Genomic instability underlies many cancers and generates genetic variation that drives cancer initiation, progression, and therapy resistance. In contrast with classical assumptions that mutations occur purely stochastically at constant, gradual rates, microbes, plants, flies, and human cancer cells possess mechanisms of mutagenesis that are upregulated by stress responses. These generate transient, genetic-diversity bursts that can propel evolution, specifically when cells are poorly adapted to their environments—that is, when stressed. We review molecular mechanisms of stress-response-dependent (stress-induced) mutagenesis that occur from bacteria to cancer, and are activated by starvation, drugs, hypoxia, and other stressors. We discuss mutagenic DNA break repair in as a model for mechanisms in cancers. The temporal regulation of mutagenesis by stress responses and spatial restriction in genomes are common themes across the tree of life. Both can accelerate evolution, including the evolution of cancers. We discuss possible anti-evolvability drugs, aimed at targeting mutagenesis and other variation generators, that could be used to delay the evolution of cancer progression and therapy resistance.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Åkerlund T, Nordstrom K, Bernander R. 1995. Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J. Bacteriol. 177:6791–97 [Google Scholar]
  2. Al Mamun AA, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C. et al. 2012. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 338:1344–48 [Google Scholar]
  3. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. 2013. Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3:246–59 [Google Scholar]
  4. Andersson DI, Hughes D. 2014. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12:465–78 [Google Scholar]
  5. Aravind L, Walker AG, Koonin E. 1999. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res 27:1223–42 [Google Scholar]
  6. Avery O, MacLeod C, McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79:137–58 [Google Scholar]
  7. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A. et al. 2013. Punctuated evolution of prostate cancer genomes. Cell 153:666–77 [Google Scholar]
  8. Battesti A, Majdalani N, Gottesman S. 2011. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65:189–213 [Google Scholar]
  9. Bavoux C, Leopoldino AM, Bergoglio V, O-Wang J, Ogi T. et al. 2005. Up-regulation of the error-prone DNA polymerase κ promotes pleiotropic genetic alterations and tumorigenesis. Cancer Res 65:325–30 [Google Scholar]
  10. Belenky P, Ye JD, Porter CB, Cohen NR, Lobritz MA. et al. 2015. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep 13:968–80 [Google Scholar]
  11. Belyayev A. 2014. Bursts of transposable elements as an evolutionary driving force. J. Evol. Biol. 27:2573–84 [Google Scholar]
  12. Berman HK, Gauthier ML, Tlsty TD. 2010. Premalignant breast neoplasia: a paradigm of interlesional and intralesional molecular heterogeneity and its biological and clinical ramifications. Cancer Prev. Res. 3:579–87 [Google Scholar]
  13. Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M. et al. 2005. Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res 65:11597–604 [Google Scholar]
  14. Bindra RS, Glazer PM. 2007a. Co-repression of mismatch repair gene expression by hypoxia in cancer cells: role of the Myc/Max network. Cancer Lett 252:93–103 [Google Scholar]
  15. Bindra RS, Glazer PM. 2007b. Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 26:2048–57 [Google Scholar]
