar]
  89. 89. 
    Millman ST 2013. Behavioral responses of cattle to pain and implications for diagnosis, management, and animal welfare. Vet. Clin. Food Anim. Pract. 29:47–58
    [Google Scholar]
  90. 90. 
    Sepúlveda-Varas P, Proudfoot KL, Weary DM, von Keyserlingk MA 2016. Changes in behaviour of dairy cows with clinical mastitis. Appl. Anim. Behav. Sci. 175:8–13
    [Google Scholar]
  91. 91. 
    Blackie N, Amory J, Bleach E, Scaife J 2011. The effect of lameness on lying behaviour of zero grazed Holstein dairy cattle. Appl. Anim. Behav. Sci. 134:85–91
    [Google Scholar]
  92. 92. 
    McGowan J, Burke C, Jago J 2007. Validation of a technology for objectively measuring behaviour in dairy cows and its application for oestrous detection. Proc. N.Z. Soc. Anim. Prod. 67:136–42
    [Google Scholar]
  93. 93. 
    Naaktgeboren KM 2017. Comparative study on efficacy of CowManager technology Project, Dep. Anim. Sci., Iowa State Univ., Ames, IA. https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1164&context=honors_posters
  94. 94. 
    Roessen J, Harty E, Beirne C 2015. MooMonitor+ smart sensing technology and big data-resting time as an indicator for welfare status on farms. ICAR Tech. Ser. 2015:1999–102
    [Google Scholar]
  95. 95. 
    Werner J, Leso L, Umstatter C, Schick M, O'Brien B 2017. Evaluation of precision technologies for measuring cows’ grazing behaviour. Proceedings of the 19th Symposium of the European Grassland Federation C Porqueddu, A Franca, G Lombardi, G Molle, G Peratoner, A Hopkins 82–84 Sassari, Italy: CNR-ISPAAM
    [Google Scholar]
  96. 96. 
    Wolfger B, Timsit E, Pajor E, Cook N, Barkema H, Orsel K 2015. Accuracy of an ear tag-attached accelerometer to monitor rumination and feeding behavior in feedlot cattle. J. Anim. Sci. 93:3164–68
    [Google Scholar]
  97. 97. 
    Shahriar MS, Smith D, Rahman A, Freeman M, Hills J et al. 2016. Detecting heat events in dairy cows using accelerometers and unsupervised learning. Comput. Electron. Agric. 128:20–26
    [Google Scholar]
  98. 98. 
    Mansour C, Merlin T, Bonnet-Garin J-M, Chaaya R, Mocci R et al. 2017. Evaluation of the Parasympathetic Tone Activity (PTA) index to assess the analgesia/nociception balance in anaesthetised dogs. Res. Vet. Sci. 115:271–77
    [Google Scholar]
  99. 99. 
    Gygax L, Neisen G, Bollhalder H 2007. Accuracy and validation of a radar-based automatic local position measurement system for tracking dairy cows in free-stall barns. Comput. Electron. Agric. 56:23–33
    [Google Scholar]
  100. 100. 
    Tøgersen FA, Skjøth F, Munksgaard L, Højsgaard S 2010. Wireless indoor tracking network based on Kalman filters with an application to monitoring dairy cows. Comput. Electron. Agric. 72:119–26
    [Google Scholar]
  101. 101. 
    Pastell M, Frondelius L, Järvinen M, Backman J 2018. Filtering methods to improve the accuracy of indoor positioning data for dairy cows. Biosyst. Eng. 169:22–31
    [Google Scholar]
  102. 102. 
    Porto SMC, Arcidiacono C, Giummarra A, Anguzza U, Cascone G 2014. Localisation and identification performances of a real-time location system based on ultra wide band technology for monitoring and tracking dairy cow behaviour in a semi-open free-stall barn. Comput. Electron. Agric. 108:221–29
    [Google Scholar]
  103. 103. 
    Ipema AH, Ven TA, Hogewerf PH 2013. Validation and application of an indoor localization system for animals Presented at Precision Livestock Farming 2013, 6th European Conference on Precision Livestock Farming, Leuven, Belgium, Sept 10–12
  104. 104. 
    Wolfger B, Jones BW, Orsel K, Bewley JM 2017. Technical note: evaluation of an ear-attached real-time location monitoring system. J. Dairy Sci. 100:2219–24
    [Google Scholar]
  105. 105. 
