Autophagy is a highly conserved and regulated process that targets proteins and damaged organelles for lysosomal degradation to maintain cell metabolism, genomic integrity, and cell survival. The role of autophagy in cancer is dynamic and depends, in part, on tumor type and stage. Although autophagy constrains tumor initiation in normal tissue, some tumors rely on autophagy for tumor promotion and maintenance. Studies in genetically engineered mouse models support the idea that autophagy can constrain tumor initiation by regulating DNA damage and oxidative stress. In established tumors, autophagy can also be required for tumor maintenance, allowing tumors to survive environmental stress and providing intermediates for cell metabolism. Autophagy can also be induced in response to chemotherapeutics, acting as a drug-resistance mechanism. Therefore, targeting autophagy is an attractive cancer therapeutic option currently undergoing validation in clinical trials.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akin D, Wang SK, Habibzadegah-Tari P, Law B, Ostrov D. et al. 2014. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy 10:2021–35 [Google Scholar]
  2. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA. et al. 2007. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Investig. 117:326–36 [Google Scholar]
  3. Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A. 2008. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 68:1485–94 [Google Scholar]
  4. Bago R, Malik N, Munson MJ, Prescott AR, Davies P. et al. 2014. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem. J. 463:413–27 [Google Scholar]
  5. Behrends C, Sowa ME, Gygi SP, Harper JW. 2010. Network organization of the human autophagy system. Nature 466:68–76 [Google Scholar]
  6. Biankin AV, Waddell N, Kassahn KS, Gingras M-C, Muthuswamy LB. et al. 2012. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491:399–405 [Google Scholar]
  7. Boone BA, Bahary N, Zureikat AH, Moser AJ, Normolle DP. et al. 2015. Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine patients with pancreatic adenocarcinoma. Ann. Surg. Oncol. 22:4402–10 [Google Scholar]
  8. Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C. et al. 2007. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr–Abl-mediated drug resistance. Blood 110:313–22 [Google Scholar]
  9. Cheong H, Lindsten T, Wu J, Lu C, Thompson CB. 2011. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. PNAS 108:11121–26 [Google Scholar]
  10. Choi AM, Ryter SW, Levine B. 2013. Autophagy in human health and disease. N. Engl. J. Med. 368:651–62 [Google Scholar]
  11. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ. et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–37 [Google Scholar]
  12. Cuervo AM, Wong E. 2014. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104 [Google Scholar]
  13. Davies H, Bignell GR, Cox C, Stephens P, Edkins S. et al. 2002. Mutations of the BRAF gene in human cancer. Nature 417:949–54 [Google Scholar]
  14. De Duve C, Wattiaux R. 1966. Functions of lysosomes. Annu. Rev. Physiol. 28:435–92 [Google Scholar]
  15. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D. et al. 2006. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64 [Google Scholar]
  16. Degtyarev M, De Mazière A, Orr C, Lin J, Lee BB. et al. 2008. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J. Cell Biol. 183:101–16 [Google Scholar]
  17. Dengjel J, Schoor O, Fischer R, Reich M, Kraus M. et al. 2005. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. PNAS 102:7922–27 [Google Scholar]
  18. Ding ZB, Hui B, Shi YH, Zhou J, Peng YF. et al. 2011. Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation. Clin. Cancer Res. 17:6229–38 [Google Scholar]
  19. Dou Z, Xu C, Donahue G, Shimi T, Pan J-A. et al. 2015. Autophagy mediates degradation of nuclear lamina. Nature 527:105–9 [Google Scholar]
  20. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S. et al. 2014. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16:1069–79 [Google Scholar]
  21. Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM. et al. 2008. The signaling adaptor p62 is an important NF-κB mediator in tumorigenesis. Cancer Cell 13:343–54 [Google Scholar]
  22. Egan DF, Chun MGH, Vamos M, Zou H, Rong J. et al. 2015. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59:285–97 [Google Scholar]