  16. Bindra RS, Schaffer PJ, Meng A, Woo J, Maseide K. et al. 2004. Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Mol. Cell Biol. 24:8504–18 [Google Scholar]
  17. Bjedov I, Tenaillon O, Gérard B, Souza V, Denamur E. et al. 2003. Stress-induced mutagenesis in bacteria. Science 300:1404–9 [Google Scholar]
  18. Bos J, Zhang Q, Vyawahare S, Rogers E, Rosenberg SM, Austin RH. 2015. Emergence of antibiotic resistance from multinucleated bacterial filaments. PNAS 112:178–83 [Google Scholar]
  19. Brégeon D, Matic I, Radman M, Taddei F. 1999. Inefficient mismatch repair: genetic defects and down regulation. J. Genet. 78:21–28 [Google Scholar]
  20. Bull HJ, McKenzie GJ, Hastings PJ, Rosenberg SM. 2000. Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination. Genetics 154:1427–37 [Google Scholar]
  21. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM. et al. 2013a. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494:366–70 [Google Scholar]
  22. Burns MB, Temiz NA, Harris RS. 2013b. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45:977–83 [Google Scholar]
  23. Cairns J, Foster PL. 1991. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128:695–701 [Google Scholar]
  24. Camps M, Naukkarinen J, Johnson BP, Loeb LA. 2003. Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. PNAS 100:9727–32 [Google Scholar]
  25. Caporale LH. 2006. The Implicit Genome Oxford, UK: Oxford Univ. Press
  26. Casacuberta E, Gonzalez J. 2013. The impact of transposable elements in environmental adaptation. Mol. Ecol. 22:1503–17 [Google Scholar]
  27. Chan N, Koritzinsky M, Zhao H, Bindra R, Glazer PM. et al. 2008. Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res 68:605–14 [Google Scholar]
  28. Chan N, Pires IM, Bencokova Z, Coackley C, Luoto KR. et al. 2010. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res 70:8045–54 [Google Scholar]
  29. Chatterjee N, Lin Y, Santillan BA, Yotnda P, Wilson JH. 2015. Environmental stress induces trinucleotide repeat mutagenesis in human cells. PNAS 112:3764–69 [Google Scholar]
  30. Chen G, Bradford WD, Seidel CW, Li R. 2012. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482:246–50 [Google Scholar]
  31. Cirz RT, Chin JK, Andes DR, de Crecy-Lagard V, Craig WA, Romesberg FE. 2005. Inhibition of mutation and combating the evolution of antibiotic resistance. PLOS Biol 3:e176 [Google Scholar]
  32. Coros CJ, Piazza CL, Chalamcharla VR, Smith D, Belfort M. 2009. Global regulators orchestrate group II intron retromobility. Mol. Cell 34:250–56 [Google Scholar]
  33. Csete M, Doyle J. 2004. Bow ties, metabolism and disease. Trends Biotechnol 22:446–50 [Google Scholar]
  34. Cummings C, Mancini M, Antalffy B, DeFranco D, Orr H, Zoghbi H. 1998. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19:148–54 [Google Scholar]
  35. Denamur E, Matic I. 2006. Evolution of mutation rates in bacteria. Mol. Microbiol. 60:820–27 [Google Scholar]
  36. Ding A, Sun G, Argraw Y, Wong J, Easwaran S, Montell D. 2016. CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo. eLife 5:e10936 [Google Scholar]
  37. Drake JW, Bebenek A, Kissling GE, Peddada S. 2005. Clusters of mutations from transient hypermutability. PNAS 102:12849–54 [Google Scholar]
  38. Echols H. 1981. SOS functions, cancer, and inducible evolution. Cell 25:1–2 [Google Scholar]
  39. Fearon E, Vogelstein B. 1990. A genetic model for colorectal tumorigenesis. Cell 61:759–67 [Google Scholar]
  40. Fishel R, Lescoe M, Rao M, Copeland N, Jenkins N. et al. 1993. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–38 [Google Scholar]