    Tullo E, Fontana I, Gottardo D, Sloth KH, Guarino M 2016. Technical note: validation of a commercial system for the continuous and automated monitoring of dairy cow activity. J. Dairy Sci. 99:7489–94
    [Google Scholar]
  106. 106. 
    Frondelius L, Kajava S, Lindeberg H, Mononen J, Pastell M et al. 2015. Measuring the effect of hoof lesions on cow's walking, lying and eating behavior Presented at the 7th European Conference on Precision Livestock Farming Sept 15–18 Italy:
  107. 107. 
    Oberschätzl R, Haidn B, Peis R, Kulpi F, Völkl C 2015. Validation of automatically processed position data for evaluation of the behaviour of dairy cows. Landtechnik 70:3–8
    [Google Scholar]
  108. 108. 
    Koene P, Ipema B 2014. Social networks and welfare in future animal management. Animals 4:93–118
    [Google Scholar]
  109. 109. 
    Homer EM, Gao Y, Meng X, Dodson A, Webb R, Garnsworthy PC 2013. Technical note: a novel approach to the detection of estrus in dairy cows using ultra-wideband technology. J. Dairy Sci. 96:6529–34
    [Google Scholar]
  110. 110. 
    Veissier I, Mialon M-M, Sloth KH 2017. Short communication: early modification of the circadian organization of cow activity in relation to disease or estrus. J. Dairy Sci. 100:3969–74
    [Google Scholar]
  111. 111. 
    Meunier B, Pradel P, Sloth KH, Cirié C, Delval E et al. 2018. Image analysis to refine measurements of dairy cow behaviour from a real-time location system. Biosyst. Eng. 173:32–44
    [Google Scholar]
  112. 112. 
    Dep. Def., GPS Navstar. 2008. Global Positioning System Standard Positioning Service Performance Standard Washington, DC: Dep. Def, 4th ed. https://www.gps.gov/technical/ps/2008-SPS-performance-standard.pdf
  113. 113. 
    Sickel H, Ihse M, Norderhaug A, Sickel MAK 2004. How to monitor semi-natural key habitats in relation to grazing preferences of cattle in mountain summer farming areas: an aerial photo and GPS method study. Landsc. Urban Plan. 67:67–77
    [Google Scholar]
  114. 114. 
    Williams ML, Mac Parthaláin N, Brewer P, James WPJ, Rose MT 2016. A novel behavioral model of the pasture-based dairy cow from GPS data using data mining and machine learning techniques. J. Dairy Sci. 99:2063–75
    [Google Scholar]
  115. 115. 
    Brosh A 2007. Heart rate measurements as an index of energy expenditure and energy balance in ruminants: a review. J. Anim. Sci. 85:1213–27
    [Google Scholar]
  116. 116. 
    Brosh A, Henkin Z, Ungar ED, Dolev A, Orlov A et al. 2006. Energy cost of cows’ grazing activity: use of the heart rate method and the Global Positioning System for direct field estimation. J. Anim. Sci. 84:1951–67
    [Google Scholar]
  117. 117. 
    Umstatter C 2011. The evolution of virtual fences: a review. Comput. Electron. Agric. 75:10–22
    [Google Scholar]
  118. 118. 
    Lee C, Henshall JM, Wark TJ, Crossman CC, Reed MT et al. 2009. Associative learning by cattle to enable effective and ethical virtual fences. Appl. Anim. Behav. Sci. 119:15–22
    [Google Scholar]
  119. 119. 
    Stewart M, Stookey JM, Stafford KJ, Tucker CB, Rogers AR et al. 2009. Effects of local anesthetic and a nonsteroidal antiinflammatory drug on pain responses of dairy calves to hot-iron dehorning. J. Dairy Sci. 92:1512–19
    [Google Scholar]
  120. 120. 
    Hagen K, Langbein J, Schmied C, Lexer D, Waiblinger S 2005. Heart rate variability in dairy cows—influences of breed and milking system. Physiol. Behav. 85:195–204
    [Google Scholar]
  121. 121. 
    Irrgang N, Zipp KA, Brandt S, Knierim U 2015. Effects of space allowance in the waiting area on agonistic interactions and heart rate of high and low ranking horned dairy cows. Livest. Sci. 179:47–53
    [Google Scholar]
  122. 122. 