  23. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA. et al. 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–61 [Google Scholar]
  24. Eng CH, Wang Z, Tkach D, Toral-Barza L, Ugwonali S. et al. 2016. Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. PNAS 113:182–87 [Google Scholar]
  25. Ertmer A, Huber V, Gilch S, Yoshimori T, Erfle V. et al. 2007. The anticancer drug imatinib induces cellular autophagy. Leukemia 21:936–42 [Google Scholar]
  26. Galluzzi L, Pietrocola F, Levine B, Kroemer G. 2014. Metabolic control of autophagy. Cell 159:1263–76 [Google Scholar]
  27. Goodall ML, Wang T, Martin KR, Kortus MG, Kauffman AL. et al. 2014. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. Autophagy 10:1120–36 [Google Scholar]
  28. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM. et al. 2011. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–70 [Google Scholar]
  29. Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ. et al. 2013a. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27:1447–61 [Google Scholar]
  30. Guo JY, Xia B, White E. 2013b. Autophagy-mediated tumor promotion. Cell 155:1216–19 [Google Scholar]
  31. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  32. Hardie DG, Ross FA, Hawley SA. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13:251–62 [Google Scholar]
  33. Homewood CA, Warhurst DC, Peters W, Baggaley VC. 1972. Lysosomes, pH and the anti-malarial action of chloroquine. Nature 235:50–52 [Google Scholar]
  34. Hubbard VM, Valdor R, Patel B, Singh R, Cuervo AM, Macian F. 2010. Macroautophagy regulates energy metabolism during effector T cell activation. J. Immunol. 185:7349–57 [Google Scholar]
  35. Huo Y, Cai H, Teplova I, Bowman-Colin C, Chen G. et al. 2013. Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2-associated hereditary breast cancer. Cancer Discov 3:894–907 [Google Scholar]
  36. Imlay JA, Linn S. 1988. DNA damage and oxygen radical toxicity. Science 240:1302–9 [Google Scholar]
  37. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K. et al. 2011. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 193:275–84 [Google Scholar]
  38. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y. 2005. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int. J. Oncol. 26:1401–10 [Google Scholar]
  39. Jacquel A, Obba S, Boyer L, Dufies M, Robert G. et al. 2012. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119:4527–31 [Google Scholar]
  40. Jones S, Zhang X, Parsons DW, Lin JC-H, Leary RJ. et al. 2008. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–6 [Google Scholar]
  41. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. 2010. MTOR regulation of autophagy. FEBS Lett 584:1287–95 [Google Scholar]
  42. Kabeya Y. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–28 [Google Scholar]
  43. Kalluri R, Zeisberg M. 2006. Fibroblasts in cancer. Nat. Rev. Cancer 6:392–401 [Google Scholar]
  44. Kang C, Xu Q, Martin TD, Li MZ, Demaria M. et al. 2015. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349:aaa5612 [Google Scholar]
  45. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. 2004. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–57 [Google Scholar]
  46. Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R. et al. 2007. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21:1621–35 [Google Scholar]
  47. Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV. et al. 2014. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov 4:915–27 [Google Scholar]
  48. Kaur J, Debnath J. 2015. Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16:461–72 [Google Scholar]
  49. Kenific CM, Debnath J. 2015. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25:37–45 [Google Scholar]
  50. Kenzelmann Broz D, Mello SS, Bieging KT, Jiang D, Dusek RL. et al. 2013. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev 27:1016–31 [Google Scholar]
  51. Khaminets A, Behl C, Dikic I. 2015a. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26:6–16 [Google Scholar]
  52. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK. et al. 2015b. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:354–58 [Google Scholar]
  53. Kim J, Kundu M, Viollet B, Guan K-L. 2011a. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132–41 [Google Scholar]