  41. Fonville NC, Ward RM, Mittelman D. 2012. Stress-induced modulators of repeat instability and genome evolution. J. Mol. Microbiol. Biotechnol. 21:36–44 [Google Scholar]
  42. Forche A. 2014. Large-scale chromosomal changes and associated fitness consequences in pathogenic fungi. Curr. Fungal Infect. Rep. 8:163–70 [Google Scholar]
  43. Foster PL, Trimarchi JM. 1994. Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolymeric runs. Science 265:407–9 [Google Scholar]
  44. Frisch RL, Su Y, Thornton PC, Gibson JL, Rosenberg SM, Hastings PJ. 2010. Separate DNA Pol II- and Pol IV-dependent pathways of stress-induced mutation during double-strand-break repair in Escherichia coli are controlled by RpoS. J. Bacteriol. 192:4694–700 [Google Scholar]
  45. Funchain P, Yeung A, Stewart J, Lin R, Slupska M, Miller J. 2000. The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics 154:959–70 [Google Scholar]
  46. Galhardo RS, Do R, Yamada M, Friedberg EC, Hastings PJ. et al. 2009. DinB upregulation is the sole role of the SOS response in stress-induced mutagenesis in Escherichia coli. Genetics 182:55–68 [Google Scholar]
  47. Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, Swanton C. 2014. Cancer: evolution within a lifetime. Annu. Rev. Genet. 48:215–36 [Google Scholar]
  48. Gibson JL, Lombardo MJ, Thornton PC, Hu KH, Galhardo RS. et al. 2010. The σE stress response is required for stress-induced mutation and amplification in Escherichia coli. Mol. Microbiol. 77:415–30 [Google Scholar]
  49. Gonzalez C, Hadany L, Ponder RG, Price M, Hastings PJ, Rosenberg SM. 2008. Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLOS Genet. 4:e1000208 [Google Scholar]
  50. Goodman MF, Woodgate R. 2013. Translesion DNA polymerases. Cold Spring Harb. Perspect. Biol. 5:a010363 [Google Scholar]
  51. Greaves M, Maley CC. 2012. Clonal evolution in cancer. Nature 481:306–13 [Google Scholar]
  52. Gutierrez A, Laureti L, Crussard S, Abida H, Rodriguez-Rojas A. et al. 2013. β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat. Commun. 4:1610 [Google Scholar]
  53. Harris RS, Feng G, Ross K, Sidhu R, Thulin C. et al. 1997. Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev 11:2416–37 [Google Scholar]
  54. Harris RS, Longerich S, Rosenberg SM. 1994. Recombination in adaptive mutation. Science 264:258–60 [Google Scholar]
  55. Hastings PJ, Bull HJ, Klump JR, Rosenberg SM. 2000. Adaptive amplification: an inducible chromosomal instability mechanism. Cell 103:723–31 [Google Scholar]
  56. Hastings PJ, Ira G, Lupski JR. 2009. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLOS Genet 5:e1000327 [Google Scholar]
  57. Heidenreich E, Novotny R, Kneidinger B, Holzmann V, Wintersberger U. 2003. Non-homologous end joining as an important mutagenic process in cell cycle–arrested cells. EMBO J 22:2274–83 [Google Scholar]
  58. Hershey A, Chase M. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36:39–56 [Google Scholar]
  59. Holbeck S, Strathern J. 1997. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics 147:1017–24 [Google Scholar]
  60. Huxley J. 1942. Evolution of the Modern Synthesis London: Allen & Unwin
  61. Ilves H, Horak R, Kivisaar M. 2001. Involvement of σS in starvation-induced transposition of Pseudomonas putida transposon Tn4652. J. Bacteriol. 183:5445–48 [Google Scholar]
  62. Ito A, Koshikawa N, Mochizuki S, Omura K, Takenaga K. 2006. Hypoxia-inducible factor-1 mediates the expression of DNA polymerase ι in human tumor cells. Biochem. Biophys. Res. Commun. 351:306–11 [Google Scholar]
  63. Jarosz D. 2016. Hsp90: a global regulator of the genotype-to-phenotype map in cancers. Adv. Cancer Res. 129:225–47 [Google Scholar]
