1932

Abstract

Cocoa butter displays complex crystallization behavior and six crystal polymorphic forms. Although the crystal structure of cocoa butter has been studied extensively, the molecular interactions between cocoa butter triacylglycerols in relation to polymorphic transformations from metastable forms (forms III and IV) to stable crystal forms (forms V and VI) remain largely unknown. In this review, the triclinic polymorphism and melting profiles of the major triacylglycerols in cocoa butter—POP, POS, and SOS—are reviewed, and their binary and ternary phase behaviors in metastable (pseudoβ′) and stable (β) crystal forms are discussed. We also attempt to clarify how the transformation of cocoa butter from form IV to V, as a critical step in the tempering of chocolate, is controlled by POS interactions with both POP and SOS. Moreover, we show how the crystal forms V and VI of cocoa butter are templated by crystal forms β and β of POS, respectively.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-070620-022551
2021-03-25
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/food/12/1/annurev-food-070620-022551.html?itemId=/content/journals/10.1146/annurev-food-070620-022551&mimeType=html&fmt=ahah

Literature Cited

  1. Andersson W. 1963. Fat bloom and phase changes. Rev. Int. Choc. 18:92–98
    [Google Scholar]
  2. Arishima T, Sagi N, Mori H, Sato K. 1991. Polymorphism of POS. I. Occurrence and polymorphic transformation. J. Am. Oil Chem. Soc. 68:710–15
    [Google Scholar]
  3. Arishima T, Sugimoto K, Kiwata R, Mori H, Sato K. 1996. 13C cross-polarization and magic-angle spinning nuclear magnetic resonance of polymorphic forms of three triacylglycerols. J. Am. Oil Chem. Soc. 73:1231–36
    [Google Scholar]
  4. Bayés-García L, Calvet T, Cuevas-Diarte MA, Ueno S, Sato K. 2013. In situ observation of transformation pathways of polymorphic forms of 1,3-dipalmitoyl-2-oleoyl glycerol (POP) examined with synchrotron radiation X-ray diffraction and DSC. CrystEngComm 15:302–14
    [Google Scholar]
  5. Becket ST. 2000. The Science of Chocolate Cambridge, UK: R. Soc. Chem.
  6. Chapman D, Crossley A, Davies AC. 1957. The structure of the major component glyceride of cocoa butter, and of the major oleodisaturated glyceride of lard. J. Chem. Soc. 1957.1502–9
    [Google Scholar]
  7. Chapman GM, Akehurst EE, Wright WB. 1971. Cocoa butter and confectionery fats. Studies using programmed temperature X-ray diffraction and differential scanning calorimetry. J. Am. Oil Chem. Soc. 48:824–30
    [Google Scholar]
  8. Daubert BF, Clarke TH. 1944. Unsaturated synthetic glycerides. VI. Polymorphism of symmetrical monooleyl-disaturated triglycerides. J. Am. Chem. Soc. 66:690–91
    [Google Scholar]
  9. Fessas D, Signorelli M, Schiraldi A. 2005. Polymorphous transitions in cocoa butter: a quantitative DSC study. J. Therm. Anal. Calorim. 82:691–702
    [Google Scholar]
  10. Filer LJ, Sidhu SS, Daubert BF, Longenecker HE. 1946. X-ray investigation of glycerides. III. Diffraction analyses of symmetrical monooleyl-disaturated triglycerides. J. Am. Chem. Soc. 68:167–71
    [Google Scholar]