  54. Kim MJ, Woo SJ, Yoon CH, Lee JS, An S. et al. 2011b. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J. Biol. Chem. 286:12924–32 [Google Scholar]
  55. Kim SE, Overholtzer M. 2013. Autophagy proteins regulate cell engulfment mechanisms that participate in cancer. Semin. Cancer Biol. 23:329–36 [Google Scholar]
  56. Kimmelman AC. 2011. The dynamic nature of autophagy in cancer. Genes Dev 25:1999–2010 [Google Scholar]
  57. Klionsky DJ, Schulman BA. 2014. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol. 21:336–45 [Google Scholar]
  58. Kondylis V, Van Nispen Tot Pannerden HE, Van Dijk S, Ten Broeke T, Wubbolts R. et al. 2013. Endosome-mediated autophagy: an unconventional MIIC-driven autophagic pathway operational in dendritic cells. Autophagy 9:861–80 [Google Scholar]
  59. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H. et al. 2004. The role of autophagy during the early neonatal starvation period. Nature 432:1032–36 [Google Scholar]
  60. Laddha SV, Ganesan S, Chan CS, White E. 2014. Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol. Cancer Res. 12:485–90 [Google Scholar]
  61. Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM. 2012. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin. Cancer Res. 18:370–79 [Google Scholar]
  62. Lebovitz CB, Robertson AG, Goya R, Jones SJ, Morin RD. et al. 2015. Cross-cancer profiling of molecular alterations within the human autophagy interaction network. Autophagy 11:1668–87 [Google Scholar]
  63. Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH. et al. 2010. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32:227–39 [Google Scholar]
  64. Lévy J, Cacheux W, Bara MA, L'Hermitte A, Lepage P. et al. 2015. Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat. Cell Biol. 17:1062–73 [Google Scholar]
  65. Levy JMM, Thompson JC, Griesinger AM, Amani V, Donson AM. et al. 2014. Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors. Cancer Discov 4:773–80 [Google Scholar]
  66. Levy JMM, Thorburn A. 2011. Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol. Ther. 131:130–41 [Google Scholar]
  67. Li L, Shen C, Nakamura E, Ando K, Signoretti S. et al. 2013. SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer. Cancer Cell 24:738–50 [Google Scholar]
  68. Li WW, Li J, Bao JK. 2012. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69:1125–36 [Google Scholar]
  69. Liu J, Xia H, Kim M, Xu L, Li Y. et al. 2011. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147:223–34 [Google Scholar]
  70. Lock R, Kenific CM, Leidal AM, Salas E, Debnath J. 2014. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov 4:466–79 [Google Scholar]
  71. Lock R, Roy S, Kenific CM, Su JS, Salas E. et al. 2011. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 22:165–78 [Google Scholar]
  72. Maes H, Rubio N, Garg AD, Agostinis P. 2013. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol. Med. 19:428–46 [Google Scholar]
  73. Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM. et al. 2009. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 16:87–93 [Google Scholar]
  74. Mancias JD, Kimmelman AC. 2011. Targeting autophagy addiction in cancer. Oncotarget 2:1302–6 [Google Scholar]
  75. Mancias JD, Kimmelman AC. 2016. Mechanisms of selective autophagy in normal physiology and cancer. J. Mol. Biol. 428:1659–80 [Google Scholar]
  76. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. 2014. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:105–9 [Google Scholar]
  77. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G. et al. 2009. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–75 [Google Scholar]
  78. Mathew R, Khor S, Hackett SR, Rabinowitz JD, Perlman DH, White E. 2014. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol. Cell 55:916–30 [Google Scholar]
  79. Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K. et al. 2007. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21:1367–81 [Google Scholar]
  80. Melser S, Lavie J, Bénard G. 2015. Mitochondrial degradation and energy metabolism. Biochim. Biophys. Acta 1853:2812–21 [Google Scholar]
  81. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y. et al. 2011. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–77 [Google Scholar]
  82. Mizushima N, Komatsu M. 2011. Autophagy: renovation of cells and tissues. Cell 147:728–41 [Google Scholar]
