1932

Abstract

Abstract

The abundant bacteria and other microbial residents of the human intestine play important roles in nutrient absorption, energy metabolism, and defense against microbial pathogens. The mutually beneficial relationship of host and commensal microbiota represents an ancient and major coevolution in composition and mutual regulation of the human mucosa and the resident microbial community. Inflammatory bowel disease (IBD) is a set of chronic, relapsing inflammatory intestinal diseases in which rules of normal host-microbial interaction have been violated. This review considers the components of this host-microbial mutualism and the ways in which it is undermined by pathogenic microbial traits and by host immune and epithelial functions that confer to them susceptibility in patients with IBD. Recent advances in understanding the genetics of IBD and the immunology of host-microbial interaction are opening new strategies for treatments that target host susceptibility, candidate microbial pathogens, and intestinal ecology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.pathol.1.110304.100128
2007-02-28
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/pm/2/1/annurev.pathol.1.110304.100128.html?itemId=/content/journals/10.1146/annurev.pathol.1.110304.100128&mimeType=html&fmt=ahah

Literature Cited

  1. Munkholm P. 1997. Crohn's disease—occurrence, course and prognosis. An epidemiologic cohort-study. Dan. Med. Bull. 44:287–302 [Google Scholar]
  2. Loftus EVJ. 2004. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126:1504–17 [Google Scholar]
  3. Ouyang Q, Tandon R, Goh KL, Ooi CJ, Ogata H, Fiocchi C. 2005. The emergence of inflammatory bowel disease in the Asian Pacific region. Curr. Opin. Gastroenterol. 21:408–13 [Google Scholar]
  4. Sartor RB. 2004. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–33 [Google Scholar]
  5. Strober W, Fuss IJ, Blumberg RS. 2002. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 20:495–549 [Google Scholar]
  6. Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT. 2005. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol. Rev. 206:260–76 [Google Scholar]
  7. Egan LJ, Sandborn WJ. 2004. Advances in the treatment of Crohn's disease. Gastroenterology 126:1574–81 [Google Scholar]
  8. Siminovitch KA. 2006. Advances in the molecular dissection of inflammatory bowel disease. Semin. Immunol. 18:244–53 [Google Scholar]
  9. Simon GL, Gorbach SL. 1982. Intestinal microflora. Med. Clin. North Am. 66:557–74 [Google Scholar]
  10. Diaz RL, Hoang L, Wang J, Vela JL, Jenkins S. et al. 2004. Maternal adaptive immunity influences the intestinal microflora of suckling mice. J. Nutr. 134:2359–64 [Google Scholar]
  11. Sonnenburg JL, Angenent LT, Gordon JI. 2004. Getting a grip on things: How do communities of bacterial symbionts become established in our intestine. Nat. Immunol. 5:569–73 [Google Scholar]
  12. Wilson KH, Blitchington RB. 1996. Human colonic biota studied by ribosomal DNA sequence analysis. Appl. Environ. Microbiol. 62:2273–78 [Google Scholar]
  13. Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK. 2000. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66:2578–88 [Google Scholar]
  14. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L. et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–38 [Google Scholar]
  15. Bent E, Yin B, Figueroa A, Ye J, Fu Q. et al. 2006. Development of a 9600-clone procedure for oligonucleotide fingerprinting of rRNA genes: utilization to identify soil bacterial rRNA genes that correlate in abundance with the development of avocado root rot. J. Microbiol. Methods 67:171–80 [Google Scholar]
  16. van der Waaij LA, Harmsen HJ, Madjipour M, Kroese FG, Zwiers M. et al. 2005. Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells. Inflamm. Bowel. Dis. 11:865–71 [Google Scholar]
  17. Scupham AJ, Presley LL, Wei B, Bent E, Griffith N. et al. 2006. Abundant and diverse fungal microbiota in the murine intestine. Appl. Environ. Microbiol. 72:793–801 [Google Scholar]
