Poaching and the international trade in wildlife are escalating problems driven by poverty and greed and coordinated by increasingly sophisticated criminal networks. Biodiversity loss, caused by habitat change, is exacerbated by poaching, and species globally are facing extinction. Forensic evidence underpins human and animal criminal investigations and is critical in criminal prosecution and conviction. The application of forensic tools, particularly forensic genetics, to animal case work continues to advance, providing the systems to confront the challenges of wildlife investigations. This article discusses some of these tools, their development, and implementations, as well as recent advances. Examples of cases are provided in which forensic evidence played a key role in obtaining convictions, thus laying the foundation for the future application of techniques to disrupt the criminal networks and safeguard biodiversity through species protection.

Keyword(s): courtcrimeDNAevidencewildlife

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1.
    Thompsell A. 2020. A brief history of poaching in Africa. ThoughtCo. Jan. 29. https://www.thoughtco.com/poaching-in-africa-43351
    [Google Scholar]
  2. 2.
    Anagnostou M, Doberstein B. 2021. Illegal wildlife trade and other organised crime: a scoping review. Ambio 51:1615–31
    [Google Scholar]
  3. 3.
    Maguire T, Haenlein C. 2015. An illusion of complicity terrorism and the illegal ivory trade in East Africa Occas. Pap. R. United Serv. Inst. Def. Secur. Stud. London:
  4. 4.
    Brown AO, Frankham GJ, Bond L, Stuart BH, Johnson RN, Ueland M. 2021. An overview of risk investment in the transnational illegal wildlife trade from stakeholder perspectives. WIREs Forensic Sci. 3:e1397
    [Google Scholar]
  5. 5.
    Nellemann C, Henriksen R, Kreilhuber A, Stewart D, Kotsovou M et al. 2016. The rise of environmental crime – a growing threat to natural resources peace, development and security UNEP-Interpol Rapid Response Assess., UN Environ. Progr. Nairobi:
  6. 6.
    Smart U, Cihlar JC, Budowle B. 2021. International wildlife trafficking: a perspective on the challenges and potential forensic genetics solutions. Forensic Sci. Int. Genet. 54:102551
    [Google Scholar]
  7. 7.
    ‘t Sas-Rolfes M, Challender DWS, Hinsley A, Veríssimo D, Milner-Gulland EJ. 2019. Illegal wildlife trade: scale, processes, and governance. Annu. Rev. Environ. Resour. 44:201–28
    [Google Scholar]
  8. 8.
    Coals P, Moorhouse TP, D'Cruze NC, Macdonald DW, Loveridge AJ 2020. Preferences for lion and tiger bone wines amongst the urban public in China and Vietnam. J. Nat. Conserv. 57:125874
    [Google Scholar]
  9. 9.
    Emslie RH, Milliken T, Talukdar B, Burgess G, Adcock K et al. 2019. A report from the IUCN Species Survival Commission (IUCN SSC) African and Asian Rhino Specialist Groups and TRAFFIC to the CITES Secretariat pursuant to Resolution Conf. 9.14 (Rev. CoP17) Rep. IUCN SSC Afr. Rhino Spec. Group, IUCN SSC Asian Rhino Spec. Group (AsRSG),TRAFFIC Cambridge, UK:
  10. 10.
    Stoddard E. 2021. Rhino poaching rebounds from Covid-19 containment—private reserves fight a surge. Daily Maverick Aug. 1. https://www.dailymaverick.co.za/article/2021-08-01-rhino-poaching-rebounds-from-covid-19-containment-private-reserves-fight-a-surge/
    [Google Scholar]
  11. 11.
    Carnie T. 2022. Rhino bloodbath in KZN as poachers gun down 75 animals this year. Daily Maverick April 5. https://www.dailymaverick.co.za/article/2022-04-05-rhino-bloodbath-in-kzn-as-poachers-gun-down-75-animals-this-year/
    [Google Scholar]
  12. 12.
