1932

Abstract

Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-062922-060125
2023-02-15
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/animal/11/1/annurev-animal-062922-060125.html?itemId=/content/journals/10.1146/annurev-animal-062922-060125&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    World Health Organ 2020. Zoonoses. Fact Sheet, World Health Organ. Geneva: https://www.who.int/news-room/fact-sheets/detail/zoonoses
  2. 2.
    Taylor LH, Latham SM, Woolhouse MEJ. 2001. Risk factors for human disease emergence. Philos. Trans. R. Soc. B 356:983–89
    [Google Scholar]
  3. 3.
    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D et al. 2008. Global trends in emerging infectious diseases. Nature 451:990–93
    [Google Scholar]
  4. 4.
    Haider N, Rothman-Ostrow P, Osman AY, Arruda LB, Macfarlane-Berry L et al. 2020. COVID-19—zoonosis or emerging infectious disease?. Front. Public Health 8:596944
    [Google Scholar]
  5. 5.
    Worldometer 2022. COVID-19 coronavirus pandemic updated June 18, 2022. https://www.worldometers.info/coronavirus/
  6. 6.
    UN Dev. Progr 2008. Human Development Report 2007/2008: Fighting Climate Change: Human Solidarity in a Divided World London: Palgrave Macmillan
  7. 7.
    Delgado C, Rosegrant M, Steinfeld H, Ehui S, Courbois C. 2001. Livestock to 2020: the next food revolution. Outlook Agric. 30:127–29
    [Google Scholar]
  8. 8.
    Jones PG, Thornton PK. 2009. Croppers to livestock keepers: livelihood transitions to 2050 in Africa due to climate change. Environ. Sci. Policy 12:427–37
    [Google Scholar]
  9. 9.
    Tomley FM, Shirley MW. 2009. Livestock infectious diseases and zoonoses. Philos. Trans. R. Soc. B 364:15302637–42
    [Google Scholar]
  10. 10.
    Alexander DJ. 2007. An overview of the epidemiology of avian influenza. Vaccine 25:5637–44
    [Google Scholar]
  11. 11.
    Velkers FC, Bouma A, Matthijs MG, Koch G, Westendorp ST, Stegeman JA. 2006. Outbreak of avian influenza H7N3 on a turkey farm in the Netherlands. Vet. Rec. 159:403–5
    [Google Scholar]
  12. 12.
    Daszak P, Cunningham A, Hyatt AD. 2001. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 78:103–16
    [Google Scholar]
  13. 13.
    Pulliam JR, Dushoff J. 2009. Ability to replicate in the cytoplasm predicts zoonotic transmission of livestock viruses. J. Infect. Dis. 199:565–68
    [Google Scholar]
  14. 14.
    Haydon DT, Cleaveland S, Taylor LH, Laurenson MK. 2002. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg. Infect. Dis. 8:121468–73
    [Google Scholar]
  15. 15.
    Cent. Dis. Control Prev 2012. Principles of Epidemiology Lesson 1, Section 10 Atlanta: Cent. Dis. Control Prev. https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section10.html
  16. 16.
    Int. Comm. Taxon. Viruses 2022. Negative-sense RNA viruses: Rhabdoviridae, genus Lyssavirus. Virus Taxonomy: The ICTV Report on Virus Classification and Taxon Nomenclature https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-viruses/w/rhabdoviridae/795/genus-lyssavirus
    [Google Scholar]
  17. 17.
    Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A et al. 2005. Fruit bats as reservoir of Ebola virus. Nature 438:575–76
    [Google Scholar]
  18. 18.
    Swanepoel R, Smit SB, Rollin PE, Formenty P, Leman PA et al. 2007. Studies of reservoir hosts for Marburg virus. Emerg. Infect. Dis. 13:121847–51
    [Google Scholar]
  19. 19.
    Koch LK, Cunze S, Kochmann J, Klimpel S. 2020. Bats as putative Zaire ebolavirus reservoir hosts and their habitat suitability in Africa. Sci. Rep. 10:14268
    [Google Scholar]
  20. 20.
    Sick F, Beer M, Kampen H, Wernike K. 2019. Culicoides biting midges—underestimated vectors for arboviruses of public health and veterinary importance. Viruses 11:4376
    [Google Scholar]
  21. 21.