  18. Kuhbacher T, Ott SJ, Helwig U, Mimura T, Rizzello F. et al. 2006. Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis. Gut 55:833–41 [Google Scholar]
  19. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102:11070–75 [Google Scholar]
  20. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E. et al. 2006. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55:205–11 [Google Scholar]
  21. Mueller C, Macpherson AJ. 2006. Layers of mutualism with commensal bacteria protect us from intestinal inflammation. Gut 55:276–84 [Google Scholar]
  22. Ley RE, Peterson DA, Gordon JI. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–48 [Google Scholar]
  23. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V. et al. 2002. Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54 [Google Scholar]
  24. Swidsinski A, Loening-Baucke V, Lochs H, Hale LP. 2005. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J. Gastroenterol. 11:1131–40 [Google Scholar]
  25. Macfarlane GT, Macfarlane S. 1997. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand. J. Gastroenterol. Suppl. 222:3–9 [Google Scholar]
  26. Cummings JH, Macfarlane GT. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70:443–59 [Google Scholar]
  27. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ. et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–59 [Google Scholar]
  28. Gendler SJ, Spicer AP. 1995. Epithelial mucin genes. Annu. Rev. Physiol. 57:607–34 [Google Scholar]
  29. van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP. et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131:117–29 [Google Scholar]
  30. Kindon H, Pothoulakis C, Thim L, Lynch-Devaney K, Podolsky DK. 1995. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology 109:516–23 [Google Scholar]
  31. Kyo K, Muto T, Nagawa H, Lathrop GM, Nakamura Y. 2001. Associations of distinct variants of the intestinal mucin gene MUC3A with ulcerative colitis and Crohn's disease. J. Hum. Genet. 46:5–20 [Google Scholar]
  32. Brandtzaeg P, Halstensen TS, Kett K, Krajci P, Kvale D. et al. 1989. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 97:1562–84 [Google Scholar]
  33. Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N. et al. 2004. B cell receptor signal strength determines B cell fate. Nat. Immunol. 5:317–27 [Google Scholar]
  34. Macpherson AJ, Harris NL. 2004. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4:478–85 [Google Scholar]
  35. Lai P, So A, Mayer L. 1997. Gastrointestinal manifestations of primary immunodeficiency disorders. Semin. Gastrointest. Dis. 8:22–32 [Google Scholar]
  36. Yoshida M, Kobayashi K, Kuo TT, Bry L, Glickman JN. et al. 2006. Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J. Clin. Invest. 116:2142–51 [Google Scholar]
  37. Akira S. 2001. Toll-like receptors and innate immunity. Adv. Immunol. 78:1–56 [Google Scholar]
  38. Janeway CAJ, Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197–216 [Google Scholar]
  39. Cario E, Brown D, McKee M, Lynch-Devaney K, Gerken G, Podolsky DK. 2002. Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Pathol. 160:165–73 [Google Scholar]
  40. Abreu MT, Arnold ET, Thomas LS, Gonsky R, Zhou Y. et al. 2002. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277:20431–37 [Google Scholar]
  41. Golenbock DT, Hampton RY, Qureshi N, Takayama K, Raetz CR. 1991. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266:19490–98 [Google Scholar]
  42. Pedersen G, Andresen L, Matthiessen MW, Rask-Madsen J, Brynskov J. 2005. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin. Exp. Immunol. 141:298–306 [Google Scholar]
  43. Berger J, Moller DE. 2002. The mechanisms of action of PPARs. Annu. Rev. Med. 53:409–35 [Google Scholar]
  44. Kelly D, Campbell JI, King TP, Grant G, Jansson EA. et al. 2004. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat. Immunol. 5:104–12 [Google Scholar]
  45. Dubuquoy L, Jansson EA, Deeb S, Rakotobe S, Karoui M. et al. 2003. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 124:1265–76 [Google Scholar]
  46. Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L. et al. 2004. Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–91 [Google Scholar]