    Africa Geographic 2022. Kruger rhino poaching update: 75% population reduction in 10 years. Africa Geographic Jan. 20. https://africageographic.com/stories/kruger-rhino-poaching-update-75-population-reduction-in-10-years/
    [Google Scholar]
  13. 13.
    Gobush KS, Edwards CTT, Maisels F, Wittemyer G, Balfour D, Taylor RD. 2021. Loxodonta cyclotis. The IUCN Red List of Threatened Species 2021: e.T181007989A204404464 Gland, Switz.: Int. Union Conserv. Nat. Errata version
    [Google Scholar]
  14. 14.
    Almond REA, Grooten M, Petersen T. 2020. WWF 2020 Living planet report 2020: bending the curve of biodiversity loss. Rep. World Wildl. Fed. Gland, Switz:.
  15. 15.
    Cardoso P, Amponsah-Mensah K, Barreiros JP, Bouhuys J, Cheung H et al. 2021. Scientists' warning to humanity on illegal or unsustainable wildlife trade. Biol. Conserv. 263:109341
    [Google Scholar]
  16. 16.
    UN Off. Drugs Crime 2020. World wildlife crime report 2020: trafficking in protected species Rep. UN Off. Drugs Crime Vienna:
  17. 17.
    Zain S. 2020. Corrupting trade: an overview of corruption issues in illicit wildlife trade Introd. Overv., Target. Nat. Resour. Corrupt. Washington, DC: https://www.worldwildlife.org/pages/tnrc-introductory-overview-corrupting-trade-an-overview-of-corruption-issues-in-illicit-wildlife-trade
  18. 18.
    Prinsloo D, Riley-Smith S, Stevens J 2022. On the case: identifying corruption by reviewing wildlife crime court cases in southern Africa. Rep. TRAFFIC Cambridge, UK:
  19. 19.
    Nyhus PJ. 2016. Human–wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41:143–71
    [Google Scholar]
  20. 20.
    Fynn R, Kolawole O. 2020. Poaching and the problem with conservation in Africa (commentary). Mongabay March 3. https://news.mongabay.com/2020/03/poaching-and-the-problem-with-conservation-in-africa-commentary/
    [Google Scholar]
  21. 21.
    Lunstrum E, Givá N. 2020. What drives commercial poaching? From poverty to economic inequality. Biol. Conserv. 245:108505
    [Google Scholar]
  22. 22.
    Warchol GL, Zupan LL, Clack W. 2003. Transnational criminality: an analysis of the illegal wildlife market in southern Africa. Int. Crim. Justice Rev. 13:1–27
    [Google Scholar]
  23. 23.
    Trent Long M, Au B. 2020. Why are pangolins so prized in China?. China Dialogue Feb. 14. https://chinadialogue.net/en/nature/11855-podcast-why-are-pangolins-so-prized-in-china/
    [Google Scholar]
  24. 24.
    Graham-Rowe D. 2011. Biodiversity: endangered and in demand. Nature 480:S101–3
    [Google Scholar]
  25. 25.
    Thomas-Walters L, Veríssimo D, Gadsby E, Roberts D, Smith RJ. 2020. Taking a more nuanced look at behavior change for demand reduction in the illegal wildlife trade. Conserv. Sci. Pract. 2:e248
    [Google Scholar]
  26. 26.
    Still J. 2003. Use of animal products in traditional Chinese medicine: environmental impact and health hazards. Complement. Ther. Med. 11:2118–22
    [Google Scholar]
  27. 27.
    Gao Y, Clark SG. 2014. Elephant ivory trade in China: trends and drivers. Biol. Conserv. 180:23–30
    [Google Scholar]
  28. 28.
    Di Minin E, ' t Sas-Rolfes M, Selier J, Louis M, Bradshaw CJA. 2022. Dismantling the poachernomics of the illegal wildlife trade. Biol. Conserv. 265:109418
    [Google Scholar]
  29. 29.
    Rizzolo JB. 2020. Wildlife farms, stigma and harm. Animals 10:1783
    [Google Scholar]
  30. 30.
