1932

Abstract

Over 170 chemical modifications have been identified in protein-coding and noncoding RNAs and shown to exhibit broad impacts on gene expression. Dysregulation of RNA modifications caused by aberrant expression of or mutations in RNA modifiers aberrantly reprograms the epitranscriptome and skews global gene expression, which in turn leads to tumorigenesis and drug resistance. Here we review current knowledge of the functions and underlying mechanisms of aberrant RNA modifications in human cancers, particularly several common RNA modifications, including 6-methyladenosine (m6A), A-to-I editing, pseudouridine (ψ), 5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C), 1-methyladenosine (m1A), and 4-acetylcytidine (ac4C), providing insights into therapeutic implications of targeting RNA modifications and the associated machineries for cancer therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030419-033357
2020-03-04
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/4/1/annurev-cancerbio-030419-033357.html?itemId=/content/journals/10.1146/annurev-cancerbio-030419-033357&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilo F, Zhang F, Sancho A, Fidalgo M, Di Cecilia S et al. 2015. Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17:689–704
    [Google Scholar]
  2. Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF 2015. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162:1299–308
    [Google Scholar]
  3. Alawi F, Lee MN. 2007. DKC1 is a direct and conserved transcriptional target of c-MYC. Biochem. Biophys. Res. Commun. 362:893–98
    [Google Scholar]
  4. Amort T, Rieder D, Wille A, Khokhlova-Cubberley D, Riml C et al. 2017. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol 18:1
    [Google Scholar]
  5. Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ et al. 2018. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175:1872–86.e24
    [Google Scholar]
  6. Bansal H, Yihua Q, Iyer SP, Ganapathy S, Proia DA et al. 2014. WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia 28:1171–74
    [Google Scholar]
  7. Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millan-Zambrano G et al. 2017. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552:126–31
    [Google Scholar]
  8. Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M et al. 2013. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression. ? Cell. Mol. Life Sci. 70:2657–75
    [Google Scholar]
  9. Bellodi C, Kopmar N, Ruggero D 2010. Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J 29:1865–76
    [Google Scholar]
  10. Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B et al. 2018. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D303–7
    [Google Scholar]
  11. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV 2014. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–46
    [Google Scholar]
  12. Chen B, Ye F, Yu L, Jia G, Huang X et al. 2012. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J. Am. Chem. Soc. 134:17963–71
    [Google Scholar]
  13. Chen L, Li Y, Lin CH, Chan TH, Chow RK et al. 2013. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19:209–16
    [Google Scholar]
  14. Chen M, Wei L, Law CT, Tsang FH, Shen J et al. 2018. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67:2254–70
    [Google Scholar]
  15. Chen Z, Qi M, Shen B, Luo G, Wu Y et al. 2019. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res 47:2533–45
    [Google Scholar]
  16. Cheng JX, Chen L, Li Y, Cloe A, Yue M et al. 2018. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat. Commun. 9:1163
    [Google Scholar]
  17. Cheng M, Sheng L, Gao Q, Xiong Q, Zhang H et al. 2019. The m6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene 38:3667–80
    [Google Scholar]
  18. Choe J, Lin S, Zhang W, Liu Q, Wang L et al. 2018. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561:556–60
    [Google Scholar]
  19. Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C et al. 2012. Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J. Clin. Investig. 122:4059–76
    [Google Scholar]
  20. Cui Q, Shi H, Ye P, Li L, Qu Q et al. 2017. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18:2622–34
    [Google Scholar]