  47. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M. et al. 2005. Reduced Paneth cell α-defensins in ileal Crohn's disease. Proc. Natl. Acad. Sci. USA 102:18129–34 [Google Scholar]
  48. Selsted ME, Ouellette AJ. 2005. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6:551–57 [Google Scholar]
  49. Gewirtz AT, McCormick B, Neish AS, Petasis NA, Gronert K. et al. 1998. Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. J. Clin. Invest. 101:1860–69 [Google Scholar]
  50. Hatoum OA, Binion DG. 2005. The vasculature and inflammatory bowel disease: contribution to pathogenesis and clinical pathology. Inflamm. Bowel. Dis. 11:304–13 [Google Scholar]
  51. Korzenik JR, Dieckgraefe BK. 2000. Is Crohn's disease an immunodeficiency? A hypothesis suggesting possible early events in the pathogenesis of Crohn's disease. Dig. Dis. Sci. 45:1121–29 [Google Scholar]
  52. Haruta J, Kusugami K, Kuroiwa A, Ina K, Shinoda M. et al. 1992. Phenotypic and functional analysis of lamina propria mononuclear cells from colonoscopic biopsy specimens in patients with ulcerative colitis. Am. J. Gastroenterol. 87:448–54 [Google Scholar]
  53. Wei B, Velazquez P, Turovskaya O, Spricher K, Aranda R. et al. 2005. Mesenteric B cells centrally inhibit CD4+ T cell colitis through interaction with regulatory T cell subsets. Proc. Natl. Acad. Sci. USA 102:2010–15 [Google Scholar]
  54. Meresse B, Curran SA, Ciszewski C, Orbelyan G, Setty M. et al. 2006. Reprogramming of CTLs into natural killer-like cells in celiac disease. J. Exp. Med. 203:1343–55 [Google Scholar]
  55. Yokoyama WM, Plougastel BF. 2003. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3:304–16 [Google Scholar]
  56. Bilsborough J, Viney JL. 2004. Gastrointestinal dendritic cells play a role in immunity, tolerance, and disease. Gastroenterology 127:300–9 [Google Scholar]
  57. Neutra MR, Frey A, Kraehenbuhl JP. 1996. Epithelial M cells: gateways for mucosal infection and immunization. Cell 86:345–48 [Google Scholar]
  58. Kelsall BL, Leon F. 2005. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol. Rev. 206:132–48 [Google Scholar]
  59. Salazar-Gonzalez RM, Niess JH, Zammit DJ, Ravindran R, Srinivasan A. et al. 2006. CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer's patches. Immunity 24:623–32 [Google Scholar]
  60. Zhao X, Sato A, Dela Cruz CS, Linehan M, Luegering A. et al. 2003. CCL9 is secreted by the follicle-associated epithelium and recruits dome region Peyer's patch CD11b+ dendritic cells. J. Immunol. 171:2797–803 [Google Scholar]
  61. Niess JH, Brand S, Gu X, Landsman L, Jung S. et al. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–58 [Google Scholar]
  62. Lucas AD, Chadwick N, Warren BF, Jewell DP, Gordon S. et al. 2001. The transmembrane form of the CX3CL1 chemokine fractalkine is expressed predominantly by epithelial cells in vivo. Am. J. Pathol. 158:855–66 [Google Scholar]
  63. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G. et al. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361–67 [Google Scholar]
  64. Rimoldi M, Chieppa M, Salucci V, Avogadri F, Sonzogni A. et al. 2005. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6:507–14 [Google Scholar]
  65. Yrlid U, Milling SW, Miller JL, Cartland S, Jenkins CD, Macpherson GG. 2006. Regulation of intestinal dendritic cell migration and activation by plasmacytoid dendritic cells, TNF-α and type 1 IFNs after feeding a TLR7/8 ligand. J. Immunol. 176:5205–12 [Google Scholar]
  66. Wang YH, Ito T, Wang YH, Homey B, Watanabe N. et al. 2006. Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity 24:827–38 [Google Scholar]
  67. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. 2004. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21:527–38 [Google Scholar]
  68. Massa F, Storr M, Lutz B. 2005. The endocannabinoid system in the physiology and pathophysiology of the gastrointestinal tract. J. Mol. Med. 83:944–54 [Google Scholar]
  69. Macpherson AJ, Smith K. 2006. Mesenteric lymph nodes at the center of immune anatomy. J. Exp. Med. 203:497–500 [Google Scholar]