  64. Kamal A, Thao L, Sensintaffer J, Zhang L, Boehm M. et al. 2003. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 435:407–10 [Google Scholar]
  65. Kohanski MA, DePristo MA, Collins JJ. 2010. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 37:311–20 [Google Scholar]
  66. Koshiji M, To KK, Hammer S, Kumamoto K, Harris AL. et al. 2005. HIF-1α induces genetic instability by transcriptionally downregulating MutSα expression. Mol. Cell 17:793–803 [Google Scholar]
  67. Kuzminov A. 2013. Homologous recombination—experimental systems, analysis, and significance. EcoSal Plus 4:10.1128/ecosalplus.7.2.6 [Google Scholar]
  68. Lamrani A, Ranquet C, Gama M, Nakai H, Shapiro J. et al. 1999. Starvation-induced Mu cts62-mediated coding sequence fusion: a role for ClpXP, Lon, RpoS and Crp. Mol. Microbiol. 32:327–43 [Google Scholar]
  69. Lee JK, Choi YL, Kwon M, Park PJ. 2016. Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu. Rev. Pathol. 11:283–312 [Google Scholar]
  70. Lengauer C, Kinzler K, Vogelstein B. 1998. Genetic instabilities in human cancers. Nature 396:643–49 [Google Scholar]
  71. Leonard B, McCann JL, Starrett GJ, Kosyakovsky L, Luengas EM. et al. 2015. The PKC/NF-κB signaling pathway induces APOBEC3B expression in multiple human cancers. Cancer Res 75:4538–47 [Google Scholar]
  72. Li GM. 2008. Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98 [Google Scholar]
  73. Lin D, Gibson IB, Moore JM, Thornton PC, Leal SM, Hastings PJ. 2011. Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells. PLOS Genet 7:e1002223 [Google Scholar]
  74. Lindquist S. 2009. Protein folding sculpting evolutionary change. Cold Spring Harb. Symp. Quant. Biol. 74:103–8 [Google Scholar]
  75. Liu P, Carvalho CM, Hastings PJ, Lupski JR. 2012. Mechanisms for recurrent and complex human genomic rearrangements. Curr. Opin. Genet. Dev. 22:211–20 [Google Scholar]
  76. Lombardo M-J, Aponyi I, Rosenberg SM. 2004. General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 166:669–80 [Google Scholar]
  77. Longerich S, Galloway A, Harris RS, Wong C, Rosenberg SM. 1995. Adaptive mutation sequences reproduced by mismatch repair deficiency. PNAS 92:12017–20 [Google Scholar]
  78. Luoto KR, Kumareswaran R, Bristow RG. 2013. Tumor hypoxia as a driving force in genetic instability. Genome Integr 4:5 [Google Scholar]
  79. Luria S, Delbruck M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511 [Google Scholar]
  80. Lynch M. 2010. Evolution of the mutation rate. Trends Genet 26:345–52 [Google Scholar]
  81. Maharjan R, Ferenci T. 2015. Mutational signatures indicative of environmental stress in bacteria. Mol. Biol. Evol. 32:380–91 [Google Scholar]
  82. Martin HA, Pedraza-Reyes M, Yasbin RE, Robleto EA. 2011. Transcriptional de-repression and Mfd are mutagenic in stressed Bacillus subtilis cells. J. Mol. Microbiol. Biotechnol. 21:45–58 [Google Scholar]
  83. Mayr E. 1985. The Growth of Biological Thought: Diversity, Evolution, and Inheritance Cambridge, MA: Harvard Univ. Press
  84. McClintock B. 1978. Mechanisms that rapidly reorganize the genome. Stadler Genet. Symp. 10:25–48 [Google Scholar]
  85. McKenzie GJ, Harris RS, Lee PL, Rosenberg SM. 2000. The SOS response regulates adaptive mutation. PNAS 97:6646–51 [Google Scholar]
  86. McKenzie GJ, Lee PL, Lombardo MJ, Hastings PJ, Rosenberg SM. 2001. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol. Cell 7:571–79 [Google Scholar]
  87. Merrikh H, Zhang Y, Grossman AD, Wang JD. 2012. Replication–transcription conflicts in bacteria. Nat. Rev. Microbiol. 10:449–58 [Google Scholar]