  21. Davis FF, Allen FW. 1957. Ribonucleic acids from yeast which contain a fifth nucleotide. J. Biol. Chem. 227:907–15
    [Google Scholar]
  22. Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E et al. 2016. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351:282–85
    [Google Scholar]
  23. Deng X, Su R, Feng X, Wei M, Chen J 2018a. Role of N6-methyladenosine modification in cancer. Curr. Opin. Genet. Dev. 48:1–7
    [Google Scholar]
  24. Deng X, Su R, Weng H, Huang H, Li Z, Chen J 2018b. RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Res 28:507–17
    [Google Scholar]
  25. Desrosiers R, Friderici K, Rottman F 1974. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. PNAS 71:3971–75
    [Google Scholar]
  26. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–6
    [Google Scholar]
  27. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N et al. 2016. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–46
    [Google Scholar]
  28. Duhoux FP, Ameye G, Lambert C, Herman M, Iossifidis S et al. 2012. Novel head-to-head gene fusion of MLL with ZC3H13 in a JAK2 V617F-positive patient with essential thrombocythemia without blast cells. Leuk. Res. 36:e27–30
    [Google Scholar]
  29. Frye M, Harada BT, Behm M, He C 2018. RNA modifications modulate gene expression during development. Science 361:1346–49
    [Google Scholar]
  30. Frye M, Watt FM. 2006. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr. Biol. 16:971–81
    [Google Scholar]
  31. Fu L, Qin YR, Ming XY, Zuo XB, Diao YW et al. 2017. RNA editing of SLC22A3 drives early tumor invasion and metastasis in familial esophageal cancer. PNAS 114:E4631–40
    [Google Scholar]
  32. Gehrke CW, Kuo KC, Waalkes TP, Borek E 1979. Patterns of urinary excretion of modified nucleosides. Cancer Res 39:1150–53
    [Google Scholar]
  33. Gong J, Li Y, Liu CJ, Xiang Y, Li C et al. 2017. A pan-cancer analysis of the expression and clinical relevance of small nucleolar RNAs in human cancer. Cell Rep 21:1968–81
    [Google Scholar]
  34. Gumireddy K, Li A, Kossenkov AV, Sakurai M, Yan J et al. 2016. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis. Nat. Commun. 7:10715
    [Google Scholar]
  35. Gutschner T, Hammerle M, Pazaitis N, Bley N, Fiskin E et al. 2014. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology 59:1900–11
    [Google Scholar]
  36. Han D, Liu J, Chen C, Dong L, Liu Y et al. 2019. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566:270–74
    [Google Scholar]
  37. Han L, Diao L, Yu S, Xu X, Li J et al. 2015. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28:515–28
    [Google Scholar]
  38. Han SW, Kim HP, Shin JY, Jeong EG, Lee WC et al. 2014. RNA editing in RHOQ promotes invasion potential in colorectal cancer. J. Exp. Med. 211:613–21
    [Google Scholar]
  39. He Y, Hu H, Wang Y, Yuan H, Lu Z et al. 2018. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol. Biochem. 48:838–46
    [Google Scholar]
  40. Hotta K, Sho M, Fujimoto K, Shimada K, Yamato I et al. 2015. Clinical significance and therapeutic potential of prostate cancer antigen-1/ALKBH3 in human renal cell carcinoma. Oncol. Rep. 34:648–54
    [Google Scholar]
  41. Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X et al. 2017. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 27:1115–27
    [Google Scholar]
  42. Huang H, Weng H, Sun W, Qin X, Shi H et al. 2018. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20:285–95
    [Google Scholar]
  43. Huang H, Weng H, Zhou K, Wu T, Zhao BS et al. 2019. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567:414–19
    [Google Scholar]
  44. Huang W, Qi CB, Lv SW, Xie M, Feng YQ et al. 2016. Determination of DNA and RNA methylation in circulating tumor cells by mass spectrometry. Anal. Chem. 88:1378–84
    [Google Scholar]
  45. Huang Y, Su R, Sheng Y, Dong L, Dong Z et al. 2019. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35:677–91.e10
    [Google Scholar]
  46. Huang Y, Yan J, Li Q, Li J, Gong S et al. 2015. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 43:373–84
    [Google Scholar]
  47. Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P et al. 2013. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4:255–61
    [Google Scholar]
  48. Jia G, Fu Y, Zhao X, Dai Q, Zheng G et al. 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7:885–87