    Lefcourt AM, Erez B, Varner MA, Barfield R, Tasch U 1999. A noninvasive radiotelemetry system to monitor heart rate for assessing stress responses of bovines. J. Dairy Sci. 82:1179–87
    [Google Scholar]
  123. 123. 
    Tiusanen MJ, Hautala MI, Ternman EM, Pastell ME 2015. Geometrical method for interpolating S-peaks from cow ECG using a microcontroller. Biosyst. Eng. 129:324–28
    [Google Scholar]
  124. 124. 
    Frondelius L, Hietaoja J, Pastell M, Hänninen L, Anttila P, Mononen J 2018. Influence of postoperative pain and use of NSAID on heart rate variability of dairy cows. J. Dairy Res. 85:27–29
    [Google Scholar]
  125. 125. 
    Phan D, Siong LY, Pathirana PN, Seneviratne A 2015. Smartwatch: Performance evaluation for long-term heart rate monitoring Presented at 2015 International Symposium on Bioelectronics and Bioinformatics, Beijing China: Oct 15
  126. 126. 
    Beiderman Y, Kunin M, Kolberg E, Halachmi I, Abramov B et al. 2014. Automatic solution for detection, identification and biomedical monitoring of a cow using remote sensing for optimised treatment of cattle. J. Agric. Eng. 45:153–60
    [Google Scholar]
  127. 127. 
    Chedad A, Aerts JM, Vranken E, Lippens M, Zoons J, Berckmans D 2003. Do heavy broiler chickens visit automatic weighing systems less than lighter birds?. Br. Poultry Sci. 44:663–68
    [Google Scholar]
  128. 128. 
    Tullo E, Fontana I, Peña Fernandez A, Vranken E, Norton T et al. 2017. Association between environmental predisposing risk factors and leg disorders in broiler chickens. J. Anim. Sci. 95:1512–20
    [Google Scholar]
  129. 129. 
    Fontana I, Tullo E, Butterworth A, Guarino M 2015. An innovative approach to predict the growth in intensive poultry farming. Comput. Electron. Agric. 119:178–83
    [Google Scholar]
  130. 130. 
    Fontana I, Tullo E, Carpentier L, Berckmans D, Butterworth A et al. 2017. Sound analysis to model weight of broiler chickens. Poultry Sci 96:1–6
    [Google Scholar]
  131. 131. 
    Aydin A, Bahr C, Viazzi S, Exadaktylos V, Buyse J, Berckmans D 2014. A novel method to automatically measure the feed intake of broiler chickens by sound technology. Comput. Electron. Agric. 101:17–23
    [Google Scholar]
  132. 132. 
    Aydin A, Berckmans D 2016. Using sound technology to automatically detect the short-term feeding behaviours of broiler chickens. Comput. Electron. Agric. 121:25–31
    [Google Scholar]
  133. 133. 
    Ungar ED, Rutter SM 2006. Classifying cattle jaw movements: comparing IGER behaviour recorder and acoustic techniques. Appl. Anim. Behav. Sci. 98:11–27
    [Google Scholar]
  134. 134. 
    Navon S, Mizrach A, Hetzroni A, Ungar ED 2013. Automatic recognition of jaw movements in free-ranging cattle, goats and sheep, using acoustic monitoring. Biosyst. Eng. 114:474–83
    [Google Scholar]
  135. 135. 
    Laca E, WallisDeVries M 2000. Acoustic measurement of intake and grazing behaviour of cattle. Grass Forage Sci 55:97–104
    [Google Scholar]
  136. 136. 
    Vandermeulen J, Bahr C, Tullo E, Fontana I, Ott S et al. 2015. Discerning pig screams in production environments. PLOS ONE 10:e0123111
    [Google Scholar]
  137. 137. 
    Kanitz E, Otten W, Nürnberg G, Brüssow KP 1999. Effects of age and maternal reactivity on the stress response of the pituitary-adrenocortical axis and the sympathetic nervous system in neonatal pigs. Anim. Sci. 68:519–26
    [Google Scholar]
  138. 138. 
    Manteuffel G, Puppe B, Schön PC 2004. Vocalization of farm animals as a measure of welfare. Appl. Anim. Behav. Sci. 88:163–82
    [Google Scholar]
  139. 139. 