    Meiswinkel R, Nevill EM, Venter GJ 1994. Vectors: Culicoides spp. Infectious Diseases of Livestock with Special Reference to Southern Africa JAW Coetzer, GR Thomson, RC Tustin 68–89 Cape Town: Oxford Univ. Press
    [Google Scholar]
  22. 22.
    Carpenter S, Veronesi E, Mullens B, Venter G. 2015. Vector competence of Culicoides for arboviruses: three major periods of research, their influence on current studies and future directions. Rev. Sci. Tech. 34:97–112
    [Google Scholar]
  23. 23.
    van Eeden C, Williams JH, Gerdes TG, van Wilpe E, Viljoen A et al. 2012. Shuni virus as cause of neurologic disease in horses. Emerg. Infect. Dis. 18:2318–21
    [Google Scholar]
  24. 24.
    Golender N, Bumbarov V, Assis I, Beer M, Khinich Y et al. 2019. Shuni virus in Israel: neurological disease and fatalities in cattle. Transbound. Emerg. Dis. 66:31126–31
    [Google Scholar]
  25. 25.
    Causey OR, Kemp GE, Causey CE, Lee VH. 1972. Isolations of Simbu-group viruses in Ibadan, Nigeria 1964–69, including the new types Sango, Shamonda, Sabo and Shuni. Ann. Trop. Med. Parasitol. 66:357–62
    [Google Scholar]
  26. 26.
    McIntosh BM, Jupp PG, De Sousa J. 1972. Further isolations of the arboviruses from mosquitoes collected in Tongaland, South Africa, 1960–1968. J. Med. Entomol. 9:155–59
    [Google Scholar]
  27. 27.
    Moore DL, Causey OR, Carey DE, Reddy S, Cooke AR et al. 1975. Arthropod-borne viral infections of man in Nigeria, 1964–1970. Ann. Trop. Med. Parasitol. 69:49–64
    [Google Scholar]
  28. 28.
    van Eeden C, Swanepoel R, Venter M. 2014. Antibodies against West Nile and Shuni viruses in veterinarians, South Africa. Emerg. Infect. Dis. 20:1409–11
    [Google Scholar]
  29. 29.
    Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19:3531–45
    [Google Scholar]
  30. 30.
    Luby SP, Gurley ES, Hossain MJ. 2012. Transmission of human infection with Nipah virus. In Improving Food Safety Through a One Health Approach Washington, DC: Natl. Acad. Press
    [Google Scholar]
  31. 31.
    Drake N. 2014. Why bats are such good hosts for Ebola and other deadly diseases. WIRED Oct. 15. https://www.wired.com/2014/10/bats-ebola-disease-reservoir-hosts/
    [Google Scholar]
  32. 32.
    Cent. Dis. Control Prev 2014. Viral hemorrhagic fevers (VHFs): Lassa fever: transmission https://www.cdc.gov/vhf/lassa/transmission/index.html
  33. 33.
    Childs JE, Ksiazek TG, Spiropoulou CF, Krebs JW, Morzunov S et al. 1994. Serologic and genetic identification of Peromyscus maniculatus as the primary rodent reservoir for a new hantavirus in the southwestern United States. J. Infect. Dis. 169:61271–80
    [Google Scholar]
  34. 34.
    Cent. Dis. Control Prev 2019. Herpes B virus: transmission. https://www.cdc.gov/herpesbvirus/transmission.html
  35. 35.
    Wikipedia 2022. Megacity http://en.wikipedia.org/wiki/Megacity
  36. 36.
    Hu B, Guo H, Zhou P, Shi Z-L. 2021. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19:3141–54
    [Google Scholar]
  37. 37.
    Capua I, Alexander DJ. 2004. Avian influenza: recent developments. Avian Pathol. 33:4393–404
    [Google Scholar]
  38. 38.
    Tiensin T, Chaitaweesub P, Songserm T, Chaisingh A, Hoonsuwan W et al. 2005. Highly pathogenic avian influenza H5N1, Thailand, 2004. Emerg. Infect. Dis. 11:1664–72
    [Google Scholar]
  39. 39.
    World Health Organ 2021. Life expectancy and leading causes of death and disability. Glob. Health Estim., World Health Organ. Geneva: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates
  40. 40.