  70. Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P. 2001. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204:572–81 [Google Scholar]
  71. Levings MK, Sangregorio R, Sartirana C, Moschin AL, Battaglia M. et al. 2002. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor β, but not interleukin 10, and are distinct from type 1 T regulatory cells. J. Exp. Med. 196:1335–46 [Google Scholar]
  72. Hoyne GF, Le Roux I, Corsin-Jimenez M, Tan K, Dunne J. et al. 2000. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4+ T cells. Int. Immunol. 12:177–85 [Google Scholar]
  73. Cong Y, Weaver CT, Lazenby A, Elson CO. 2002. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J. Immunol. 169:6112–19 [Google Scholar]
  74. Fuss IJ, Boirivant M, Lacy B, Strober W. 2002. The interrelated roles of TGF-β and IL-10 in the regulation of experimental colitis. J. Immunol. 168:900–8 [Google Scholar]
  75. Gurtner GJ, Newberry RD, Schloemann SR, McDonald KG, Stenson WF. 2003. Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology 125:1762–73 [Google Scholar]
  76. Katakura K, Lee J, Rachmilewitz D, Li G, Eckmann L, Raz E. 2005. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J. Clin. Invest. 115:695–702 [Google Scholar]
  77. Leithauser F, Meinhardt-Krajina T, Fink K, Wotschke B, Moller P, Reimann J. 2006. Foxp3-expressing CD103+ regulatory T cells accumulate in dendritic cell aggregates of the colonic mucosa in murine transfer colitis. Am. J. Pathol. 168:1898–909 [Google Scholar]
  78. Becker C, Wirtz S, Blessing M, Pirhonen J, Strand D. et al. 2003. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Invest. 112:693–706 [Google Scholar]
  79. Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K. 2005. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22:285–94 [Google Scholar]
  80. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T. et al. 2006. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116:1310–16 [Google Scholar]
  81. Krajina T, Leithauser F, Moller P, Trobonjaca Z, Reimann J. 2003. Colonic lamina propria dendritic cells in mice with CD4+ T cell-induced colitis. Eur. J. Immunol. 33:1073–83 [Google Scholar]
  82. Hart AL, Lammers K, Brigidi P, Vitali B, Rizzello F. et al. 2004. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53:1602–9 [Google Scholar]
  83. MacDonald TT, Monteleone G. 2005. Immunity, inflammation, and allergy in the gut. Science 307:1920–25 [Google Scholar]
  84. Sansonetti PJ. 2004. War and peace at mucosal surfaces. Nat. Rev. Immunol. 4:953–64 [Google Scholar]
  85. Cheroutre H. 2004. Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu. Rev. Immunol. 22:217–46 [Google Scholar]
  86. Leishman AJ, Naidenko OV, Attinger A, Koning F, Lena CJ. et al. 2001. T cell responses modulated through interaction between CD8αα and the nonclassical MHC class I molecule, TL. Science 294:1936–39 [Google Scholar]
  87. Madakamutil LT, Christen U, Lena CJ, Wang-Zhu Y, Attinger A. et al. 2004. CD8αα-mediated survival and differentiation of CD8 memory T cell precursors. Science 304:590–93 [Google Scholar]
  88. Burkett PR, Koka R, Chien M, Chai S, Boone DL, Ma A. 2004. Coordinate expression and trans presentation of interleukin (IL)-15Rα and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J. Exp. Med. 200:825–34 [Google Scholar]
  89. Ugrinovic S, Brooks CG, Robson J, Blacklaws BA, Hormaeche CE, Robinson JH. 2005. H2-M3 major histocompatibility complex class Ib-restricted CD8 T cells induced by Salmonella enterica serovar Typhimurium infection recognize proteins released by Salmonella serovar Typhimurium. Infect. Immun. 73:8002–8 [Google Scholar]
  90. Lo WF, Dunn CD, Ong H, Metcalf ES, Soloski MJ. 2004. Bacterial and host factors involved in the major histocompatibility complex class Ib-restricted presentation of Salmonella Hsp 60: novel pathway. Infect. Immun. 72:2843–49 [Google Scholar]
  91. Wu D, Xing GW, Poles MA, Horowitz A, Kinjo Y. et al. 2005. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc. Natl. Acad. Sci. USA 102:1351–56 [Google Scholar]
