Reactive oxygen species (ROS), now appreciated for their cellular signaling capabilities, have a dual role in cancer. On the one hand, ROS can promote protumorigenic signaling, facilitating cancer cell proliferation, survival, and adaptation to hypoxia. On the other hand, ROS can promote antitumorigenic signaling and trigger oxidative stress–induced cancer cell death. To hyperactivate the cell signaling pathways necessary for cellular transformation and tumorigenesis, cancer cells increase their rate of ROS production compared with normal cells. Concomitantly, in order to maintain ROS homeostasis and evade cell death, cancer cells increase their antioxidant capacity. Compared with normal cells, this altered redox environment of cancer cells may increase their susceptibility to ROS-manipulation therapies. In this review, we discuss the two faces of ROS in cancer, the potential mechanisms underlying ROS signaling, and the opposing cancer therapeutic approaches to targeting ROS.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adhikary A, Mohanty S, Lahiry L, Hossain DM, Chakraborty S. et al. 2010. Theaflavins retard human breast cancer cell migration by inhibiting NF-κB via p53-ROS cross-talk. FEBS Lett 584:7–14 [Google Scholar]
  2. Ambrosino C, Nebreda AR. 2001. Cell cycle regulation by p38 MAP kinases. Biol. Cell 93:47–51 [Google Scholar]
  3. Ames BN, Shigenaga MK, Hagen TM. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. PNAS 90:7915–22 [Google Scholar]
  4. Andringa KK, Coleman MC, Aykin-Burns N, Hitchler MJ, Walsh SA. et al. 2006. Inhibition of glutamate cysteine ligase activity sensitizes human breast cancer cells to the toxicity of 2-deoxy-d-glucose. Cancer Res 66:1605–10 [Google Scholar]
  5. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E. et al. 1997. Epidermal growth factor (EGF)–induced generation of hydrogen peroxide: role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272:217–21 [Google Scholar]
  6. Bailey HH, Ripple G, Tutsch KD, Arzoomanian RZ, Alberti D. et al. 1997. Phase I study of continuous-infusion l-S,R-buthionine sulfoximine with intravenous melphalan. J. Natl. Cancer Inst. 89:1789–96 [Google Scholar]
  7. Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA. et al. 2002. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 419:162–67 [Google Scholar]
  8. Bedard K, Krause KH. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87:245–313 [Google Scholar]
  9. Behrend L, Henderson G, Zwacka RM. 2003. Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans. 31:1441–44 [Google Scholar]
  10. Bell EL, Emerling BM, Ricoult SJ, Guarente L. 2011. SirT3 suppresses hypoxia inducible factor 1α and growth by inhibiting mitochondrial ROS production. Oncogene 30:2986–96 [Google Scholar]
  11. Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP. et al. 2007. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 177:1029–36 [Google Scholar]
  12. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K. et al. 2006. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–20 [Google Scholar]
  13. Berndt C, Lillig CH, Holmgren A. 2007. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 292:H1227–36 [Google Scholar]
  14. Bigarella CL, Liang R, Ghaffari S. 2014. Stem cells and the impact of ROS signaling. Development 141:4206–18 [Google Scholar]
  15. Biteau B, Labarre J, Toledano MB. 2003. ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–84 [Google Scholar]
  16. Brewer TF, Garcia FJ, Onak CS, Carroll KS, Chang CJ. 2015. Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annu. Rev. Biochem. 84:765–90 [Google Scholar]
  17. Buetler TM, Krauskopf A, Ruegg UT. 2004. Role of superoxide as a signaling molecule. News Physiol. Sci. 19:120–23 [Google Scholar]
  18. Cantley LC. 2002. The phosphoinositide 3-kinase pathway. Science 296:1655–57 [Google Scholar]
  19. Chandel NS, Tuveson DA. 2014. The promise and perils of antioxidants for cancer patients. N. Engl. J. Med. 371:177–78 [Google Scholar]
  20. Chen Y, Azad MB, Gibson SB. 2009. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16:1040–52 [Google Scholar]
  21. Cheung EC, Athineos D, Lee P, Ridgway RA, Lambie W. et al. 2013. TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev. Cell 25:463–77 [Google Scholar]
  22. Cheung EC, Lee P, Ceteci F, Nixon C, Blyth K. et al. 2016. Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine. Genes Dev 30:52–63 [Google Scholar]
  23. Cheung EC, Ludwig RL, Vousden KH. 2012. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. PNAS 109:20491–96 [Google Scholar]
  24. Chiang AC, Massague J. 2008. Molecular basis of metastasis. N. Engl. J. Med. 359:2814–23 [Google Scholar]