    Woolhouse ME, Gowtage-Sequeria S. 2005. Host range and emerging and re-emerging pathogens. Emerg. Infect. Dis. 11:1842–47
    [Google Scholar]
  41. 41.
    MacLachlan NJ, Dubovi EJ 2011. Epidemiology and control of viral diseases. Fenner's Veterinary Virology NJ MacLachlan, EJ Dubovi 125–48 London: Academic
    [Google Scholar]
  42. 42.
    Perry BD, Grace D, Sones K. 2011. Current drivers and future directions of global livestock disease dynamics. PNAS 110:5220871–77
    [Google Scholar]
  43. 43.
    Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA et al. 2012. Ecology of zoonoses: natural and unnatural histories. Lancet 380:1936–45
    [Google Scholar]
  44. 44.
    Jones BA, Grace D, Kock R, Alonso S, Rushton J et al. 2013. Zoonosis emergence linked to agricultural intensification and environmental change. PNAS 110:8399–404
    [Google Scholar]
  45. 45.
    Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD et al. 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–52
    [Google Scholar]
  46. 46.
    Horby PW, Hoa NT, Pfeiffer DU, Wertheim HFL 2014. Drivers of emerging zoonotic infectious diseases. Confronting Emerging Zoonoses A Yamada, LH Kahn, B Kaplan, TP Monath, J Woodall, L Conti 13–26 Tokyo: Springer
    [Google Scholar]
  47. 47.
    Int. Comm. Taxon. Viruses 2021. ICTV master species list 2021.v1 (MSL #37). https://talk.ictvonline.org/files/master-species-lists/m/msl/13425
  48. 48.
    Gorman OT, Bean WJ, Webster RG. 1992. Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. Curr. Top. Microbiol. Immunol. 176:75–97
    [Google Scholar]
  49. 49.
    Cent. Dis. Control Prev 1997. Isolation of avian influenza A (H5N1) viruses from humans—Hong Kong, May-December 1997. MMWR 46:1204–7
    [Google Scholar]
  50. 50.
    Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA et al. 2012. A distinct lineage of influenza A virus from bats. PNAS 109:4269–74
    [Google Scholar]
  51. 51.
    Tong SX, Zhu X, Li Y, Shi M, Zhang J et al. 2013. New world bats harbor diverse influenza A viruses. PLOS Pathog. 9:10e1003657
    [Google Scholar]
  52. 52.
    Claas EC, de Jong JC, van Beek R, Rimmelzwaan GF, Osterhaus AD. 1998. Human influenza virus A/HongKong/156/97 (H5N1) infection. Vaccine 16:977–78
    [Google Scholar]
  53. 53.
    Bragstad K, Jørgensen PH, Handberg K, Hammer AS, Kabell S, Fomsgaard A. 2007. First introduction of highly pathogenic H5N1 avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe. Virol. J. 4:43
    [Google Scholar]
  54. 54.
    Ducatez MF, Olinger CM, Owoade AA, Tarnagda Z, Tahita MC et al. 2007. Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa. J. Gen. Virol. 88:2297–306
    [Google Scholar]
  55. 55.
    Shortridge KF. 1999. Poultry and the influenza H5N1 outbreak in Hong Kong, 1997: abridged chronology and virus isolation. Vaccine 17:Suppl.S26–29
    [Google Scholar]
  56. 56.
    Masters PS, Perlman S 2013. Coronaviridae. In Field's Virology, Vol. 2 DM Knipe, PM Howley 825–58 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  57. 57.
    Zhong NS, Zheng BJ, Li YM, Poon LLM, Xie ZH et al. 2003. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet 362:1353–58
    [Google Scholar]
  58. 58.
    Woo PCY, Lau SKP, Huang Y, Yuen K-Y. 2009. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. 234: 10:1117–27
    [Google Scholar]
  59. 59.
    de Wit E, van Doremalen N, Falzarano D, Munster VJ. 2016. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14:8523–34
    [Google Scholar]
  60. 60.
    Li J, Lai S, Gao GF, Shi W. 2021. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature 600:408–18
    [Google Scholar]
  61. 61.