    Williams VL, ' t Sas-Rolfes MJ. 2019. Born captive: a survey of the lion breeding, keeping and hunting industries in South Africa. PLOS ONE 14:e0217409
    [Google Scholar]
  31. 31.
    Williams VL, Coals PG, de Bruyn M, Naude VN, Dalton DL, Kotzé A. 2021. Monitoring compliance of CITES lion bone exports from South Africa. PLOS ONE 16:e0249306
    [Google Scholar]
  32. 32.
    Dep. Forest. Fish. Environ 2022. Draft white paper on the conservation and sustainable use of South Africa's biodiversity. Gov. Gazette 685(46687) Pretoria, S. Afr:.
  33. 33.
    Pérez-Espona S. 2021. Conservation-focused biobanks: a valuable resource for wildlife DNA forensics. Forensic Sci. Int. 1:100017
    [Google Scholar]
  34. 34.
    Jobling MA, Gill P. 2004. Encoded evidence: DNA in forensic analysis. Nat. Rev. Genet. 5:739–51
    [Google Scholar]
  35. 35.
    Pook CE, McEwing R. 2005. Mitochondrial DNA sequences from dried snake venom: a DNA barcoding approach to the identification of venom samples. Toxicon 46:711–15
    [Google Scholar]
  36. 36.
    Peppin L, McEwing R, Carvalho GR, Ogden R. 2008. A DNA-based approach for the forensic identification of Asiatic black bear (Ursus thibetanus) in a traditional Asian medicine. J. Forensic. Sci. 53:1358–62
    [Google Scholar]
  37. 37.
    Horváth M, Martínez-Cruz B, Negro J, Kalmár L, Godoy J. 2005. An overlooked DNA for non-invasive genetic analysis in birds. J. Avian Biol. 36:84–88
    [Google Scholar]
  38. 38.
    Kumar R, Singh PJ, Nagpure NS, Kushwaha B, Srivastava SK, Lakra WS. 2007. A non-invasive technique for rapid extraction of DNA from fish scales. Indian J. Exp. Biol. 45:992–97
    [Google Scholar]
  39. 39.
    Oliveira CG, Martinez RA, Gaiotto FA. 2007. DNA extraction from bristles and quills of Chaetomys subspinosus (Rodentia: Erethizontidae) using a novel protocol. Genet. Mol. Res. 6:657–66
    [Google Scholar]
  40. 40.
    Lee PL, Prys-Jones RP. 2008. Extracting DNA from museum bird eggs, and whole genome amplification of archive DNA. Mol. Ecol. Resour. 8:551–60
    [Google Scholar]
  41. 41.
    Harper CK, Vermeulen GJ, Clarke AB, de Wet JI, Guthrie AJ. 2013. Extraction of nuclear DNA from rhinoceros horn and characterization of DNA profiling systems for white (Ceratotherium simum) and black (Diceros bicornis) rhinoceros. Forensic Sci. Int. Genet. 7:428–33
    [Google Scholar]
  42. 42.
    Potter RB, Underkoffler SC 2021. Processing the wildlife crime scene and evidence of forensic importance. Wildlife Biodiversity Conservation: Multidisciplinary and Forensic Approaches SC Underkoffler, HR Adams 323–67 Cham, Switz.: Springer Int. Publ.
    [Google Scholar]
  43. 44.
    Ellis E. 2020. Relief as court confirms conviction of notorious rhino poaching gang. Daily Maverick Nov. 25. https://www.dailymaverick.co.za/article/2020-11-25-relief-as-court-confirms-conviction-of-notorious-rhino-poaching-gang/
    [Google Scholar]
  44. 45.
    UN Off. Drugs Crime 2014. Guidelines on Methods and Procedures for Ivory Sampling and Laboratory Analysis Doc., UN Off. Drugs Crime Vienna:
  45. 46.
    Harper CK 2021. RhODIS® (The Rhinoceros DNA Index System): the application of simple forensic and genetic tools help conserve African rhinoceros. Wildlife Biodiversity Conservation: Multidisciplinary and Forensic Approaches SC Underkoffler, HR Adams 463–85 Cham, Switz.: Springer Int. Publ.