    [Google Scholar]
  49. Jiang Q, Crews LA, Barrett CL, Chun HJ, Court AC et al. 2013. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. PNAS 110:1041–46
    [Google Scholar]
  50. Jin DI, Lee SW, Han ME, Kim HJ, Seo SA et al. 2012. Expression and roles of Wilms' tumor 1-associating protein in glioblastoma. Cancer Sci 103:2102–9
    [Google Scholar]
  51. Kaklamani V, Yi N, Sadim M, Siziopikou K, Zhang K et al. 2011. The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med. Genet. 12:52
    [Google Scholar]
  52. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y et al. 2013. Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73
    [Google Scholar]
  53. Karijolich J, Yi C, Yu YT 2015. Transcriptome-wide dynamics of RNA pseudouridylation. Nat. Rev. Mol. Cell Biol. 16:581–85
    [Google Scholar]
  54. Khoddami V, Cairns BR. 2013. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31:458–64
    [Google Scholar]
  55. Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N et al. 2018. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev 32:415–29
    [Google Scholar]
  56. Konishi N, Nakamura M, Ishida E, Shimada K, Mitsui E et al. 2005. High expression of a new marker PCA-1 in human prostate carcinoma. Clin. Cancer Res. 11:5090–97
    [Google Scholar]
  57. Li A, Chen YS, Ping XL, Yang X, Xiao W et al. 2017. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res 27:444–47
    [Google Scholar]
  58. Li W, Zhang X, Lu X, You L, Song Y et al. 2017. 5-hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res 27:1243–57
    [Google Scholar]
  59. Li X, Xiong X, Wang K, Wang L, Shu X et al. 2016. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12:311–16
    [Google Scholar]
  60. Li X, Zhu P, Ma S, Song J, Bai J et al. 2015. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11:592–97
    [Google Scholar]
  61. Li Z, Weng H, Su R, Weng X, Zuo Z et al. 2017. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31:127–41
    [Google Scholar]
  62. Licht K, Hartl M, Amman F, Anrather D, Janisiw MP, Jantsch MF 2019. Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res 47:3–14
    [Google Scholar]
  63. Lin S, Choe J, Du P, Triboulet R, Gregory RI 2016. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62:335–45
    [Google Scholar]
  64. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR 2015. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12:767–72
    [Google Scholar]
  65. Liu J, Eckert MA, Harada BT, Liu SM, Lu Z et al. 2018a. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat. Cell Biol. 20:1074–83
    [Google Scholar]
  66. Liu J, Ren D, Du Z, Wang H, Zhang H, Jin Y 2018b. m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem. Biophys. Res. Commun. 502:456–64
    [Google Scholar]
  67. Liu J, Yue Y, Han D, Wang X, Fu Y et al. 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10:93–95
    [Google Scholar]
  68. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T 2015. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–64
    [Google Scholar]
  69. Liu Y, Wang R, Zhang L, Li J, Lou K, Shi B 2017. The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway. Oncol. Lett. 13:4685–90
    [Google Scholar]
  70. Lovejoy AF, Riordan DP, Brown PO 2014. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. . PLOS ONE 9:e110799
    [Google Scholar]
  71. Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH et al. 2017. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing. Hepatology 65:529–43
    [Google Scholar]
  72. Ma Z, Morris SW, Valentine V, Li M, Herbrick JA et al. 2001. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat. Genet. 28:220–21
    [Google Scholar]
  73. Maas S, Patt S, Schrey M, Rich A 2001. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. PNAS 98:14687–92
    [Google Scholar]
  74. Mei YP, Liao JP, Shen J, Yu L, Liu BL et al. 2012. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene 31:2794–804
    [Google Scholar]
  75. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA et al. 2015. 5′ UTR m6A promotes cap-independent translation. Cell 163:999–1010
    [Google Scholar]
  76. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–46
    [Google Scholar]