  11. Floeter E, Haeupler M, Sato K 2018. Molecular interactions and mixing phase behavior of lipid crystals. Crystallization of Lipids: Fundamentals and Applications in Food, Cosmetics, and Pharmaceuticals K Sato 61–104 Hoboken, NJ: Wiley-Blackwell
    [Google Scholar]
  12. Ghazani SM, Marangoni AG. 2018a. Facile lipase-catalyzed synthesis of a chocolate fat mimetic. Sci. Rep. 8:15271–88
    [Google Scholar]
  13. Ghazani SM, Marangoni AG. 2018b. New insights into the β polymorphism of 1,3-palmitoyl-stearoyl-2-oleoyl glycerol (POS). Cryst. Growth Des. 18:4811–14
    [Google Scholar]
  14. Ghazani SM, Marangoni AG. 2019a. The stability and nature of the form IV polymorph of cocoa butter is dictated by 1-palmitoyl-2-oleoyl-3-stearoyl-glycerol. Cryst. Growth Des. 19:1488–93
    [Google Scholar]
  15. Ghazani SM, Marangoni AG. 2019b. The ternary solid-state phase behavior of triclinic POP, POS, and SOS and its relationship to CB and CBE properties. Cryst. Growth Des. 19:704–13
    [Google Scholar]
  16. Ghazani SM, Marangoni AG. 2019c. The triclinic polymorphism of cocoa butter is dictated by its major molecular species, 1-palmitoyl, 2-oleoyl, 3-stearoyl glycerol (POS). Cryst. Growth Des. 19:90–97
    [Google Scholar]
  17. Ghazani SM, Zou L, Rakitsky WG, Marangoni AG. 2018. Algal butter, a novel cocoa butter equivalent: chemical composition, physical properties, and functionality in chocolate. J. Am. Oil Chem. Soc. 95:1239–51
    [Google Scholar]
  18. Gibon V, Durant F, Deroanne C. 1986. Polymorphism and intersolubility of some palmitic, stearic and oleic triglycerides: PPP, PSP and POP. J. Am. Oil Chem. Soc. 63:1047–55
    [Google Scholar]
  19. Goto M. 1970. X-ray diffraction and polymorphism of triglycerides. J. Oleo Sci. 19:583–99
    [Google Scholar]
  20. Hernqvist H. 1990. Polymorphism of triglycerides: a crystallographic review. Food Struct 9:39–44
    [Google Scholar]
  21. Hernqvist L, Larsson L. 1982. On the crystal structure of the β′-form of triglycerides and structural changes at the phase transitions liquid >α >β′ >β. Fette Seife Anstrichmit. 84:349–54
    [Google Scholar]
  22. Hicklin JD, Jewell GG, Heathcock JF. 1985. Combining microscopy and physical techniques in the study of cocoa butter polymorphs and vegetable fat blends. Food Microstruct 4:241–48
    [Google Scholar]
  23. Jackson FL, Daubert BF, King CG, Longenecker HE. 1944. Unsaturated synthetic glycerides. IV. Symmetrical monooleo-disaturated triglycerides. J. Am. Chem. Soc. 66:289–90
    [Google Scholar]
  24. Jones GV, Hammond EG. 1961. Analysis of the glyceride structure of cocoa butter by thermal gradient crystallization. J. Am. Oil Chem. Soc. 38:69–73
    [Google Scholar]
  25. Koyano T, Hachiya I, Arishima T, Sagi N, Sato K. 1991. Polymorphism of POS. II. Kinetics of melt crystallization. J. Am. Oil Chem. Soc. 68:716–18
    [Google Scholar]
  26. Koyano T, Kato Y, Hachiya I, Umemura R. 1993. Crystallization behaviour of ternary mixture of POP/POS/SOS. J. Oleo Sci. 42:453–57
    [Google Scholar]
  27. Landmann W, Feuge RO, Lovegren NV. 1960. Melting and dilatometric behaviour of 2-oleopalmitostearin and 2-oleodistearin. J. Am. Oil Chem. Soc. 37:638–43
    [Google Scholar]