    [Google Scholar]
  46. 47.
    Grobler J. 2021. Calls for a special wildlife crime court in Namibia. Oxpeckers Feb. 24. https://oxpeckers.org/2021/02/special-wildlife-crime-court-in-namibia/
    [Google Scholar]
  47. 48.
    Smith PA, Pamment N, Cox C, Reed J, Chappell B, Plowman C. 2019. Disrupting wildlife crime: the benefits of meaningful collaboration. Forensic Sci. Int. 299:e1–e2
    [Google Scholar]
  48. 49.
    Roewer L. 2013. DNA fingerprinting in forensics: past, present, future. Investig. Genet. 4:22
    [Google Scholar]
  49. 50.
    Budowle B, Garofano P, Hellman A, Ketchum M, Kanthaswamy S et al. 2005. Recommendations for animal DNA forensic and identity testing. Int. J. Legal Med. 119:295–302
    [Google Scholar]
  50. 51.
    Linacre A, Gusmão L, Hecht W, Hellmann AP, Mayr WR et al. 2011. ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations. Forensic Sci. Int. Genet. 5:501–5
    [Google Scholar]
  51. 52.
    Ogden R, Dawnay N, McEwing R. 2009. Wildlife DNA forensics—bridging the gap between conservation genetics and law enforcement. Endanger. Species Res. 9:179–95
    [Google Scholar]
  52. 53.
    Player I. 2013. The White Rhino Saga. Johannesburg, S. Afr.: Jonathan Ball Publ.
  53. 54.
    Harper C, Ludwig A, Clarke A, Makgopela K, Yurchenko A et al. 2018. Robust forensic matching of confiscated horns to individual poached African rhinoceros. Curr. Biol. 28:R13–14
    [Google Scholar]
  54. 55.
    Butler JM, David VA, O'Brien SJ, Menotti-Raymond MA 2002. The MeowPlex: a new DNA test using tetranucleotide STR markers for the domestic cat. Profiles DNA 5:27–10
    [Google Scholar]
  55. 56.
    Wictum E, Kun T, Lindquist C, Malvick J, Vankan D, Sacks B. 2013. Developmental validation of DogFiler, a novel multiplex for canine DNA profiling in forensic casework. Forensic Sci. Int. Genet. 7:82–91
    [Google Scholar]
  56. 57.
    Cappellino A. 2022. Daubert versus Frye: navigating the standards of admissibility for expert testimony. Expert Institute April 11. https://www.expertinstitute.com/resources/insights/daubert-vs-frye-navigating-the-standards-of-admissibility-for-expert-testimony/
    [Google Scholar]
  57. 58.
    Menotti-Raymond MA, David VA, O'Brien SJ. 1997. Pet cat hair implicates murder suspect. Nature 386:774
    [Google Scholar]
  58. 59.
    Menotti-Raymond M, David VA, Weir BS, O'Brien SJ. 2012. A population genetic database of cat breeds developed in coordination with a domestic cat STR multiplex. J. Forensic Sci. 57:596–601
    [Google Scholar]
  59. 60.
    State ofMissouri v. HenryL. Polk,Jr., 366 S.W.3d 542 (Mo. Ct. App 2011.)
  60. 61.
    Lyons LA, Grahn RA, Kun TJ, Netzel LR, Wictum EE, Halverson JL. 2014. Acceptance of domestic cat mitochondrial DNA in a criminal proceeding. Forensic Sci. Int. Genet. 13:61–67
    [Google Scholar]
  61. 62.
    Nuwer R. 2021. A taste for pangolin meat and the fall of an African wildlife cartel. New York Times Oct. 18. https://www.nytimes.com/2021/10/18/science/malawi-poaching-wildlife.html
    [Google Scholar]
  62. 63.
    Ghosh T, Sharma A, Mondol S. 2021. Optimisation and application of a forensic microsatellite panel to combat greater-one horned rhinoceros (Rhinoceros unicornis) poaching in India. Forensic Sci. Int. Genet. 52:102472
    [Google Scholar]
  63. 64.