    World Health Organ 2005. Severe acute respiratory syndrome (SARS). https://www.who.int/health-topics/severe-acute-respiratory-syndrome#tab=tab_1
  62. 62.
    Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367:1814–20
    [Google Scholar]
  63. 63.
    Oboho I, Tomczyk SM, Al-Asmari AM, Banjar AA, Al-Mugti H et al. 2015. MERS-CoV outbreak in Jeddah—a link to health care facilities. N. Engl. J. Med. 372:9846–54
    [Google Scholar]
  64. 64.
    Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW et al. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. PNAS 102:3914040–45
    [Google Scholar]
  65. 65.
    Lau SKP, Li KSM, Tsang AKL, Lam CSF, Ahmed S et al. 2013. Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of Pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. J. Virol. 87:8638–50
    [Google Scholar]
  66. 66.
    Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC et al. 2014. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. mBio 5:e00884–14
    [Google Scholar]
  67. 67.
    Zhou P, Yang XL, Wang XG, Hu B, Zhang L et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:7798270–73
    [Google Scholar]
  68. 68.
    Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. 2020. The proximal origin of SARS-CoV-2. Nat. Med. 26:4450–52
    [Google Scholar]
  69. 69.
    Forni D, Cagliani R, Clerici M, Sironi M. 2017. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25:35–48
    [Google Scholar]
  70. 70.
    Vijaykrishna D, Smith GJD, Zhang JX, Peiris JSM, Chen H, Guan Y. 2007. Evolutionary insights into the ecology of coronaviruses. J. Virol. 81:84012–20
    [Google Scholar]
  71. 71.
    Leopardi S, Oluwayelu D, Meseko C, Marciano S, Tassoni L et al. 2016. The close genetic relationship of lineage D Betacoronavirus from Nigerian and Kenyan straw-colored fruit bats (Eidolon helvum) is consistent with the existence of a single epidemiological unit across sub-Saharan Africa. Virus Genes 52:4573–77
    [Google Scholar]
  72. 72.
    Frutos R, Serra-Cobo J, Chen T, Devaux CA 2020. COVID-19: time to exonerate the pangolin from the transmission of SARS-CoV-2 to humans. Infect. Genet. Evol. 84:104493
    [Google Scholar]
  73. 73.
    Cui J, Li F, Shi ZL. 2019. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17:181–92
    [Google Scholar]
  74. 74.
    Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE et al. 2006. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg. Infect. Dis. 12:235–40
    [Google Scholar]
  75. 75.
    Hughes JM, Wilson ME, Halpin K, Hyatt AD, Plowright RK et al. 2007. Emerging viruses: coming in on a wrinkled wing and a prayer. Clin. Infect. Dis. 44:5711–17
    [Google Scholar]
  76. 76.
    Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS et al. 1999. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–59
    [Google Scholar]
  77. 77.
    Mohd Nor MN, Gan CH, Ong BL 2000. Nipah virus infection of pigs in peninsular Malaysia. Rev. Sci. Tech. 19:160–65
    [Google Scholar]
  78. 78.
    Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM et al. Foodborne transmission of Nipah virus, Bangladesh. Emerg. Infect. Dis. 12:1888–94
    [Google Scholar]
  79. 79.
    Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A et al. 2000. Nipah virus: a recently emergent deadly paramyxovirus. Science 288:1432–35
    [Google Scholar]
  80. 80.
    Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S et al. 2009. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg. Infect. Dis. 15:1229–35
    [Google Scholar]
  81. 81.
    Murray K, Selleck P, Hooper P, Hyatt A, Gould A et al. 1995. A morbillivirus that caused fatal disease in horses and humans. Science 268:94–97
    [Google Scholar]
  82. 82.
    Halpin K, Young P, Field H 1996. Identification of likely natural hosts for equine morbillivirus. Commun. Dis. Intell. 20:476
    [Google Scholar]
  83. 83.
    Williamson MM, Hooper PT, Selleck PW, Gleeson LJ, Daniels PW et al. 1998. Transmission studies of Hendra virus (equine morbilli-virus) in fruit bats, horses and cats. Aust. Vet. J. 76:813–18
    [Google Scholar]
  84. 84.
    Li M, Embury-Hyatt C, Weingartl HM. 2010. Experimental inoculation study indicates swine as a potential host for Hendra virus. Vet. Res. 41:33
    [Google Scholar]
  85. 85.