  25. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN. et al. 1987. Oxygen radicals and human disease. Ann. Intern. Med. 107:526–45 [Google Scholar]
  26. D'Autreaux B, Toledano MB. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8:813–24 [Google Scholar]
  27. DeNicola GM, Chen PH, Mullarky E, Sudderh JA, Hu Z. et al. 2015. NRF2 regulates serine biosynthesis in non–small cell lung cancer. Nat. Genet. 47:1475–81 [Google Scholar]
  28. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C. et al. 2011. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–9 [Google Scholar]
  29. Diaz B, Shani G, Pass I, Anderson D, Quintavalle M. et al. 2009. Tks5-dependent, Nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci. Signal. 2:ra53 [Google Scholar]
  30. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ. et al. 2009. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–83 [Google Scholar]
  31. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A. et al. 2007. p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11:191–205 [Google Scholar]
  32. Dvorakova K, Payne CM, Tome ME, Briehl MM, McClure T. et al. 2000. Induction of oxidative stress and apoptosis in myeloma cells by the aziridine-containing agent imexon. Biochem. Pharmacol. 60:749–58 [Google Scholar]
  33. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB. et al. 2014. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302 [Google Scholar]
  34. Finkel T. 2011. Signal transduction by reactive oxygen species. J. Cell Biol. 194:7–15 [Google Scholar]
  35. Finley LW, Carracedo A, Lee J, Souza A, Egia A. et al. 2011. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19:416–28 [Google Scholar]
  36. Fisher AB. 2009. Redox signaling across cell membranes. Antioxid. Redox Signal. 11:1349–56 [Google Scholar]
  37. Fourquet S, Guerois R, Biard D, Toledano MB. 2010. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol. Chem. 285:8463–71 [Google Scholar]
  38. Franco J, Balaji U, Freinkman E, Witkiewicz AK, Knudsen ES. 2016. Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell Rep 14:979–90 [Google Scholar]
  39. Fridovich I. 1997. Superoxide anion radical (O2•−), superoxide dismutases, and related matters. J. Biol. Chem. 272:18515–17 [Google Scholar]
  40. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y. et al. 2007. HIF-dependent anti-tumorigenic effect of anti-oxidants in vivo. Cancer Cell 12:230–38 [Google Scholar]
  41. Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P. 2005. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol. Cell. Biol. 25:6391–403 [Google Scholar]
  42. Giannoni E, Fiaschi T, Ramponi G, Chiarugi P. 2009. Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals. Oncogene 28:2074–86 [Google Scholar]
  43. Glasauer A, Chandel NS. 2014. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 92:90–101 [Google Scholar]
  44. Glasauer A, Sena LA, Diebold LP, Mazar AP, Chandel NS. 2014. Targeting SOD1 reduces experimental non-small-cell lung cancer. J. Clin. Investig. 124:117–28 [Google Scholar]
  45. Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD. 2015. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 290:209–27 [Google Scholar]
  46. Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S. et al. 2013a. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J. Exp. Med. 210:1529–44 [Google Scholar]
  47. Gorrini C, Harris IS, Mak TW. 2013b. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12:931–47 [Google Scholar]
  48. Griffith OW, Meister A. 1979. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem. 254:7558–60 [Google Scholar]
  49. Han D, Antunes F, Canali R, Rettori D, Cadenas E. 2003. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem. 278:5557–63 [Google Scholar]
  50. Han J, Sun P. 2007. The pathways to tumor suppression via route p38. Trends Biochem. Sci. 32:364–71 [Google Scholar]
  51. Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C. et al. 2015. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27:211–22 [Google Scholar]
  52. Holmstrom KM, Finkel T. 2014. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15:411–21 [Google Scholar]
  53. Horak P, Crawford AR, Vadysirisack DD, Nash ZM, DeYoung MP. et al. 2010. Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. PNAS 107:4675–80 [Google Scholar]
  54. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M. et al. 1997. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94 [Google Scholar]
  55. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ. et al. 1997. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649–52 [Google Scholar]
  56. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T. et al. 2000. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275:16023–29 [Google Scholar]