  77. Montanaro L, Brigotti M, Clohessy J, Barbieri S, Ceccarelli C et al. 2006. Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J. Pathol. 210:10–18
    [Google Scholar]
  78. Motyl T, Traczyk Z, Ciesluk S, Daniewska-Michalska D, Kukulska W et al. 1993. Blood plasma pseudouridine in patients with malignant proliferative diseases. Eur. J. Clin. Chem. Clin. Biochem. 31:765–71
    [Google Scholar]
  79. Muller S, Glass M, Singh AK, Haase J, Bley N et al. 2019. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res 47:375–90
    [Google Scholar]
  80. Nielsen HR, Nyholm K, Sjolin KE 1974. Relationship between urinary β-aminoisobutyric acid and transfer RNA turnover in cancer patients. Cancer Res 34:3428–32
    [Google Scholar]
  81. Okugawa Y, Toiyama Y, Toden S, Mitoma H, Nagasaka T et al. 2017. Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut 66:107–17
    [Google Scholar]
  82. Panneerdoss S, Eedunuri VK, Yadav P, Timilsina S, Rajamanickam S et al. 2018. Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression. Sci. Adv. 4:eaar8263
    [Google Scholar]
  83. Patil DP, Chen CK, Pickering BF, Chow A, Jackson C et al. 2016. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369–73
    [Google Scholar]
  84. Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z et al. 2007. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res 17:1586–95
    [Google Scholar]
  85. Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y et al. 2017. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–35.e14
    [Google Scholar]
  86. Peng X, Xu X, Wang Y, Hawke DH, Yu S et al. 2018. A-to-I RNA editing contributes to proteomic diversity in cancer. Cancer Cell 33:817–28.e7
    [Google Scholar]
  87. Penzo M, Guerrieri AN, Zacchini F, Trere D, Montanaro L 2017. RNA pseudouridylation in physiology and medicine: for better and for worse. Genes 8:11301
    [Google Scholar]
  88. Perry RP, Kelley DE. 1974. Existence of methylated messenger RNA in mouse L cells. Cell 1:37–42
    [Google Scholar]
  89. Ping XL, Sun BF, Wang L, Xiao W, Yang X et al. 2014. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–89
    [Google Scholar]
  90. Reddy R, Ro-Choi TS, Henning D, Shibata H, Choi YC, Busch H 1972. Modified nucleosides of nuclear and nucleolar low molecular weight ribonucleic acid. J. Biol. Chem. 247:7245–50
    [Google Scholar]
  91. Ronchetti D, Mosca L, Cutrona G, Tuana G, Gentile M et al. 2013. Small nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia. BMC Med. Genom. 6:27
    [Google Scholar]
  92. Ronchetti D, Todoerti K, Tuana G, Agnelli L, Mosca L et al. 2012. The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma. Blood Cancer J 2:e96
    [Google Scholar]
  93. Roundtree IA, Evans ME, Pan T, He C 2017. Dynamic RNA modifications in gene expression regulation. Cell 169:1187–200
    [Google Scholar]
  94. Russo T, Colonna A, Salvatore F, Cimino F, Bridges S, Gurgo C 1984. Serum pseudouridine as a biochemical marker in the development of AKR mouse lymphoma. Cancer Res 44:2567–70
    [Google Scholar]
  95. Schaefer M, Hagemann S, Hanna K, Lyko F 2009. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res 69:8127–32
    [Google Scholar]
  96. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH et al. 2014a. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–62
    [Google Scholar]
  97. Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K et al. 2014b. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8:284–96
    [Google Scholar]
  98. Shi H, Wang X, Lu Z, Zhao BS, Ma H et al. 2017. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 27:315–28
    [Google Scholar]
  99. Shoshan E, Mobley AK, Braeuer RR, Kamiya T, Huang L et al. 2015. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat. Cell Biol. 17:311–21
    [Google Scholar]
  100. Sieron P, Hader C, Hatina J, Engers R, Wlazlinski A et al. 2009. DKC1 overexpression associated with prostate cancer progression. Br. J. Cancer 101:1410–16
    [Google Scholar]
  101. Sledz P, Jinek M. 2016. Structural insights into the molecular mechanism of the m6A writer complex. eLife 5:e18434
    [Google Scholar]
  102. Song CX, Yin S, Ma L, Wheeler A, Chen Y et al. 2017. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res 27:1231–42
    [Google Scholar]