    Schön PC, Puppe B, Manteuffel G 2004. Automated recording of stress vocalisations as a tool to document impaired welfare in pigs. Anim. Welf. 13:105–10
    [Google Scholar]
  140. 140. 
    Moura DJ, Silva WT, Naas IA, Tolón YA, Lima KAO, Vale MM 2008. Real time computer stress monitoring of piglets using vocalization analysis. Comput. Electron. Agric. 64:11–18
    [Google Scholar]
  141. 141. 
    Held S, Cooper J, Mendl M 2008. Advances in the study of cognition, behavioural priorities and emotions. The Welfare of Pigs JN Marchante-Forde 47–94 New York: Springer Nat.
    [Google Scholar]
  142. 142. 
    Manteuffel G, Schön PC 2004. STREMODO, ein innovatives Verfahren zur kontinuierlichen Erfassung der Stressbelastung von Schweinen bei Haltung und Transport. Arch. Tierz. 47:2173–81
    [Google Scholar]
  143. 143. 
    Silva M, Ferrari S, Costa A, Aerts JM, Guarino M, Berckmans D 2008. Cough localization for the detection of respiratory diseases in pig houses. Comput. Electron. Agric. 64:286–92
    [Google Scholar]
  144. 144. 
    Exadaktylos V, Silva M, Aerts JM, Taylor CJ, Berckmans D 2008. Real-time recognition of sick pig cough sounds. Comput. Electron. Agric. 63:207–14
    [Google Scholar]
  145. 145. 
    Ferrari S, Silva M, Guarino M, Aerts JM, Berckmans D 2008. Cough sound analysis to identify respiratory infection in pigs. Comput. Electron. Agric. 64:318–25
    [Google Scholar]
  146. 146. 
    Vandermeulen J, Bahr C, Tullo E, Fontana I, Ott S et al. 2015. Discerning pig screams in production environments. PLOS ONE 10:e0123111
    [Google Scholar]
  147. 147. 
    Vandermeulen J, Bahr C, Johnston D, Earley B, Tullo E et al. 2016. Early recognition of bovine respiratory disease in calves using automated continuous monitoring of cough sounds. Comput. Electron. Agric. 129:15–26
    [Google Scholar]
  148. 148. 
    Persaud K, Dodd G 1982. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–55
    [Google Scholar]
  149. 149. 
    Ghosh PK, Chatterjee S, Bhattacharjee P, Bhattacharyya N 2016. Removal of rancid-acid odor of expeller-pressed virgin coconut oil by gamma irradiation: evaluation by sensory and electronic nose technology. Food Bioprocess Technol 9:1724–34
    [Google Scholar]
  150. 150. 
    Hong X, Wang J 2014. Use of electronic nose and tongue to track freshness of cherry tomatoes squeezed for juice consumption: comparison of different sensor fusion approaches. Food Bioprocess Technol 8:158–70
    [Google Scholar]
  151. 151. 
    Huang L, Liu H, Zhang B, Wu D 2015. Application of electronic nose with multivariate analysis and sensor selection for botanical origin identification and quality determination of honey. Food Bioprocess Technol 8:359–70
    [Google Scholar]
  152. 152. 
    Kodogiannis VS 2017. Application of an electronic nose coupled with fuzzy-wavelet network for the detection of meat spoilage. Food Bioprocess Technol 10:730–49
    [Google Scholar]
  153. 153. 
    López de Lerma N, Moreno J, Peinado RA 2014. Determination of the optimum sun-drying time for Vitis vinifera L. cv. Tempranillo grapes by E-nose analysis and characterization of their volatile composition. Food Bioprocess Technol 7:732–40
    [Google Scholar]
  154. 154. 
    Zhang H, Wang J, Ye S, Chang M 2012. Application of electronic nose and statistical analysis to predict quality indices of peach. Food Bioprocess Technol 5:65–72
    [Google Scholar]
  155. 155. 
    Röck F, Barsan N, Weimar U 2008. Electronic nose: current status and future trends. Chem. Rev. 108:705–25
    [Google Scholar]
  156. 156. 
    Chou J 2000. Hazardous Gas Monitors: A Practical Guide to Selection, Operation and Applications New York: McGraw-Hill
  157. 157. 