  57. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A. et al. 2008. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–64 [Google Scholar]
  58. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T. et al. 2011. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc and thereby promotes tumor growth. Cancer Cell 19:387–400 [Google Scholar]
  59. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K. et al. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86 [Google Scholar]
  60. Jaramillo MC, Zhang DD. 2013. The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev 27:2179–91 [Google Scholar]
  61. Jeon SM, Chandel NS, Hay N. 2012. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485:661–65 [Google Scholar]
  62. Jiang L, Kon N, Li T, Wang SJ, Su T. et al. 2015. Ferroptosis as a p53-mediated activity during tumor suppression. Nature 520:57–62 [Google Scholar]
  63. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ. et al. 2016. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532:255–58 [Google Scholar]
  64. Kaelin WG Jr., Ratcliffe PJ. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30:393–402 [Google Scholar]
  65. Kennedy NJ, Davis RJ. 2003. Role of JNK in tumor development. Cell Cycle 2:199–201 [Google Scholar]
  66. Kerr EM, Gaude E, Turrell FK, Frezza C, Martins CP. 2016. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 531:110–13 [Google Scholar]
  67. Kil IS, Lee SK, Ryu KW, Woo HA, Hu MC. et al. 2012. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46:584–94 [Google Scholar]
  68. Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K. et al. 2015. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520:363–67 [Google Scholar]
  69. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N. et al. 2010. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17:41–52 [Google Scholar]
  70. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. 2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–85 [Google Scholar]
  71. Klein EA, Thompson IM Jr., Tangen CM, Crowley JJ, Lucia MS. et al. 2011. Vitamin E and the risk of prostate cancer: updated results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306:1549–56 [Google Scholar]
  72. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y. et al. 2004. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24:7130–39 [Google Scholar]
  73. Kobayashi M, Yamamoto M. 2006. Nrf2–Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzym. Regul. 46:113–40 [Google Scholar]
  74. Kruiswijk F, Labuschagne CF, Vousden KH. 2015. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16:393–405 [Google Scholar]
  75. Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD. 2014. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 7:1248–58 [Google Scholar]
  76. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T. et al. 2006. 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol. Cell. Biol. 26:5336–47 [Google Scholar]
  77. Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK. et al. 2015. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 7:308re8 [Google Scholar]
  78. Lee G, Won HS, Lee YM, Choi JW, Oh TI. et al. 2016. Oxidative dimerization of PHD2 is responsible for its inactivation and contributes to metabolic reprogramming via HIF-1α activation. Sci. Rep. 6:18928 [Google Scholar]
  79. Lee SR, Yang KS, Kwon J, Lee C, Jeong W. et al. 2002. Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem. 277:20336–42 [Google Scholar]
  80. Levine AJ, Oren M. 2009. The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9:749–58 [Google Scholar]
  81. Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY. et al. 2014. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55:253–63 [Google Scholar]
  82. Liou GY, Doppler H, DelGiorno KE, Zhang L, Leitges M. et al. 2016. Mutant KRas-induced mitochondrial oxidative stress in acinar cells upregulates EGFR signaling to drive formation of pancreatic precancerous lesions. Cell Rep 14:2325–36 [Google Scholar]
  83. Locasale JW. 2013. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13:572–83 [Google Scholar]
  84. Los M, Maddika S, Erb B, Schulze-Osthoff K. 2009. Switching Akt: from survival signaling to deadly response. BioEssays 31:492–95 [Google Scholar]
  85. Ma Q, Cavallin LE, Yan B, Zhu S, Duran EM. et al. 2009. Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi's sarcoma. PNAS 106:8683–88 [Google Scholar]
  86. Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K. et al. 2013. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:542–46 [Google Scholar]