  88. Meselson M, Stahl F. 1958. The replication of DNA in Escherichia coli. PNAS 44:671–82 [Google Scholar]
  89. Mihaylova VT, Bindra RS, Yuan J, Campisi D, Narayanan L. et al. 2003. Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol. Cell. Biol. 23:3265–73 [Google Scholar]
  90. Mittelman D, Sykoudis K, Hersh M, Lin Y, Wilson JH. 2010. Hsp90 modulates CAG repeat instability in human cells. Cell Stress Chaperones 15:753–59 [Google Scholar]
  91. Motamedi M, Szigety S, Rosenberg SM. 1999. Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo. Genes Dev 13:2889–903 [Google Scholar]
  92. Navin N, Kendall J, Troge J, Andrews P, Rodgers L. et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94 [Google Scholar]
  93. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD. et al. 2012. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–93 [Google Scholar]
  94. Nowell PC. 1976. The clonal evolution of tumor cell populations. Science 194:23–28 [Google Scholar]
  95. O-Wang J, Kawamura K, Tada Y, Ohmori H, Kimura H. et al. 2001. DNA polymerase κ, implicated in spontaneous and DNA damage-induced mutagenesis, is overexpressed in lung cancer. Cancer Res 61:5366–69 [Google Scholar]
  96. Ortolani S, Ciccarese C, Cingarlini S, Tortora G, Massari F. 2015. Suppression of mTOR pathway in solid tumors: lessons learned from clinical experience in renal cell carcinoma and neuroendocrine tumors and new perspectives. Future Oncol 11:1809–28 [Google Scholar]
  97. Pedraza-Reyes M, Yasbin RE. 2004. Contribution of the mismatch DNA repair system to the generation of stationary-phase-induced mutants of Bacillus subtilis. J. Bacteriol. 186:6485–91 [Google Scholar]
  98. Pennington JM, Rosenberg SM. 2007. Spontaneous DNA breakage in single living Escherichia coli cells. Nat. Genet. 39:797–802 [Google Scholar]
  99. Petrosino JF, Galhardo RS, Morales LD, Rosenberg SM. 2009. Stress-induced β-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J. Bacteriol. 191:5881–89 [Google Scholar]
  100. Piacentini L, Fanti L, Specchia V, Bozzetti MP, Berloco M. et al. 2014. Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma 123:345–54 [Google Scholar]
  101. Pomerantz RT, Goodman MF, O'Donnell ME. 2013. DNA polymerases are error-prone at RecA-mediated recombination intermediates. Cell Cycle 12:2558–63 [Google Scholar]
  102. Pommier Y, Leo E, Zhang H, Marchand C. 2010. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17:421–33 [Google Scholar]
  103. Ponder RG, Fonville NC, Rosenberg SM. 2005. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol. Cell 19:791–804 [Google Scholar]
  104. Prieto AI, Ramos-Morales F, Casadesus J. 2006. Repair of DNA damage induced by bile salts in Salmonella enterica. Genetics 174:575–84 [Google Scholar]
  105. Quah S-K, von Borstel R, Hastings P. 1980. The origin of spontaneous mutation in Saccharomyces cerevisiae. Genetics 96:819–39 [Google Scholar]
  106. Queitsch C, Carlson K, Girirajan S. 2012. Lessons from model organisms: phenotypic robustness and missing heritability in complex disease. PLOS Genet 8:e1003041 [Google Scholar]
  107. Radman M. 1974. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS hypothesis. Molecular and Environmental Aspects of Mutagenesis L Prokash, F Sherman, M Miller, C Lawrence, H Tabor 128–42 Springfield, IL: Charles C. Thomas [Google Scholar]
  108. Radman M. 1975. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Molecular Mechanisms for Repair of DNA P Hanawalt, RB Setlow 355–67 New York: Plenum [Google Scholar]
  109. Ram Y, Hadany L. 2012. The evolution of stress-induced hypermutation in asexual populations. Evolution 66:2315–28 [Google Scholar]