  92. Mattner J, Debord KL, Ismail N, Goff RD, Cantu CIII. et al. 2005. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–29k [Google Scholar]
  93. Kinjo Y, Wu D, Kim G, Xing GW, Poles MA. et al. 2005. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–25 [Google Scholar]
  94. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V. et al. 2003. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–69 [Google Scholar]
  95. Kawachi I, Maldonado J, Strader C, Gilfillan S. 2006. MR1-restricted Vα19i mucosal-associated invariant T cells are innate T Cells in the gut lamina propria that provide a rapid and diverse cytokine response. J. Immunol. 176:1618–27 [Google Scholar]
  96. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W. 2002. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17:629–38 [Google Scholar]
  97. Dohi T, Fujihashi K, Koga T, Shirai Y, Kawamura YI. et al. 2003. T helper type-2 cells induce ileal villus atrophy, goblet cell metaplasia, and wasting disease in T cell-deficient mice. Gastroenterology 124:672–82 [Google Scholar]
  98. Shibolet O, Kalish Y, Klein A, Alper R, Zolotarov L. et al. 2004. Adoptive transfer of ex vivo immune-programmed NKT lymphocytes alleviates immune-mediated colitis. J. Leukoc. Biol. 75:76–86 [Google Scholar]
  99. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK. 2002. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16:219–30 [Google Scholar]
  100. Makita S, Kanai T, Oshima S, Uraushihara K, Totsuka T. et al. 2004. CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells. J. Immunol. 173:3119–30 [Google Scholar]
  101. Cohavy O, Zhou J, Ware CF, Targan SR. 2005. LIGHT is constitutively expressed on T and NK cells in the human gut and can be induced by CD2-mediated signaling. J. Immunol. 174:646–53 [Google Scholar]
  102. Targan SR, Deem RL, Liu M, Wang S, Nel A. 1995. Definition of a lamina propria T cell responsive state: enhanced cytokine responsiveness of T cells stimulated through the CD2 pathway. J. Immunol. 154:664–75 [Google Scholar]
  103. Mayer L, Shao L. 2004. Therapeutic potential of oral tolerance. Nat. Rev. Immunol. 4:407–19 [Google Scholar]
  104. Duchmann R, May E, Heike M, Knolle P, Neurath M, Zum BKHM. 1999. T cell specificity and cross reactivity towards enterobacteria, Bacteroides, Bifidobacterium, and antigens from resident intestinal flora in humans. Gut 44:812–18 [Google Scholar]
  105. Kronenberg M, Rudensky A. 2005. Regulation of immunity by self-reactive T cells. Nature 435:598–604 [Google Scholar]
  106. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB. et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–38 [Google Scholar]
  107. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. 2006. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–89 [Google Scholar]
  108. Pasare C, Medzhitov R. 2004. Toll-dependent control mechanisms of CD4 T cell activation. Immunity 21:733–41 [Google Scholar]
  109. Pasare C, Medzhitov R. 2003. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–36 [Google Scholar]
  110. Mizoguchi A, Bhan AK. 2006. A case for regulatory B cells. J. Immunol. 176:705–10 [Google Scholar]
  111. Butcher EC, Picker LJ. 1996. Lymphocyte homing and homeostasis. Science 272:60–66 [Google Scholar]
  112. Agace WW, Roberts AI, Wu L, Greineder C, Ebert EC, Parker CM. 2000. Human intestinal lamina propria and intraepithelial lymphocytes express receptors specific for chemokines induced by inflammation. Eur. J. Immunol. 30:819–26 [Google Scholar]
  113. Andres PG, Beck PL, Mizoguchi E, Mizoguchi A, Bhan AK. et al. 2000. Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1+ lymphocyte-associated Th2-type immune response in the intestine. J. Immunol. 164:6303–12 [Google Scholar]
  114. Marsal J, Svensson M, Ericsson A, Iranpour AH, Carramolino L. et al. 2002. Involvement of CCL25 (TECK) in the generation of the murine small-intestinal CD8αα+CD3+ intraepithelial lymphocyte compartment. Eur. J. Immunol. 32:3488–97 [Google Scholar]