    Kirkland PD, Gabor M, Poe I, Neale K, Chaffey K et al. 2015. Hendra virus infection in dog, Australia, 2013. Emerg. Infect. Dis. 21:122182–85
    [Google Scholar]
  86. 86.
    Hayman DTS, Wang L-F, Barr J, Baker KS, Suu-Ire R et al. 2011. Antibodies to Henipavirus or Henipa-like viruses in domestic pigs in Ghana, West Africa. PLOS ONE 6:9e25256
    [Google Scholar]
  87. 87.
    Chomel BB, Sun B. 2011. Zoonoses in the bedroom. Emerg. Infect. Dis. 17:11167–72
    [Google Scholar]
  88. 88.
    People's Dispens. Sick Anim. (PDSA) 2021. PAW (PDSA Animal Wellbeing) report 2021: the essential insight into the wellbeing of UK pets Rep. PDSA Shropshire, UK: https://www.pdsa.org.uk/media/12078/pdsa-paw-report-2021.pdf
  89. 89.
    Overgaauw PA, van Zutphen L, Hoek D, Yaya FO, Roelfsema J et al. 2009. Zoonotic parasites in fecal samples and fur from dogs and cats in the Netherlands. Vet. Parasitol. 163:115–22
    [Google Scholar]
  90. 90.
    Oluwayelu DO, Aiki-Raji CO, Neba C, Ahmadu O 2011. Prevalence of avian origin H5 and H7 influenza virus antibodies in dogs in Ibadan and Sagamu, Southwestern Nigeria. Afr. J. Biomed. Res. 14:123–26
    [Google Scholar]
  91. 91.
    Oluwayelu DO, Adebiyi AI, Ohore OG. 2015. A survey of rabies virus antibodies in confined, hunting and roaming dogs in Ogun and Oyo states, southwestern Nigeria. Asian Pac. . J. Trop. Dis. 5:117–21
    [Google Scholar]
  92. 92.
    Maudlin I, Eisler MC, Welburn SC. 2009. Neglected and endemic zoonoses. 2009. Philos. Trans. R. Soc. B 364:15302777–87
    [Google Scholar]
  93. 93.
    World Health Organ 2006. The control of neglected zoonotic diseases: a route to poverty alleviation. Rep. Joint WHO/DFID-AHP Meet., Sept. 20–21, 2005, WHO Hqrs. Geneva: particip. FAO, OIE62 World Health Organ. , Geneva
  94. 94.
    Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A et al. 2015. Estimating the global burden of endemic canine rabies. PLOS Negl. Trop. Dis. 9:4e0003709
    [Google Scholar]
  95. 95.
    Fisher CR, Streicker DG, Schnell MJ. 2018. The spread and evolution of rabies virus: conquering new frontiers. Nat. Rev. Microbiol. 16:4241–55
    [Google Scholar]
  96. 96.
    World Health Organ 2013. Expert consultation on rabies 2nd Rep. World Health Organ. Geneva:
  97. 97.
    World Health Organ 2021. Rabies Fact Sheet, World Health Organ. Geneva: https://www.who.int/news-room/fact-sheets/detail/rabies
  98. 98.
    Hampson K, Dushoff J, Cleaveland S, Haydon DT, Kaare M et al. 2009. Transmission dynamics and prospects for the elimination of canine rabies. PLOS Biol. 7:3e1000053
    [Google Scholar]
  99. 99.
    Coleman PG, Fevre EM, Cleaveland S. 2004. Estimating the public health impact of rabies. Emerg. Infect. Dis. 10:1140–42
    [Google Scholar]
  100. 100.
    Singh J, Jain DC, Bhatia R, Ichhpujani RL, Harit AK et al. 2001. Epidemiological characteristics of rabies in Delhi and surrounding areas, 1998. Indian Pediatr. 38:1354–60
    [Google Scholar]
  101. 101.
    Leslie MJ, Messenger S, Rohde RE, Smith J, Cheshier R et al. 2006. Bat-associated rabies virus in skunks. Emerg. Infect. Dis. 12:81274–77
    [Google Scholar]
  102. 102.