  28. Larsson K. 1966. Classification of glyceride crystal forms. Acta Chem. Scand. 20:2255–60
    [Google Scholar]
  29. Lavery H. 1958. Differential thermal analysis of fats. II. Melting behavior of some pure glycerides. J. Am. Oil Chem. Soc. 35:418–22
    [Google Scholar]
  30. Loisel C, Keller G, Lecq G, Bourgaux C, Ollivon M. 1998. Phase transition and polymorphism of cocoa butter. J. Am. Oil Chem. Soc. 75:425–39
    [Google Scholar]
  31. Lovegren NV, Gray MS, Feuge RO. 1971. Properties of 2-oleodipalmitin, 2-elaidodipalmitin and some of their mixtures. J. Am. Oil Chem. Soc. 48:116–20
    [Google Scholar]
  32. Lutton ES. 1946. The identity and polymorphism of oleyldistearin from kokum butter. J. Am. Chem. Soc. 68:676–79
    [Google Scholar]
  33. Lutton ES. 1951. The polymorphism of the disaturated triglycerides: OSS, OPP, POS, OPS and OSP. J. Am. Chem. Soc. 73:5595–98
    [Google Scholar]
  34. Lutton ES, Jackson FL. 1950. The polymorphism of synthetic and natural 2-oleyldipalmitin. J. Am. Chem. Soc. 72:3254–57
    [Google Scholar]
  35. Malkin T, Wilson BR. 1949. An X-ray and thermal examination of the glycerides. Part X. Symmetrical mono-oleyl and monoelaidoyl desaturated triglycerides. J. Chem. Soc. 71:369–72
    [Google Scholar]
  36. Marangoni AG, McGauley SE. 2003. Relationship between crystallization behavior and structure in cocoa butter. Cryst. Growth Des. 3:95–108
    [Google Scholar]
  37. Marangoni AG, Wesdorp LH. 2012. Crystallography and polymorphism. Structure and Properties of Fat Crystal Networks19–25 Boca Raton, FL: CRC Press. , 2nd ed..
    [Google Scholar]
  38. McGauley S. 2001. The relationship between polymorphism, crystallization kinetics, and microstructure of statically crystallized cocoa butter MS Thesis, Univ. Guelph Guelph, Ont:.
    [Google Scholar]
  39. Md Ali AR, Embong MS, Flingoh CHO 1992. Interaction of cocoa butter equivalent component fats in ternary blends. Elaeis 4:21–26
    [Google Scholar]
  40. Meara ML. 1945. The configuration of naturally occurring mixed glycerides. Part I. The configuration of oleodistearin from various natural sources. J. Chem. Soc. 1945.22–23
    [Google Scholar]
  41. Merken GV, Vaeck SV. 1980. A study of the polymorphism of cocoa butter by means of SDC calorimetry. Lebensm. Wiss. Technol. 13:314–17
    [Google Scholar]
  42. Padley FB 1997. Chocolate and confectionery fats. Lipid Technologies and Applications FD Gunstone, FB Padley 391–432 New York: Marcel Dekker
    [Google Scholar]
  43. Peschar R, Pop MM, De Ridder DJA, van Mechelen JB, Driessen RAJ, Schenk H. 2004. Crystal structures of 1,3-distearoyl-2-oleoylglycerol and cocoa butter in the β (V) phase reveal the driving force behind the occurrence of fat bloom on chocolate. J. Phys. Chem. B 108:15450–53
    [Google Scholar]
  44. Rossell JB. 1967. Phase diagrams of triacylglyceride systems. Adv. Lipid Res. 5:353–408
    [Google Scholar]
  45. Rousset PH, Rappaz M. 1996. Crystallization kinetics of the pure triacylglycerols glycerol-1,3-dipalmitate-2-oleate, glycerol-1-palmitate-2-oleate-3-stearate, and glycerol-1,3-distearate-2-oleate. J. Am. Oil Chem. Soc. 73:1051–57
    [Google Scholar]