  103. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT et al. 2012. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–33
    [Google Scholar]
  104. Su R, Dong L, Li C, Nachtergaele S, Wunderlich M et al. 2018. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 172:90–105.e23
    [Google Scholar]
  105. Suzuki T, Ueda H, Okada S, Sakurai M 2015. Transcriptome-wide identification of adenosine-to-inosine editing using the ICE-seq method. Nat. Protoc. 10:715–32
    [Google Scholar]
  106. Takahashi M, Yoshimoto T, Shimoda M, Kono T, Koizumi M et al. 2006. Loss of function of the candidate tumor suppressor prox1 by RNA mutation in human cancer cells. Neoplasia 8:1003–10
    [Google Scholar]
  107. Tan A, Dang Y, Chen G, Mo Z 2015. Overexpression of the fat mass and obesity associated gene (FTO) in breast cancer and its clinical implications. Int. J. Clin. Exp. Pathol. 8:13405–10
    [Google Scholar]
  108. Tan Y, Zheng J, Liu X, Lu M, Zhang C et al. 2018. Loss of nucleolar localization of NAT10 promotes cell migration and invasion in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 499:1032–38
    [Google Scholar]
  109. Tasaki M, Shimada K, Kimura H, Tsujikawa K, Konishi N 2011. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer. Br. J. Cancer 104:700–6
    [Google Scholar]
  110. Thomas D, Majeti R. 2017. Biology and relevance of human acute myeloid leukemia stem cells. Blood 129:1577–85
    [Google Scholar]
  111. Tomaselli S, Galeano F, Alon S, Raho S, Galardi S et al. 2015. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol 16:5
    [Google Scholar]
  112. Valleron W, Laprevotte E, Gautier EF, Quelen C, Demur C et al. 2012a. Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia 26:2052–60
    [Google Scholar]
  113. Valleron W, Ysebaert L, Berquet L, Fataccioli V, Quelen C et al. 2012b. Small nucleolar RNA expression profiling identifies potential prognostic markers in peripheral T-cell lymphoma. Blood 120:3997–4005
    [Google Scholar]
  114. Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A et al. 2018. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 37:522–33
    [Google Scholar]
  115. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D et al. 2017. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23:1369–76
    [Google Scholar]
  116. Wang P, Doxtader KA, Nam Y 2016. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63:306–17
    [Google Scholar]
  117. Wang X, Feng J, Xue Y, Guan Z, Zhang D et al. 2016. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature 534:575–78
    [Google Scholar]
  118. Wang X, Lu Z, Gomez A, Hon GC, Yue Y et al. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–20
    [Google Scholar]
  119. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D et al. 2015. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–99
    [Google Scholar]
  120. Wang Y, Xu X, Yu S, Jeong KJ, Zhou Z et al. 2017. Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res 27:1112–25
    [Google Scholar]
  121. Weissman SM, Lewis M, Karon M 1963. Pseudouridine metabolism. IV. Excretion of pseudouridine and other nitrogenous metabolites in chronic leukemia. Blood 22:657–63
    [Google Scholar]
  122. Wen J, Lv R, Ma H, Shen H, He C et al. 2018. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69:1028–38.e6
    [Google Scholar]
  123. Weng H, Huang H, Wu H, Qin X, Zhao BS et al. 2018. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell 22:191–205.e
    [Google Scholar]
  124. Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS 2017. Regulation of m6A transcripts by the 3′→5′ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol. Cell 68:374–87.e12
    [Google Scholar]
  125. Woo HH, Chambers SK. 2019. Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim. Biophys. Acta Gene Regul. Mech. 1862:35–46
    [Google Scholar]
  126. Wu B, Su S, Patil DP, Liu H, Gan J et al. 2018. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat. Commun. 9:420
    [Google Scholar]
  127. Wu G, Xiao M, Yang C, Yu YT 2011. U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J 30:79–89
    [Google Scholar]
  128. Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ et al. 2016. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61:507–19
    [Google Scholar]