    Garrison AR, Alkhovsky SV, Avšič-Županc T, Bente DA, Bergeron E et al. 2020. ICTV virus taxonomy profile: Nairoviridae. J. Gen. Virol. 101:798–99
    [Google Scholar]
  103. 103.
    Bannister B. 2010. Viral haemorrhagic fevers imported into nonendemic countries: risk assessment and management. Br. Med. Bull. 95:1193–225
    [Google Scholar]
  104. 104.
    Oluwayelu D, Afrough B, Adebiyi A, Varghese A, Eun-Sil P et al. 2020. Prevalence of antibodies to Crimean-Congo hemorrhagic fever virus in ruminants, Nigeria, 2015. Emerg. Infect. Dis. 26:4744–47
    [Google Scholar]
  105. 105.
    Akuffo R, Brandful JAM, Zayed A, Adjei A, Watany N et al. 2016. Crimean-Congo hemorrhagic fever virus in livestock ticks and animal handler seroprevalence at an abattoir in Ghana. BMC Infect. Dis. 16:324
    [Google Scholar]
  106. 106.
    Al-Abri SS, Abaidani IA, Fazlalipour M, Mostafavi E, Leblebicioglu H et al. 2017. Status of Crimean-Congo haemorrhagic fever in the World Health Organization Eastern Mediterranean Region: issues, challenges, and future directions. Int. J. Infect. Dis. 58:82–89
    [Google Scholar]
  107. 107.
    Food Agric. Organ 2022. Livestock systems: global distributions https://www.fao.org/livestock-systems/global-distributions/en/
  108. 108.
    Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H et al. 2004. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363:587–93
    [Google Scholar]
  109. 109.
    Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S et al. 2009. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201
    [Google Scholar]
  110. 110.
    Trifonov V, Khiabanian H, Greenbaum B, Rabadan R. 2009. The origin of the recent swine influenza A(H1N1) virus infecting humans. Eurosurveillance 14:1719193
    [Google Scholar]
  111. 112.
    Bulaga LL, Garber L, Senne DA, Myers TJ, Good R et al. 2003. Epidemiologic and surveillance studies on avian influenza in live-bird markets in New York and New Jersey, 2001. Avian Dis. 47:996–1001
    [Google Scholar]
  112. 113.
    Aiki-Raji CO, Adebiyi AI, Agbajelola VI, Adetunji SA, Lameed Q et al. 2015. Surveillance for low pathogenic avian influenza viruses in live-bird markets in Oyo and Ogun States, Nigeria. Asian Pac. J. Trop. Dis. 5:5369–73
    [Google Scholar]
  113. 114.
    Sulaiman L, Shittu I, Fusaro A, Inuwa B, Zecchin B et al. 2021. Live bird markets in Nigeria: a potential reservoir for H9N2 avian influenza viruses. Viruses 13:1445
    [Google Scholar]
  114. 115.
    Waziri MI, Abdu PA, Sa'idu L, Bello M. 2017. Seroepidemiology and assessment of risk factors for the spread of avian influenza in birds in two Nigerian states. Vet. Med. Sci. 3:227–38
    [Google Scholar]
  115. 116.
    Ritter SK. 2017. Meet the sentinels. Chem. Eng. News 95:46 https://cen.acs.org/articles/95/i46/meet-the-sentinels.html
    [Google Scholar]
  116. 117.
    Hazen EL, Abrahms B, Brodie S, Carroll G, Jacox MG et al. 2019. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17:10565–74
    [Google Scholar]
  117. 118.
    Inst. Med., Natl. Res. Counc 2008. Achieving Sustainable Global Capacity for Surveillance and Response to Emerging Diseases of Zoonotic Origin: Workshop Summary Washington, DC: Natl. Acad. Press
  118. 119.
    Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M et al. 1999. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–37
    [Google Scholar]
  119. 120.
    Taylor RM, Work TH, Hurlbut HS, Rizk F. 1956. A study of the ecology of West Nile virus in Egypt. Am. J. Trop. Med. Hyg. 5:579–620
    [Google Scholar]
  120. 121.
    Unlu I, Roy AF, Yates M, Garrett D, Bell H et al. 2009. Evaluation of surveillance methods for detection of West Nile virus activity in East Baton Rouge Parish, Louisiana, 2004–2006. J. Am. Mosq. Control Assoc. 25:126–33
    [Google Scholar]
  121. 122.