  115. Papadakis KA, Landers C, Prehn J, Kouroumalis EA, Moreno ST. et al. 2003. CC chemokine receptor 9 expression defines a subset of peripheral blood lymphocytes with mucosal T cell phenotype and Th1 or T-regulatory 1 cytokine profile. J. Immunol. 171:159–65 [Google Scholar]
  116. Kunkel EJ, Kim CH, Lazarus NH, Vierra MA, Soler D. et al. 2003. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J. Clin. Invest 111:1001–10 [Google Scholar]
  117. Hieshima K, Kawasaki Y, Hanamoto H, Nakayama T, Nagakubo D. et al. 2004. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J. Immunol. 173:3668–75 [Google Scholar]
  118. Bamias G, Martin CIII, Marini M, Hoang S, Mishina M. et al. 2003. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J. Immunol. 171:4868–74 [Google Scholar]
  119. Papadakis KA, Zhu D, Prehn JL, Landers C, Avanesyan A. et al. 2005. Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-γ production by peripheral blood and mucosal CCR9+ T lymphocytes. J. Immunol. 174:4985–90 [Google Scholar]
  120. Monteleone G, Monteleone I, Fina D, Vavassori P, Del Vecchio Blanco G. et al. 2005. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology 128:687–94 [Google Scholar]
  121. Matsuoka K, Inoue N, Sato T, Okamoto S, Hisamatsu T. et al. 2004. T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn's disease. Gut 53:1303–8 [Google Scholar]
  122. Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E. et al. 2002. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J. Exp. Med. 195:1129–43 [Google Scholar]
  123. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ. et al. 2004. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113:1296–306 [Google Scholar]
  124. Mannon PJ, Fuss IJ, Mayer L, Elson CO, Sandborn WJ. et al. 2004. Anti-interleukin-12 antibody for active Crohn's disease. N. Engl. J. Med. 351:2069–79 [Google Scholar]
  125. Reinisch W, Hommes DW, Van Assche G, Colombel JF, Gendre JP. et al. 2006. A dose escalating, placebo controlled, double blind, single dose and multidose, safety and tolerability study of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe Crohn's disease. Gut 55:1138–44 [Google Scholar]
  126. Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B. et al. 2006. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25:309–18 [Google Scholar]
  127. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. 2006. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–88 [Google Scholar]
  128. Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M. et al. 2004. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J. Clin. Invest. 113:1490–97 [Google Scholar]
  129. Heller F, Florian P, Bojarski C, Richter J, Christ M. et al. 2005. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129:550–64 [Google Scholar]
  130. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP. et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603 [Google Scholar]
  131. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF. et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603–6 [Google Scholar]
  132. Strober W, Murray PJ, Kitani A, Watanabe T. 2006. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 6:9–20 [Google Scholar]
  133. Ahmad T, Armuzzi A, Bunce M, Mulcahy-Hawes K, Marshall SE. et al. 2002. The molecular classification of the clinical manifestations of Crohn's disease. Gastroenterology 122:854–66 [Google Scholar]
  134. Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J. et al. 2002. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122:867–74 [Google Scholar]
  135. Abreu MT, Taylor KD, Lin YC, Hang T, Gaiennie J. et al. 2002. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn's disease. Gastroenterology 123:679–88 [Google Scholar]
  136. Giallourakis C, Stoll M, Miller K, Hampe J, Lander ES. et al. 2003. IBD5 is a general risk factor for inflammatory bowel disease: replication of association with Crohn disease and identification of a novel association with ulcerative colitis. Am. J. Hum. Genet. 73:205–11 [Google Scholar]
  137. Vermeire S, Pierik M, Hlavaty T, Claessens G, van Schuerbeeck N. et al. 2005. Association of organic cation transporter risk haplotype with perianal penetrating Crohn's disease but not with susceptibility to IBD. Gastroenterology 129:1845–53 [Google Scholar]