    Zampolli S, Elmi I, Ahmed F, Passini M, Cardinali GC et al. 2004. An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens. Actuators B 101:39–46
    [Google Scholar]
  158. 158. 
    Romain AC, Nicolas J 2010. Long term stability of metal oxide-based gas sensors for E-nose environmental applications: an overview. Sens. Actuators B 146:502–6
    [Google Scholar]
  159. 159. 
    Zhang L, Tian F, Nie H, Dang L, Li G et al. 2012. Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actuators B 174:114–25
    [Google Scholar]
  160. 160. 
    Guffanti P, Pifferi V, Falciola L, Ferrante V 2018. Analyses of odours from concentrated animal feeding operations: a review. Atmos. Environ. 175:100–8
    [Google Scholar]
  161. 161. 
    Ellis CK, Stahl RS, Nol P, Waters WR, Palmer MV et al. 2014. A pilot study exploring the use of breath analysis to differentiate healthy cattle from cattle experimentally infected with Mycobacterium bovis. PLOS ONE 9:e89280
    [Google Scholar]
  162. 162. 
    Peled N, Ionescu R, Nol P, Barash O, McCollum M et al. 2012. Detection of volatile organic compounds in cattle naturally infected with Mycobacterium bovis. Sens. Actuators B 171–72:588–94
    [Google Scholar]
  163. 163. 
    Purkhart R, Köhler H, Liebler-Tenorio E, Meyer M, Becher G et al. 2011. Chronic intestinal Mycobacteria infection: discrimination via VOC analysis in exhaled breath and headspace of feces using differential ion mobility spectrometry. J. Breath Res. 5:027103
    [Google Scholar]
  164. 164. 
    Chang MH, Chen TC 2003. Reduction of broiler house malodor by direct feeding of a lactobacilli containing probiotic. Int. J. Poultry Sci. 2:313–17
    [Google Scholar]
  165. 165. 
    Sohn JH, Hudson N, Gallagher E, Dunlop M, Zeller L, Atzeni M 2008. Implementation of an electronic nose for continuous odour monitoring in a poultry shed. Sens. Actuators B 133:60–69
    [Google Scholar]
  166. 166. 
    Trabue S, Scoggin K, Li H, Burns R, Xin H, Hatfield J 2010. Speciation of volatile organic compounds from poultry production. Atmos. Environ. 44:3538–46
    [Google Scholar]
  167. 167. 
    Oazana S, Naor M, Grinshpun J, Halachmi I, Raviv M et al. 2018. A flexible control system designed for lab-scale simulations and optimization of composting processes. Waste Manag 72:150–60
    [Google Scholar]
  168. 168. 
    Grilli G, Borgonovo F, Tullo E, Fontana I, Guarino M, Ferrante V 2018. A pilot study to detect coccidiosis in poultry farms at early stage from air analysis. Biosyst. Eng. 173:64–70
    [Google Scholar]
  169. 169. 
    Tullo E, Fontana I, Diana A, Norton T, Berckmans D, Guarino M 2017. Application note: labelling, a methodology to develop reliable algorithm in PLF. Comput. Electron. Agric. 142:424–28
    [Google Scholar]
  170. 170. 
    Halachmi I, Klopčič M, Polak P, Roberts DJ, Bewley JM 2013. Automatic assessment of dairy cattle body condition score using thermal imaging. Comput. Electron. Agric. 99:35–40
    [Google Scholar]
  171. 171. 
    Halachmi I 2004. Designing the automatic milking farm in a hot climate. J. Dairy Sci. 87:764–75
    [Google Scholar]
  172. 172. 
    John A, Clark C, Freeman M, Kerrisk K, Garcia S, Halachmi I 2016. Review: milking robot utilization, a successful precision livestock farming evolution. Animal 10:1484–92
    [Google Scholar]
  173. 173. 
    Robinson TP, Thornton PK, Franceschini G, Kruska R, Chiozza F et al. 2011. Global Livestock Production Systems Rome: Food Agric. Organ., Int. Livest. Res. Inst.
  174. 174. 
    Robinson TP, Wint GW, Conchedda G, Van Boeckel TP, Ercoli V et al. 2014. Mapping the global distribution of livestock. PLOS ONE 9:e96084
    [Google Scholar]
/content/journals/10.1146/annurev-animal-020518-114851
Loading
/content/journals/10.1146/annurev-animal-020518-114851
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error