    Savage HM, Ceianu C, Nicolescu G, Karabatsos N, Lanciotti R et al. 1999. Entomologic and avian investigations of an epidemic of West Nile fever in Romania in 1996, with serologic and molecular characterization of a virus isolate from mosquitoes. Am. J. Trop. Med. Hyg. 61:4600–11
    [Google Scholar]
  122. 123.
    Chaskopoulou A, Dovas CI, Chaintoutis SC, Kashefi J, Koehler P et al. 2013. Detection and early warning of West Nile virus circulation in Central Macedonia, Greece, using sentinel chickens and mosquitoes. Vector-Borne Zoonotic Dis. 13:10723–32
    [Google Scholar]
  123. 124.
    Komar N, Panella NA, Boyce E. 2001. Exposure of domestic mammals to West Nile virus during an outbreak of human encephalitis, New York City, 1999. Emerg. Infect. Dis. 7:4736–8
    [Google Scholar]
  124. 125.
    Davila E, Fernández-Santos NA, Estrada-Franco J, Wei L, Aguilar-Durán JA et al. 2022. Domestic dogs as sentinels for West Nile virus but not Aedes-borne flaviviruses, Mexico. Emerg. Infect. Dis. 28:51071–74
    [Google Scholar]
  125. 126.
    Butler D. 2006. Thai dogs carry bird-flu virus, but will they spread it?. Nature 439:773
    [Google Scholar]
  126. 127.
    Keatts LO, Robards M, Olson SH, Hueffer K, Insley SJ et al. 2021. Implications of zoonoses from hunting and use of wildlife in North American Arctic and boreal biomes: pandemic potential, monitoring, and mitigation. Front. Public Health 9:627654
    [Google Scholar]
  127. 128.
    Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF. 2015. Emerging infectious diseases of wildlife: a critical perspective. Trends Parasitol. 31:149–59
    [Google Scholar]
  128. 129.
    Guernier V, Hochberg ME, Guegan JF. 2004. Ecology drives the worldwide distribution of human diseases. PLOS Biol. 2:e141
    [Google Scholar]
  129. 130.
    Han BA, Kramer AM, Drake JM. 2016. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32:7565–77
    [Google Scholar]
  130. 131.
    Wilkinson DA, Marshall JC, French NP, Hayman DTS. 2018. Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J. R. Soc. Interface 15:20180403
    [Google Scholar]
  131. 132.
    Borremans B, Faust C, Manlove KR, Sokolow SH, Lloyd-Smith JO. 2019. Cross-species pathogen spillover across ecosystem boundaries: mechanisms and theory. Philos. Trans. R. Soc. B 374:20180344
    [Google Scholar]
  132. 133.
    Reusken CBEM, Raj VS, Koopmans MP, Haagmans BL. 2016. Cross host transmission in the emergence of MERS coronavirus. Curr. Opin. Virol. 16:55–62
    [Google Scholar]
  133. 134.
    Pulliam JR, Epstein JH, Dushoff J, Rahman SA, Bunning M et al. 2012. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J. R. Soc. Interface 9:89–101
    [Google Scholar]
  134. 135.
    Marschall J, Hartmann K. 2008. Avian influenza A H5N1 infections in cats. J. Feline Med. Surg. 10:359–65
    [Google Scholar]
  135. [Google Scholar]
  136. 137.
    González-Barrio D. 2022. Zoonoses and wildlife: One Health approach. Animals 12:480
    [Google Scholar]
  137. 138.
    Suu-Ire RD, Obodai E, Bonney JHK, Bel-Nono SO, Ampofo W et al. 2021. Viral zoonoses of national importance in Ghana: advancements and opportunities for enhancing capacities for early detection and response. Trop. Med. 2021:8938530
    [Google Scholar]
  138. 139.
    World Health Organ., Food Agric. Organ., World Organ. Anim. Health 2018. Zero by 30: the global strategic plan to end human deaths from dog-mediated rabies by 2030 Rep. Food Agric. Organ. Geneva: https://apps.who.int/iris/bitstream/handle/10665/272756/9789241513838-eng.pdf
  139. 140.