  138. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q. et al. 2004. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet. 36:471–75 [Google Scholar]
  139. Panwala CM, Jones JC, Viney JL. 1998. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J. Immunol. 161:5733–44 [Google Scholar]
  140. Schwab M, Schaeffeler E, Marx C, Fromm MF, Kaskas B. et al. 2003. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology 124:26–33 [Google Scholar]
  141. Ho GT, Nimmo ER, Tenesa A, Fennell J, Drummond H. et al. 2005. Allelic variations of the multidrug resistance gene determine susceptibility and disease behavior in ulcerative colitis. Gastroenterology 128:288–96 [Google Scholar]
  142. Potocnik U, Ferkolj I, Glavac D, Dean M. 2004. Polymorphisms in multidrug resistance 1 (MDR1) gene are associated with refractory Crohn disease and ulcerative colitis. Genes. Immun. 5:530–39 [Google Scholar]
  143. Stoll M, Corneliussen B, Costello CM, Waetzig GH, Mellgard B. et al. 2004. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat. Genet. 36:476–80 [Google Scholar]
  144. Taylor KD, Plevy SE, Yang H, Landers CJ, Barry MJ. et al. 2001. ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn's disease. Gastroenterology 120:1347–55 [Google Scholar]
  145. Autschbach F, Eisold S, Hinz U, Zinser S, Linnebacher M. et al. 2005. High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn's disease. Gut 54:944–49 [Google Scholar]
  146. Naser SA, Ghobrial G, Romero C, Valentine JF. 2004. Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn's disease. Lancet 364:1039–44 [Google Scholar]
  147. Suenaga K, Yokoyama Y, Nishimori I, Sano S, Morita M. et al. 1999. Serum antibodies to Mycobacterium paratuberculosis in patients with Crohn's disease. Dig. Dis. Sci. 44:1202–7 [Google Scholar]
  148. Gui GP, Thomas PR, Tizard ML, Lake J, Sanderson JD, Hermon-Taylor J. 1997. Two-year-outcomes analysis of Crohn's disease treated with rifabutin and macrolide antibiotics. J. Antimicrob. Chemother. 39:393–400 [Google Scholar]
  149. Collins MT, Lisby G, Moser C, Chicks D, Christensen S. et al. 2000. Results of multiple diagnostic tests for Mycobacterium avium subsp. paratuberculosis in patients with inflammatory bowel disease and in controls. J. Clin. Microbiol. 38:4373–81 [Google Scholar]
  150. Thomas GA, Swift GL, Green JT, Newcombe RG, Braniff-Mathews C. et al. 1998. Controlled trial of antituberculous chemotherapy in Crohn's disease: a five year follow up study. Gut 42:497–500 [Google Scholar]
  151. Ryan P, Kelly RG, Lee G, Collins JK, O'Sullivan GC. et al. 2004. Bacterial DNA within granulomas of patients with Crohn's disease—detection by laser capture microdissection and PCR. Am. J. Gastroenterol. 99:1539–43 [Google Scholar]
  152. Ellingson JL, Cheville JC, Brees D, Miller JM, Cheville NF. 2003. Absence of Mycobacterium avium subspecies paratuberculosis components from Crohn's disease intestinal biopsy tissues. Clin. Med. Res. 1:217–26 [Google Scholar]
  153. Clarkston WK, Presti ME, Petersen PF, Zachary PEJ, Fan WX. et al. 1998. Role of Mycobacterium paratuberculosis in Crohn's disease: a prospective, controlled study using polymerase chain reaction. Dis. Colon Rectum. 41:195–99 [Google Scholar]
  154. Cellier C, De Beenhouwer H, Berger A, Penna C, Carbonnel F. et al. 1998. Mycobacterium paratuberculosis and Mycobacterium avium subsp. silvaticum DNA cannot be detected by PCR in Crohn's disease tissue. Gastroenterol. Clin. Biol 22:675–78 [Google Scholar]
  155. Sutton CL, Kim J, Yamane A, Dalwadi H, Wei B. et al. 2000. Identification of a novel bacterial sequence associated with Crohn's disease. Gastroenterology 119:23–28 [Google Scholar]
  156. Braun J, Targan SR. 2006. Multiparameter analysis of immunogenetic mechanisms in clinical diagnosis and management of inflammatory bowel disease. Adv. Exp. Med. Biol. 579:209–18 [Google Scholar]
  157. Targan SR, Landers CJ, Yang H, Lodes MJ, Cong Y. et al. 2005. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn's disease. Gastroenterology 128:2020–28 [Google Scholar]