    Wasser SK, Shedlock AM, Comstock K, Ostrander EA, Mutayoba B, Stephens M. 2004. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. PNAS 101:14847–52
    [Google Scholar]
  64. 65.
    Ishida Y, Georgiadis N, Hondo T, Roca A. 2013. Triangulating the provenance of African elephants using mitochondrial DNA. Evol. Appl. 6:253–65
    [Google Scholar]
  65. 66.
    Zhao K, Ishida Y, Green CE, Davidson AG, Sitam FAT et al. 2019. Loxodonta Localizer: a software tool for inferring the provenance of African elephants and their ivory using mitochondrial DNA. J. Hered. 110:761–68
    [Google Scholar]
  66. 67.
    Gaubert P, Antunes A, Meng H, Miao L, Peigné S et al. 2018. The complete phylogeny of pangolins: scaling up resources for the molecular tracing of the most trafficked mammals on Earth. J. Hered. 109:347–59
    [Google Scholar]
  67. 68.
    Sanders J, Cribbs J, Fienberg H, Hulburd G, Katz L, Palumbi S. 2008. The tip of the tail: molecular identification of seahorses for sale in apothecary shops and curio stores in California. Conserv. Genet. 9:65–71
    [Google Scholar]
  68. 69.
    Baker CS, Cooke JG, Lavery S, Dalebout ML, Ma YU et al. 2007. Estimating the number of whales entering trade using DNA profiling and capture-recapture analysis of market products. Mol. Ecol. 16:2617–26
    [Google Scholar]
  69. 70.
    Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270:313–21
    [Google Scholar]
  70. 71.
    Taniguchi K, Akutsu T, Watanabe K, Ogawa Y, Imaizumi K. 2022. A vertebrate-specific qPCR assay as an endogenous internal control for robust species identification. Forensic Sci. Int. Genet. 56:102628
    [Google Scholar]
  71. 72.
    Pfeiffer I, Völkel I, Täubert H, Brenig B. 2004. Forensic DNA-typing of dog hair: DNA-extraction and PCR amplification. Forensic Sci. Int. 141:149–51
    [Google Scholar]
  72. 73.
    Dawnay N, Ogden R, McEwing R, Carvalho GR, Thorpe RS. 2007. Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Sci. Int. 173:1–6
    [Google Scholar]
  73. 74.
    Dalsgaard S, Rockenbauer E, Gelardi C, Børsting C, Fordyce SL, Morling N. 2013. Characterization of mutations and sequence variations in complex STR loci by second generation sequencing. Forensic Sci. Int. 4:e218–19
    [Google Scholar]
  74. 75.
    Novroski NMM, King JL, Churchill JD, Seah LH, Budowle B. 2016. Characterization of genetic sequence variation of 58 STR loci in four major population groups. Forensic Sci. Int. Genet. 25:214–26
    [Google Scholar]
  75. 76.
    Tobe S, Linacre A 2009. Identifying endangered species from degraded mixtures at low levels. Forensic Sci. Int. 2:304–5
    [Google Scholar]
  76. 77.
    Kitpipit T, Thanakiatkrai P, Penchart K, Ouithavon K, Satasook C, Linacre A. 2016. Ivory species identification using electrophoresis-based techniques. Electrophoresis 37:3068–75
    [Google Scholar]
  77. 78.
    Ramón-Laca A, Linacre AMT, Gleeson DM, Tobe SS. 2013. Identification multiplex assay of 19 terrestrial mammal species present in New Zealand. Electrophoresis 34:3370–76
    [Google Scholar]
  78. 79.
    Staats M, Arulandhu AJ, Gravendeel B, Holst-Jensen A, Scholtens I et al. 2016. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem. 408:4615–30
    [Google Scholar]
  79. 80.
    Zhang Y, Qu Q, Rao M, Zhang N, Zhao Y, Tao F. 2020. Simultaneous identification of animal-derived components in meats using high-throughput sequencing in combination with a custom-built mitochondrial genome database. Sci. Rep. 10:8965
    [Google Scholar]
  80. 81.