  129. Xu H, Jiang B, Meng L, Ren T, Zeng Y et al. 2012. N-α-acetyltransferase 10 protein inhibits apoptosis through RelA/p65-regulated MCL1 expression. Carcinogenesis 33:1193–202
    [Google Scholar]
  130. Xuan JJ, Sun WJ, Lin PH, Zhou KR, Liu S et al. 2018. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res 46:D327–34
    [Google Scholar]
  131. Yan F, Al-Kali A, Zhang Z, Liu J, Pang J et al. 2018. A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res 28:1062–76
    [Google Scholar]
  132. Yang F, Jin H, Que B, Chao Y, Zhang H et al. 2019. Dynamic m6A mRNA methylation reveals the role of METTL3-m6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene 38:4755–72
    [Google Scholar]
  133. Yang JC, Risch E, Zhang M, Huang C, Huang H, Lu L 2017. Association of tRNA methyltransferase NSUN2/IGF-II molecular signature with ovarian cancer survival. Future Oncol 13:1981–90
    [Google Scholar]
  134. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH et al. 2006. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 13:13–21
    [Google Scholar]
  135. Yang X, Yang Y, Sun BF, Chen YS, Xu JW et al. 2017. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res 27:606–25
    [Google Scholar]
  136. Yang Z, Li J, Feng G, Gao S, Wang Y et al. 2017. MicroRNA-145 modulates N6-methyladenosine levels by targeting the 3′-untranslated mRNA region of the N6-methyladenosine binding YTH domain family 2 protein. J. Biol. Chem. 292:3614–23
    [Google Scholar]
  137. Yao QJ, Sang L, Lin M, Yin X, Dong W et al. 2018. Mettl3–Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res 28:952–54
    [Google Scholar]
  138. Yi J, Gao R, Chen Y, Yang Z, Han P et al. 2017. Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer. Oncotarget 8:20751–65
    [Google Scholar]
  139. Yoon A, Peng G, Brandenburger Y, Zollo O, Xu W et al. 2006. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312:902–6
    [Google Scholar]
  140. Yue Y, Liu J, Cui X, Cao J, Luo G et al. 2018. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 4:10
    [Google Scholar]
  141. Zhang C, Chen Y, Sun B, Wang L, Yang Y et al. 2017. m6A modulates haematopoietic stem and progenitor cell specification. Nature 549:273–76
    [Google Scholar]
  142. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H et al. 2016a. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. PNAS 113:E2047–56
    [Google Scholar]
  143. Zhang C, Zhi WI, Lu H, Samanta D, Chen I et al. 2016b. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget 7:64527–42
    [Google Scholar]
  144. Zhang H, Hou W, Wang HL, Liu HJ, Jia XY et al. 2014. GSK-3β–regulated N-acetyltransferase 10 is involved in colorectal cancer invasion. Clin. Cancer Res. 20:4717–29
    [Google Scholar]
  145. Zhang L, Yang CS, Varelas X, Monti S 2016. Altered RNA editing in 3′ UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors. Sci. Rep. 6:23226
    [Google Scholar]
  146. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S et al. 2017. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31:591–606.e6
    [Google Scholar]
  147. Zhang X, Liu J, Yan S, Huang K, Bai Y, Zheng S 2015. High expression of N-acetyltransferase 10: a novel independent prognostic marker of worse outcome in patients with hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 8:14765–71
    [Google Scholar]
  148. Zhao X, Chen Y, Mao Q, Jiang X, Jiang W et al. 2018. Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark 21:859–68
    [Google Scholar]
  149. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49:18–29
    [Google Scholar]
  150. Zhong L, Liao D, Zhang M, Zeng C, Li X et al. 2019. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett 442:252–61
    [Google Scholar]
  151. Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R et al. 2018. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol. Carcinog. 57:590–97
    [Google Scholar]
  152. Zipeto MA, Court AC, Sadarangani A, Delos Santos NP, Balaian L et al. 2016. ADAR1 activation drives leukemia stem cell self-renewal by impairing let-7 biogenesis. Cell Stem Cell 19:177–91
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030419-033357
Loading
/content/journals/10.1146/annurev-cancerbio-030419-033357
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error