  158. Dubinsky MC, Lin YC, Dutridge D, Picornell Y, Landers CJ. et al. 2006. Serum immune responses predict rapid disease progression among children with Crohn's disease: immune responses predict disease progression. Am. J. Gastroenterol. 101:360–67 [Google Scholar]
  159. Lu W, Hisatsune A, Koga T, Kato K, Kuwahara I. et al. 2006. Cutting edge: enhanced pulmonary clearance of Pseudomonas aeruginosa by Muc1 knockout mice. J. Immunol. 176:3890–94 [Google Scholar]
  160. Tallant T, Deb A, Kar N, Lupica J, de Veer MJ, DiDonato JA. 2004. Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-κB and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol. 4:33 [Google Scholar]
  161. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. 2002. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–7 [Google Scholar]
  162. Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak-Rothstein A. 2003. Activation of autoreactive B cells by CpG dsDNA. Immunity 19:837–47 [Google Scholar]
  163. Gewirtz AT, Vijay-Kumar M, Brant SR, Duerr RH, Nicolae DL, Cho JH. 2006. Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn's disease. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G1157–63 [Google Scholar]
  164. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL. et al. 2004. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127:412–21 [Google Scholar]
  165. Glasser AL, Boudeau J, Barnich N, Perruchot MH, Colombel JF, Darfeuille-Michaud A. 2001. Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death. Infect. Immun. 69:5529–37 [Google Scholar]
  166. Boudeau J, Glasser AL, Masseret E, Joly B, Darfeuille-Michaud A. 1999. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect. Immun. 67:4499–509 [Google Scholar]
  167. Shoemaker NB, Vlamakis H, Hayes K, Salyers AA. 2001. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 67:561–68 [Google Scholar]
  168. Selby WS. 2004. Mycobacterium avium subspecies paratuberculosis bacteraemia in patients with inflammatory bowel disease. Lancet 364:1013–14 [Google Scholar]
  169. Wei B, Dalwadi H, Gordon LK, Landers CJ, Bruckner D. et al. 2001. Molecular cloning of a Bacteroides caccae TonB-linked outer membrane protein associated with inflammatory bowel disease. Infect. Immun. 69:6044–54 [Google Scholar]
  170. Wei B, Huang T, Dalwadi H, Sutton CL, Bruckner D, Braun J. 2002. Pseudomonas fluorescens encodes the Crohn's disease-associated I2 sequence and T-cell superantigen. Infect. Immun. 70:6567–75 [Google Scholar]
  171. Mei L, Targan SR, Landers CJ, Dutridge D, Ippoliti A. et al. 2006. Familial expression of anti-Escherichia coli outer membrane porin C in relatives of patients with Crohn's disease. Gastroenterology 130:1078–85 [Google Scholar]
  172. Arnott ID, Landers CJ, Nimmo EJ, Drummond HE, Smith BK. et al. 2004. Sero-reactivity to microbial components in Crohn's disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. Am. J. Gastroenterol. 99:2376–84 [Google Scholar]
  173. Mow WS, Landers CJ, Steinhart AH, Feagan BG, Croitoru K. et al. 2004. High-level serum antibodies to bacterial antigens are associated with antibiotic-induced clinical remission in Crohn's disease: a pilot study. Dig. Dis. Sci 49:1280–86 [Google Scholar]
  174. Israeli E, Grotto I, Gilburd B, Balicer RD, Goldin E. et al. 2005. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut 54:1232–36 [Google Scholar]
  175. Schultz M, Timmer A, Herfarth HH, Sartor RB, Vanderhoof JA, Rath HC. 2004. Lactobacillus GG in inducing and maintaining remission of Crohn's disease. BMC Gastroenterol. 4:5 [Google Scholar]
  176. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P. et al. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–54 [Google Scholar]
  177. Isaacs KL, Lewis JD, Sandborn WJ, Sands BE, Targan SR. 2005. State of the art: IBD therapy and clinical trials in IBD. Inflamm. Bowel. Dis. 11:(Suppl. 1) S3–12 [Google Scholar]
/content/journals/10.1146/annurev.pathol.1.110304.100128
Loading
/content/journals/10.1146/annurev.pathol.1.110304.100128
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error