    Cent. Dis. Control Prev 2020. One Health Zoonotic Disease Prioritization (OHZDP) Rep. Cent. Dis. Control Prev. Atlanta: https://www.cdc.gov/onehealth/what-we-do/zoonotic-disease-prioritization/index.html
  140. 141.
    Goryoka GW, Lokossou VK, Varela K, Oussayef N, Kofi B et al. 2021. Prioritizing zoonotic diseases using a multisectoral, One Health approach for The Economic Community of West African States (ECOWAS). One Health Outlook 3:24
    [Google Scholar]
  141. 142.
    Cunningham AA, Daszak P, Wood JLN. 2017. One Health, emerging infectious diseases and wildlife: Two decades of progress?. Phil. Trans. R. Soc. B 372:20160167
    [Google Scholar]
  142. 143.
    Nyatanyi T, Wilkes M, McDermott H, Nzietchueng S, Gafarasi I et al. 2017. Implementing One Health as an integrated approach to health in Rwanda. BMJ Glob. Health 2:e000121
    [Google Scholar]
  143. 144.
    Delwart EL. 2007. Viral metagenomics. Rev. Med. Virol. 17:2115–31
    [Google Scholar]
  144. 145.
    Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM et al. 2002. Genomic analysis of uncultured marine viral communities. PNAS 99:14250–55
    [Google Scholar]
  145. 146.
    Svraka S, Rosario K, Duizer E, van der Avoort H, Breitbart M, Koopmans M. 2010. Metagenomic sequencing for virus identification in a public-health setting. J. Gen. Virol. 91:2846–56
    [Google Scholar]
  146. 147.
    Wolfe ND, Dunavan CP, Diamond J. 2007. Origins of major human infectious diseases. Nature 447:279–83
    [Google Scholar]
  147. 148.
    Masembe C, Michuki G, Onyango M, Rumberia C, Norling M et al. 2012. Viral metagenomics demonstrates that domestic pigs are a potential reservoir for Ndumu virus. Virol. J. 9:218
    [Google Scholar]
  148. 149.
    Mihalov-Kovács E, Gellért Á, Marton S, Farkas SL, Fehér E, Oldal M. 2015. Candidate new rotavirus species in sheltered dogs, Hungary. Emerg. Infect. Dis. 21:660–63
    [Google Scholar]
  149. 150.
    Wu Q, Li J, Wang W, Zhou J, Wang D et al. 2021. Next-generation sequencing reveals four novel viruses associated with calf diarrhea. Viruses 13:101907
    [Google Scholar]
  150. 151.
    Belák S, Karlsson OE, Blomström AL, Berg M, Granberg F. 2013. New viruses in veterinary medicine, detected by metagenomic approaches. Vet. Microbiol. 165:1–295–101
    [Google Scholar]
  151. 152.
    Moran M, Guzman J, Ropars A-L, McDonald A, Jameson N et al. 2009. Neglected disease research and development: How much are we really spending?. PLOS Med. 6:e1000030
    [Google Scholar]
  152. 153.
    Miller RS, Sweeney SJ, Slootmaker C, Grear DA, Di Salvo PA et al. 2017. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: implications for disease risk management in North America. Sci. Rep. 7:17821
    [Google Scholar]
  153. 154.
    Paquet C, Coulombier D, Kaiser R, Ciotti M. 2006. Epidemic intelligence: a new framework for strengthening disease surveillance in Europe. Euro Surveill. 11:12212–14
    [Google Scholar]
  154. 155.
    Wilburn J, O'Connor C, Walsh AL, Morgan D 2019. Identifying potential emerging threats through epidemic intelligence activities—looking for the needle in the haystack?. Int. J. Infect. Dis. 89:146–53
    [Google Scholar]
  155. 156.
    World Health Organ 2005. Strengthening health security by implementing the International Health Regulations Publ. World Health Organ. Geneva: https://www.who.int/publications/i/item/9789241580496
  156. 157.
    Sahin U, Karikó K, Türeci Ö. 2014. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13:759–80
    [Google Scholar]
  157. 158.
    Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S et al. 2020. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586:567–71
    [Google Scholar]
/content/journals/10.1146/annurev-animal-062922-060125
Loading
/content/journals/10.1146/annurev-animal-062922-060125
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error