  46. Rousset PH, Rappaz M, Minner E. 1998. Polymorphism and solidification kinetics of the binary system POS-SOS. J. Am. Oil Chem. Soc. 75:85764
    [Google Scholar]
  47. Sagi N, Arishima T, Mori H, Sato K. 1989. Polymorphism of mixture of 1,3-di (saturated acyl)-2-oleoylglycerols POP, POS, SOS. J. Oleo Sci. 38:306–11
    [Google Scholar]
  48. Sasaki M, Ueno S, Sato K 2012. Polymorphism and mixing phase behavior of major triacylglycerols of cocoa butter. Cocoa Butter and Related Compounds N Garti, NR Widlak 151–72 Urbana, IL: AOCS
    [Google Scholar]
  49. Sato K, Arishima T, Wang ZH, Ojima K, Sagi N, Mori H. 1989. Polymorphism of POP and SOS. I. Occurrence and polymorphic transformation. J. Am. Oil Chem. Soc. 66:664–74
    [Google Scholar]
  50. Sato K, Ueno S 2005. Polymorphism in fats and oils. Bailey's Industrial Oil and Fat Products F Shahidi 77–120 Hoboken, NJ: Wiley & Sons
    [Google Scholar]
  51. Sato K, Ueno S. 2014. Physical properties of fats in food. Fats in Food Technology KK Rajah 1–38 Chichester, UK: Wiley & Sons
    [Google Scholar]
  52. Smith KW, Bhaggan K, Talbot G. 2013. Phase behaviour of symmetrical monounsaturated triacylglycerols. Eur. J. Lipid Sci. Technol. 115:838–46
    [Google Scholar]
  53. Spigno G, Pagella C, Faveri DM. 2001. DSC characterization of cocoa butter polymorphs. Ital. J. Food Sci. 3:275–84
    [Google Scholar]
  54. Timms RE. 1984. Phase behaviour of fats and oils and their mixtures. Prog. Lipid Res. 23:1–38
    [Google Scholar]
  55. Van Malssen K, van Langevelde A, Peschar R, Schenk H. 1999. Phase behavior and extended phase scheme of static cocoa butter investigated with real-time X-ray powder diffraction. J. Am. Oil Chem. Soc. 76:669–76
    [Google Scholar]
  56. Van Mechelen JB. 2008. Triacylglycerol structures and the chocolate fat bloom mechanism. PhD Thesis, Univ. Amsterdam, Amsterdam
  57. Van Mechelen JB, Peschar R, Schenk H. 2006a. Structures of mono-unsaturated triacylglycerols. I. The β1 polymorph. Acta Crystallogr. B 62:1121–30
    [Google Scholar]
  58. Van Mechelen JB, Peschar R, Schenk H. 2006b. Structure of mono-unsaturated triacylglycerols. II. The β2 polymorph. Acta Crystallogr. B 62:1131–38
    [Google Scholar]
  59. Wang ZH, Sato K, Sagi N, Izumi T. 1987. Polymorphism of 1,3-di (saturated acyl)-2-oleoylglycerols: POP, SOS, AOA and BOB. J. Oleo Sci. 36:671–79
    [Google Scholar]
  60. Wesdorp LH. 1990. Liquid-multiple solid phase equilibria in fats PhD Thesis, Delft Univ. Technol. Delft, Neth:.
  61. Wesdorp LH, van Meeteren JA, de Jong S, van der Giessen R, Overbosch Pet al. 2013. Liquid–multiple solid phase equilibria in fats. In Structure and Properties of Fat Crystal Networks AG Marangoni, LH Wesdorp 241–418 Boca Raton, FL: CRC Press. 2nd ed.
    [Google Scholar]
  62. Wille RL, Lutton ES. 1966. Polymorphism of cocoa butter. J. Am. Oil Chem. Soc. 43:491–96
    [Google Scholar]
  63. Yano J, Ueno S, Sato K, Arishima T, Sagi N, Kaneko F, Kobayashi M. 1993. FT-IR study of polymorphic transformation in SOS, POP, and POS. J. Phys. Chem. 97:12967–73
    [Google Scholar]
/content/journals/10.1146/annurev-food-070620-022551
Loading
/content/journals/10.1146/annurev-food-070620-022551
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error