  87. McAuliffe SM, Morgan SL, Wyant GA, Tran LT, Muto KW. et al. 2012. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. PNAS 109:E2939–48 [Google Scholar]
  88. Meacham CE, Morrison SJ. 2013. Tumour heterogeneity and cancer cell plasticity. Nature 501:328–37 [Google Scholar]
  89. Moon DO, Kim MO, Choi YH, Hyun JW, Chang WY. et al. 2010. Butein induces G2/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Lett 288:204–13 [Google Scholar]
  90. Morgan MJ, Liu ZG. 2011. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–15 [Google Scholar]
  91. Muller F, Liu Y, Van Remmen H. 2004. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279:49064–73 [Google Scholar]
  92. Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417:1–13 [Google Scholar]
  93. Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L. et al. 2014. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 5:3128 [Google Scholar]
  94. No JH, Kim YB, Song YS. 2014. Targeting Nrf2 signaling to combat chemoresistance. J. Cancer Prev. 19:111–17 [Google Scholar]
  95. Nogueira V, Park Y, Chen C, Xu P, Chen M. et al. 2008. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14:458–70 [Google Scholar]
  96. Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M. et al. 2014. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 21:998–1012 [Google Scholar]
  97. Omenn GS, Goodman GD, Thornquist MD, Balmes J, Cullen MR. et al. 1996. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334:1150–55 [Google Scholar]
  98. Orr AL, Vargas L, Turk CN, Baaten JE, Matzen JT. et al. 2015. Suppressors of superoxide production from mitochondrial complex III. Nat. Chem. Biol. 11:834–36 [Google Scholar]
  99. Papa L, Hahn M, Marsh EL, Evans BS, Germain D. 2014. SOD2 to SOD1 switch in breast cancer. J. Biol. Chem. 289:5412–16 [Google Scholar]
  100. Patterson HC, Gerbeth C, Thiru P, Vogtle NF, Knoll M. et al. 2015. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling. PNAS 112:E5679–88 [Google Scholar]
  101. Peralta D, Bronowska AK, Morgan B, Doka E, Van Laer K. et al. 2015. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11:156–63 [Google Scholar]
  102. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE. et al. 2015. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527:186–91 [Google Scholar]
  103. Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P. et al. 2014. A mitochondrial switch promotes tumor metastasis. Cell Rep 8:754–66 [Google Scholar]
  104. Raj L, Ide T, Gurkar AU, Foley M, Schenone M. et al. 2011. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–34 [Google Scholar]
  105. Rao RK, Clayton LW. 2002. Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation. Biochem. Biophys. Res. Commun. 293:610–16 [Google Scholar]
  106. Reczek CR, Chandel NS. 2015. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33:8–13 [Google Scholar]
  107. Rhee SG, Woo HA, Kil IS, Bae SH. 2012. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287:4403–10 [Google Scholar]
  108. Sabharwal SS, Schumacker PT. 2014. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel. Nat. Rev. Cancer 14:709–21 [Google Scholar]
  109. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE. et al. 2005. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11:1306–13 [Google Scholar]
  110. Safford SE, Oberley TD, Urano M, St. Clair DK. 1994. Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res 54:4261–65 [Google Scholar]
  111. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K. et al. 1998. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–606 [Google Scholar]
  112. Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA. et al. 2003. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–73 [Google Scholar]
  113. Satoh H, Moriguchi T, Takai J, Ebina M, Yamamoto M. 2013. Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res 73:4158–68 [Google Scholar]
  114. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P. et al. 2014. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 6:221ra15 [Google Scholar]
  115. Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z. et al. 2009. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461:109–13 [Google Scholar]
  116. Schieber M, Chandel NS. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24:R453–62 [Google Scholar]
  117. Semenza GL. 2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3:721–32 [Google Scholar]
  118. Semenza GL. 2012. Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408 [Google Scholar]
  119. Sena LA, Chandel NS. 2012. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48:158–67 [Google Scholar]
  120. Seth D, Rudolph J. 2006. Redox regulation of MAP kinase phosphatase 3. Biochemistry 45:8476–87 [Google Scholar]