  83. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T. et al. 1998. A protein conjugation system essential for autophagy. Nature 395:395–98 [Google Scholar]
  84. Morgan MJ, Gamez G, Menke C, Hernandez A, Thorburn J. et al. 2014. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent. Autophagy 10:1814–26 [Google Scholar]
  85. Moscat J, Diaz-Meco MT. 2009. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137:1001–4 [Google Scholar]
  86. Munster T, Gibbs JP, Shen D, Baethge BA, Botstein GR. et al. 2002. Hydroxychloroquine concentration–response relationships in patients with rheumatoid arthritis. Arthritis Rheum 46:1460–69 [Google Scholar]
  87. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T. et al. 2009. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461:654–58 [Google Scholar]
  88. Noda NN, Inagaki F. 2015. Mechanisms of autophagy. Annu. Rev. Biophys. 44:101–22 [Google Scholar]
  89. Ondrej M, Cechakova L, Durisova K, Pejchal J, Tichy A. 2016. To live or let die: unclear task of autophagy in the radiosensitization battle. Radiother. Oncol. 119:265–75 [Google Scholar]
  90. Papinski D, Schuschnig M, Reiter W, Wilhelm L, Barnes CA. et al. 2014. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell 53:471–83 [Google Scholar]
  91. Pasquier B, El-Ahmad Y, Filoche-Rommé B, Dureuil C, Fassy F. et al. 2014. Discovery of (2S)-8-[(3R)-3-methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)-3,4-dihydro-2H-pyrimido[1,2-a]pyrimidin-6-one: a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors. J. Med. Chem 58:376–400 [Google Scholar]
  92. Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J. et al. 2015. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 524:361–65 [Google Scholar]
  93. Pérez-Mancera PA, Young ARJ, Narita M. 2014. Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14:547–58 [Google Scholar]
  94. Petherick KJ, Conway OJL, Mpamhanga C, Osborne SA, Kamal A. et al. 2015. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J. Biol. Chem. 290:11376–83 [Google Scholar]
  95. Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M. 2015. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 4:184–92 [Google Scholar]
  96. Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V. 2015. Secretory autophagy. Curr. Opin. Cell Biol. 35:106–16 [Google Scholar]
  97. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He Y-W. 2007. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204:25–31 [Google Scholar]
  98. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H. et al. 2003. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Investig. 112:1809–20 [Google Scholar]
  99. Rabinowitz JD, White E. 2010. Autophagy and metabolism. Science 330:1344–48 [Google Scholar]
  100. Rangwala R, Chang YC, Hu J, Algazy KM, Evans TL. et al. 2014. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10:1391–402 [Google Scholar]
  101. Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M. et al. 2014. A dual role for autophagy in a murine model of lung cancer. Nat. Commun. 5:3056 [Google Scholar]
  102. Rebecca VW, Amaravadi RK. 2016. Emerging strategies to effectively target autophagy in cancer. Oncogene 35:1–11 [Google Scholar]
  103. Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L. et al. 2014. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10:1013–19 [Google Scholar]
  104. Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA. et al. 2014. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10:1359–68 [Google Scholar]
  105. Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G. et al. 2013. P53 status determines the role of autophagy in pancreatic tumour development. Nature 504:296–300 [Google Scholar]
  106. Rubinsztein DC, Codogno P, Levine B. 2012. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11:709–30 [Google Scholar]
  107. Sakitani K, Hirata Y, Hikiba Y, Hayakawa Y, Ihara S. et al. 2015. Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress. BMC Cancer 15:795 [Google Scholar]
  108. Santanam U, Banach-Petrosky W, Abate-Shen C, Shen MM, White E, Dipaola RS. 2016. Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev 30:399–407 [Google Scholar]
  109. Scherz-Shouval R, Elazar Z. 2007. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–27 [Google Scholar]