    Almerón-Souza F, Sperb C, Castilho CL, Figueiredo PICC, Gonçalves LT et al. 2018. Molecular identification of shark meat from local markets in southern Brazil based on DNA barcoding: evidence for mislabeling and trade of endangered species. Front. Genet. 9:138
    [Google Scholar]
  81. 82.
    Richards JL, Sheng V, Chung HWY, Liu M, Tsang RHH et al. 2022. Development of an eDNA-based survey method for urban fish markets. Methods Ecol. Evol. 13:1568–80
    [Google Scholar]
  82. 83.
    Amorim A, Pereira F, Alves C, García O. 2020. Species assignment in forensics and the challenge of hybrids. Forensic Sci. Int. Genet. 48:102333
    [Google Scholar]
  83. 84.
    Atwood L, Raymond J, Sears A, Bell M, Daniel R. 2021. From identification to intelligence: an assessment of the suitability of forensic DNA phenotyping service providers for use in Australian law enforcement casework. Front. Genet. 11:568701
    [Google Scholar]
  84. 85.
    Brooks A, Creighton EK, Gandolfi B, Khan R, Grahn RA, Lyons LA. 2016. SNP miniplexes for individual identification of random-bred domestic cats. J. Forensic Sci. 61:594–606
    [Google Scholar]
  85. 86.
    Johnson RN, Wilson-Wilde L, Linacre A. 2014. Current and future directions of DNA in wildlife forensic science. Forensic Sci. Int. Genet. 10:1–11
    [Google Scholar]
  86. 87.
    Menges W. 2016. Rhino horn smugglers get 14 years in prison. Namibian, Sept. 30. https://www.namibian.com.na/156302/archive-read/Rhino-horn-smugglers-get-14-years-in-prison
  87. 88.
    Alacs EA, Georges A, FitzSimmons NN, Robertson J. 2010. DNA detective: a review of molecular approaches to wildlife forensics. Forensic Sci. Med. Pathol. 6:180–94
    [Google Scholar]
  88. 89.
    Bodner M, Bastisch I, Butler JM, Fimmers R, Gill P et al. 2016. Recommendations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on quality control of autosomal short tandem repeat allele frequency databasing (STRidER). Forensic Sci. Int. Genet. 24:97–102
    [Google Scholar]
  89. 90.
    Martin PD, Schmitter H, Schneider PM. 2001. A brief history of the formation of DNA databases in forensic science within Europe. Forensic Sci. Int. 119:225–31
    [Google Scholar]
  90. 91.
    Fed. Bur. Investig. (FBI) 2021. The FBI's Combined DNA Index System (CODIS) hits major milestone Press Rel., May 21. https://www.fbi.gov/news/press-releases/press-releases/the-fbis-combined-dna-index-system-codis-hits-major-milestone
  91. 92.
    Broquet T, Ménard N, Petit E. 2007. Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv. Genet. 8:249–60
    [Google Scholar]
  92. 93.
    Fukushima CS, Tricorache P, Toomes A, Stringham OC, Rivera-Téllez E et al. 2021. Challenges and perspectives on tackling illegal or unsustainable wildlife trade. Biol. Conserv. 263:109342
    [Google Scholar]
  93. 94.
    Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G et al. 2021. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592:737–46
    [Google Scholar]
  94. 95.
    Choo SW, Rayko M, Tan TK, Hari R, Komissarov A et al. 2016. Pangolin genomes and the evolution of mammalian scales and immunity. Genome Res. 26:1312–22
    [Google Scholar]
  95. 96.
    Sutter JD. 2013. The most trafficked mammal you've never heard of. CNN https://www.cnn.com/interactive/2014/04/opinion/sutter-change-the-list-pangolin-trafficking/
    [Google Scholar]
  96. 97.
    Hua L, Gong S, Wang F, Li W, Ge Y et al. 2015. Captive breeding of pangolins: current status, problems and future prospects. ZooKeys 507:99–114
    [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error