  121. Shao D, Oka S, Liu T, Zhai P, Ago T. et al. 2014. A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation. Cell Metab 19:232–45 [Google Scholar]
  122. Shaw AT, Winslow MM, Magendantz M, Ouyang C, Dowdle J. et al. 2011. Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. PNAS 108:8773–78 [Google Scholar]
  123. Shimada K, Hayano M, Pagano NC, Stockwell BR. 2016. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem. Biol. 23:225–35 [Google Scholar]
  124. Sobotta MC, Liou W, Stocker S, Talwar D, Oehler M. et al. 2015. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11:64–70 [Google Scholar]
  125. Somwar R, Erdjument-Bromage H, Larsson E, Shum D, Lockwood WW. et al. 2011. Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines. PNAS 108:16375–80 [Google Scholar]
  126. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG. et al. 2011. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways?. J. Signal Transduct. 2011:792639 [Google Scholar]
  127. St. Clair DK, Wan XS, Oberley TD, Muse KE, St. Clair WH. 1992. Suppression of radiation-induced neoplastic transformation by overexpression of mitochondrial superoxide dismutase. Mol. Carcinog. 6:238–42 [Google Scholar]
  128. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–99 [Google Scholar]
  129. Szatrowski TP, Nathan CF. 1991. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–98 [Google Scholar]
  130. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH. et al. 2010. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40:893–904 [Google Scholar]
  131. Teoh-Fitzgerald ML, Fitzgerald MP, Zhong W, Askeland RW, Domann FE. 2014. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis. Oncogene 33:358–68 [Google Scholar]
  132. Thornton TM, Rincon M. 2009. Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int. J. Biol. Sci. 5:44–52 [Google Scholar]
  133. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K. et al. 2001. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222–28 [Google Scholar]
  134. Tochhawng L, Deng S, Pervaiz S, Yap CT. 2013. Redox regulation of cancer cell migration and invasion. Mitochondrion 13:246–53 [Google Scholar]
  135. Trachootham D, Alexandre J, Huang P. 2009. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat. Rev. Drug Discov. 8:579–91 [Google Scholar]
  136. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z. et al. 2006. Selective killing of oncogenically transformed cells though a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 10:241–52 [Google Scholar]
  137. Wagner EF, Nebreda AR. 2009. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9:537–49 [Google Scholar]
  138. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J. et al. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. PNAS 107:8788–93 [Google Scholar]
  139. Weinberg SE, Chandel NS. 2015. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11:9–15 [Google Scholar]
  140. Winterbourn CC. 2013. The biological chemistry of hydrogen peroxide. Methods Enzymol 528:3–25 [Google Scholar]
  141. Woo DK, Green PD, Santos JH, D'Souza AD, Walther Z. et al. 2012. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APCMin/+ mice. Am. J. Pathol. 180:24–31 [Google Scholar]
  142. Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW. et al. 2003. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300:653–56 [Google Scholar]
  143. Woo HA, Yim SH, Shin DH, Kang D, Yu DY. et al. 2010. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140:517–28 [Google Scholar]
  144. Wu H, Goel V, Haluska FG. 2003. PTEN signaling pathways in melanoma. Oncogene 22:3113–22 [Google Scholar]
  145. Wu KC, Cui JY, Klaassen CD. 2011. Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol. Sci. 123:590–600 [Google Scholar]
  146. Wu X, Zhu Y, Yan H, Liu B, Li Y. et al. 2010. Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non–small cell lung cancer cells. BMC Cancer 10:269 [Google Scholar]
  147. Xu K, Thornalley PJ. 2001. Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro. Biochem. Pharmacol. 61:165–77 [Google Scholar]
  148. Yang M, Liu P, Huang P. 2016. Cancer stem cells, metabolism, and therapeutic significance. Tumour Biol 37:5735–42 [Google Scholar]
  149. Ye J, Fan J, Venneti S, Wan YW, Pawel BR. et al. 2014. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 4:1406–17 [Google Scholar]
  150. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A. et al. 2015. Vitamin C selectively kills KRAS and. BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350:1391–96 [Google Scholar]
  151. Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y. et al. 2007. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. PNAS 104:16158–63 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error