  110. Ram Y, Hadany L. 2014. Stress-induced mutagenesis and complex adaptation. Proc. R. Soc. Lond. B 281:20141025 [Google Scholar]
  111. Robbins JB, Smith D, Belfort M. 2011. Redox-responsive zinc finger fidelity switch in homing endonuclease and intron promiscuity in oxidative stress. Curr. Biol. 21:243–48 [Google Scholar]
  112. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D. et al. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45:970–76 [Google Scholar]
  113. Roberts SA, Sterling J, Thompson C, Harris S, Mav D. et al. 2012. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46:424–35 [Google Scholar]
  114. Rogers E, Correa R, Barreto B, Bravo Nunez MA, Minnick PJ. et al. 2016. Double-strand-break repair, mutagenesis and stress. Stress and Environmental Control of Gene Expression and Adaptation in Bacteria FJ de Bruijn, pp. 185–95 New York: Wiley [Google Scholar]
  115. Rosenberg SM, Longerich S, Gee P, Harris RS. 1994. Adaptive mutation by deletions in small mononucleotide repeats. Science 265:405–7 [Google Scholar]
  116. Rosenberg SM, Queitsch C. 2014. Combating evolution to fight disease. Science 343:1088–89 [Google Scholar]
  117. Rosenberg SM, Thullin C, Harris RS. 1998. Transient and heritable mutators in adaptive evolution in the lab and in nature. Genetics 148:1559–66 [Google Scholar]
  118. Rudner R, Murray A, Huda N. 1999. Is there a link between mutation rates and the stringent response in Bacillus subtilis. Ann. N. Y. Acad. Sci. 870:418–22 [Google Scholar]
  119. Saint-Ruf C, Garfa-Taore M, Collin V, Cordier C, Francschi C, Matic I. 2014. Massive diversification in aging colonies of Escherichia coli. J. Bacteriol. 196:3059–73 [Google Scholar]
  120. Sakofsky CJ, Roberts SA, Malc E, Mieczkowski PA, Resnick MA. et al. 2014. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep 7:1640–48 [Google Scholar]
  121. Santos-Pereira JM, Aguilera A. 2015. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16:583–97 [Google Scholar]
  122. Scanlon SE, Glazer PM. 2014. Hypoxic stress facilitates acute activation and chronic downregulation of Fanconi anemia proteins. Mol. Cancer Res. 12:1016–28 [Google Scholar]
  123. Schenten D, Gerlach V, Guo C, Velasco-Miguel S, Hladik C. et al. 2002. DNA polymerase κ deficiency does not affect somatic hypermutation in mice. Eur. J. Immunol. 32:3152–60 [Google Scholar]
  124. Shee C, Cox BD, Gu F, Luengas EM, Joshi MC. et al. 2013. Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. eLife 2:e01222 [Google Scholar]
  125. Shee C, Gibson JL, Darrow MC, Gonzalez C, Rosenberg SM. 2011. Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. PNAS 108:13659–64 [Google Scholar]
  126. Shee C, Gibson JL, Rosenberg SM. 2012. Two mechanisms produce mutation hotspots at DNA breaks in Escherichia coli. Cell Rep. 2:714–21 [Google Scholar]
  127. Shor E, Fox CA, Broach JR. 2013. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. PLOS Genet 9:e1003680 [Google Scholar]
  128. Slack A, Thornton PC, Magner DB, Rosenberg SM, Hastings PJ. 2006. On the mechanism of gene amplification induced under stress in Escherichia coli. PLOS Genet 2:e48 [Google Scholar]
  129. Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP. et al. 2015. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47:209–16 [Google Scholar]
  130. Specchia V, Piacentini L, Tritto P, Fanti L, D'Alessandro R. et al. 2010. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463:662–65 [Google Scholar]
  131. Stahl F. 1988. Bacterial genetics: a unicorn in the garden. Nature 335:112–13 [Google Scholar]