  110. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. 2007. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–60 [Google Scholar]
  111. Singh R, Cuervo AM. 2011. Autophagy in the cellular energetic balance. Cell Metab 13:495–504 [Google Scholar]
  112. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I. et al. 2009. Autophagy regulates lipid metabolism. Nature 458:1131–35 [Google Scholar]
  113. Slobodkin MR, Elazar Z. 2013. The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 55:51–64 [Google Scholar]
  114. Solomon VR, Hu C, Lee H. 2010. Design and synthesis of chloroquine analogs with anti-breast cancer property. Eur. J. Med. Chem 45:3916–23 [Google Scholar]
  115. Sorbara MT, Girardin SE. 2015. Emerging themes in bacterial autophagy. Curr. Opin. Microbiol. 23:163–70 [Google Scholar]
  116. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH. et al. 2016. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature In press. doi: 10.1038/nature19084
  117. Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ. et al. 2013. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3:1272–85 [Google Scholar]
  118. Stupp R, Mason W, van den Bent MJ, Weller M, Fisher BM. et al. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352:987–96 [Google Scholar]
  119. Svenning S, Johansen T. 2013. Selective autophagy. Essays Biochem 55:79–92 [Google Scholar]
  120. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C. et al. 2011. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800 [Google Scholar]
  121. Tang H, Sebti S, Titone R, Zhou Y, Isidoro C. et al. 2015a. Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor-negative subtypes and poor prognosis. EBioMedicine 2:255–63 [Google Scholar]
  122. Tang J, Di J, Cao H, Bai J, Zheng J. 2015b. p53-mediated autophagic regulation: a prospective strategy for cancer therapy. Cancer Lett 363:101–7 [Google Scholar]
  123. Tett SE, Day RO, Cutler DJ. 1993. Concentration–effect relationship of hydroxychloroquine in rheumatoid arthritis—a cross sectional study. J. Rheumatol. 20:1874–79 [Google Scholar]
  124. Ushio H, Ueno T, Kojima Y, Komatsu M, Tanaka S. et al. 2011. Crucial role for autophagy in degranulation of mast cells. J. Allergy Clin. Immunol. 127:1267–76 [Google Scholar]
  125. Valencia T, Kim J, Abu-Baker S, Moscat-Pardos J, Ahn C. et al. 2014. Metabolic reprogramming of stromal fibroblasts through p62–mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26:121–35 [Google Scholar]
  126. Vogl DT, Stadtmauer EA, Tan K-S, Heitjan DF, Davis LE. et al. 2014. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10:1380–90 [Google Scholar]
  127. Wang C, Hu Q, Shen H-M. 2016. Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol. Res. 105:164–75 [Google Scholar]
  128. Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL. 2011. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25:1510–27 [Google Scholar]
  129. White E. 2015. The role for autophagy in cancer. J. Clin. Investig. 125:42–46 [Google Scholar]
  130. Willinger T, Flavell RA. 2012. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. PNAS 109:8670–75 [Google Scholar]
  131. Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM. et al. 2014. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19:637–38 [Google Scholar]
  132. Wong P-M, Feng Y, Wang J, Shi R, Jiang X. 2015. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat. Commun. 6:8048 [Google Scholar]
  133. Xie X, Koh JY, Price S, White E, Mehnert JM. 2015. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov 5:410–23 [Google Scholar]
  134. Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM. et al. 2014. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 4:905–13 [Google Scholar]
  135. Yang S, Wang X, Contino G, Liesa M, Sahin E. et al. 2011. Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–29 [Google Scholar]
  136. Yang Z, Klionsky DJ. 2010. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12:814–22 [Google Scholar]
  137. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. 2003. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. PNAS 100:15077–82 [Google Scholar]
  138. Zhang Y, Cheng Y, Ren X, Zhang L, Yap KL. et al. 2012. NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response. Oncogene 31:1055–64 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error