  132. Strathern J, Shafer B, McGill C. 1995. DNA synthesis errors associated with double-strand-break repair. Genetics 140:965–72 [Google Scholar]
  133. Sung HM, Yasbin RE. 2002. Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis. J. Bacteriol. 184:5641–53 [Google Scholar]
  134. Sung HM, Yeamans G, Ross CA, Yasbin RE. 2003. Roles of YqjH and YqjW, homologs of the Escherichia coli UmuC/DinB or Y superfamily of DNA polymerases, in stationary-phase mutagenesis and UV-induced mutagenesis of Bacillus subtilis. J. Bacteriol 185:2153–60 [Google Scholar]
  135. Swanton C, McGranahan N, Starrett GJ, Harris RS. 2015. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov 5:704–12 [Google Scholar]
  136. Tang HL, Tang HM, Mak KH, Hu S, Wang SS. et al. 2012. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol. Biol. Cell 23:2240–52 [Google Scholar]
  137. Tenaillon O, Denamur E, Matic I. 2004. Evolutionary significance of stress-induced mutagenesis in bacteria. Trends Microbiol 12:264–70 [Google Scholar]
  138. Tlsty T, Albertini A, Miller J. 1984. Gene amplification in the lac region of E. coli. Cell 37:217–24 [Google Scholar]
  139. Tomasetti C, Vogelstein B. 2015. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81 [Google Scholar]
  140. Torkelson J, Harris RS, Lombardo MJ, Nagendran J, Thulin C, Rosenberg SM. 1997. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J 16:3303–11 [Google Scholar]
  141. Tsui H-CT, Feng G, Winkler M. 1997. Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J. Bacteriol 179:7476–87 [Google Scholar]
  142. Veening JW, Smits WK, Kuipers OP. 2008. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62:193–210 [Google Scholar]
  143. Velasco-Miguel S, Richardson J, Gerlach V, Lai W, Gao T. et al. 2003. Constitutive and regulated expression of the mouse Dinb (Polκ) gene encoding DNA polymerase κ. DNA Repair 2:91–106 [Google Scholar]
  144. Vieira VC, Leonard B, White EA, Starrett GJ, Temiz NA. et al. 2014. Human papillomavirus E6 triggers upregulation of the antiviral and cancer genomic DNA deaminase APOBEC3B. mBio 5:e02234 [Google Scholar]
  145. Wang Y, Waters J, Leung ML, Unruh A, Roh W. et al. 2014. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–60 [Google Scholar]
  146. Whitesell L, Santagata S, Mendillo ML, Lin NU, Proia DA, Lindquist S. 2014. HSP90 empowers evolution of resistance to hormonal therapy in human breast cancer models. PNAS 111:18297–302 [Google Scholar]
  147. Wimberly H, Shee C, Thornton PC, Sivaramakrishnan P, Rosenberg SM, Hastings PJ. 2013. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat. Commun. 4:2115 [Google Scholar]
  148. Witkin E. 1967. The radiation sensitivity of Escherichia coli B: a hypothesis relating filament formation and prophage induction. PNAS 57:1275–79 [Google Scholar]
  149. Witkin E, George D. 1973. Ultraviolet mutagenesis in polA and UvrA polA derivatives of Escherichia coli B/R: evidence for an inducible error-prone repair system. Genetics 73:91–108 [Google Scholar]
  150. Wu S, Powers S, Zhu W, Hannun YA. 2016. Substantial contribution of extrinsic risk factors to cancer development. Nature 529:43–47 [Google Scholar]
  151. Yates LR, Campbell PJ. 2012. Evolution of the cancer genome. Nat. Rev. Genet. 13:795–806 [Google Scholar]
  152. Yu AM, McVey M. 2010. Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res 38:5706–17 [Google Scholar]
  153. Zhang Q, Lambert G, Liao D, Kim H, Robin K. et al. 2011. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333:1764–67 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error