1932

Abstract

The mitotic spindle assembly checkpoint (SAC) is an intricate cell signaling system that ensures the high fidelity and timely segregation of chromosomes during cell division. Mistakes in this process can lead to the loss, gain, or rearrangement of the genetic material. Gross chromosomal aberrations are usually lethal but can cause birth and development defects as well as cancer. Despite advances in the identification of SAC protein components, important details of the interactions underpinning chromosome segregation regulation remain to be established. This review discusses the current understanding of the function, structure, mode of regulation, and dynamics of the assembly and disassembly of SAC subcomplexes, which ultimately safeguard the accurate transmission of a stable genome to descendants. We also discuss how diverse oncoviruses take control of human cell division by exploiting the SAC and the potential of this signaling circuitry as a pool of drug targets to develop effective cancer therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030419-033541
2020-03-04
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/4/1/annurev-cancerbio-030419-033541.html?itemId=/content/journals/10.1146/annurev-cancerbio-030419-033541&mimeType=html&fmt=ahah

Literature Cited

  1. Alfieri C, Zhang S, Barford D 2017. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 7:11170204
    [Google Scholar]
  2. Amin AD, Rajan SS, Groysman MJ, Pongtornpipat P, Schatz JH 2015. Oncogene overdose: too much of a bad thing for oncogene-addicted cancer cells. Biomark. Cancer 7:Suppl. 225–32
    [Google Scholar]
  3. Amin MA, Itoh G, Lemura K, Ikeda M, Tanaka K 2014. CLIP-170 recruits PLK1 to kinetochores during early mitosis for chromosome alignment. J. Cell Sci. 127:2818–24
    [Google Scholar]
  4. Aravamudhan P, Goldfarb AA, Joglekar AP 2015. The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Nat. Cell Biol. 17:7868–79
    [Google Scholar]
  5. Ari A, Hanbay D. 2018. Deep learning based brain tumor classification and detection system. Turk. J. Electr. Eng. Comput. Sci. 26:52275–86
    [Google Scholar]
  6. Baek K, Park H, Kang C, Kim S, Jeong S et al. 2006. Overexpression of hepatitis C virus NS5A protein induces chromosome instability via mitotic cell cycle dysregulation. J. Mol. Biol. 359:122–34
    [Google Scholar]
  7. Bajaj R, Bollen M, Peti W, Page R 2018. KNL1 binding to PP1 and microtubules is mutually exclusive. Structure 26:101327–36.e4
    [Google Scholar]
  8. Barford D. 2011. Structural insights into anaphase-promoting complex function and mechanism. Philos. Trans. R. Soc. B. 366:15843605–24
    [Google Scholar]
  9. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F et al. 2005. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–70
    [Google Scholar]
  10. Bellanger S, Blachon S, Mechali F, Bonne-Andrea C, Thierry F 2005. High-risk but not low-risk HPV E2 proteins bind to the APC activators Cdh1 and Cdc20 and cause genomic instability. Cell Cycle 4:1608–15
    [Google Scholar]
  11. Bi W, Hosny A, Schabath M, Giger M, Birbak N et al. 2019. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J. Clin. 69:127–57
    [Google Scholar]
  12. Bolanos-Garcia VM, Blundell TL. 2011. BUB1 and BUBR1: multifaceted kinases of the cell cycle. Trends. Biochem. Sci. 36:3141–50
    [Google Scholar]
  13. Bolanos-Garcia VM, Kiyomitsu T, D'Arcy S, Chirgadze DY, Grossmann JG et al. 2009. The crystal structure of the N-terminal region of BUB1 provides insight into the mechanism of BUB1 recruitment to kinetochores. Structure 17:105–16
    [Google Scholar]
  14. Bolanos-Garcia VM, Lischetti T, Matak-Vinković D, Cota E, Simpson PJ et al. 2011. Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding site. Structure 19:1691–700
    [Google Scholar]
  15. Bolanos-Garcia VM, Wu Q, Ochi T, Chirgadze DY, Sibanda BL, Blundell TL 2012. Spatial and temporal organization of multi-protein assemblies: achieving sensitive control in information-rich cell-regulatory systems. Philos. Trans. R. Soc. A 370:19693023–39
    [Google Scholar]
  16. Boxus M, Willems L. 2009. Mechanisms of HTLV-1 persistence and transformation. Br. J. Cancer 101:1497–501
    [Google Scholar]
  17. Boyarchuk Y, Salic A, Dasso M, Arnaoutov A 2007. Bub1 is essential for assembly of the functional inner centromere. J. Cell Biol. 176:919–28
    [Google Scholar]
  18. Carbone A, Gloghini A, Dotti G 2008. EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist 13:5577–85
    [Google Scholar]
  19. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z 2006. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 38:91043–48
    [Google Scholar]
  20. Chae S, Ji J, Kwon S, Lee H, Lim J et al. 2013. HBxAPα/Rsf-1-mediated HBx-hBubR1 interactions regulate the mitotic spindle checkpoint and chromosome instability. Carcinogenesis 34:71680–88
    [Google Scholar]
  21. Chang DZ, Ma Y, Ji B, Liu Y, Hwu P et al. 2012. Increased CDC20 expression is associated with pancreatic ductal adenocarcinoma differentiation and progression. J. Hematol. Oncol. 5:15
    [Google Scholar]
  22. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A 2006. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:5983–97Reports the biochemical reconstitution of the entire KMN network that retains functional microtubule-binding properties.
    [Google Scholar]
  23. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T 2018. The rise of deep learning in drug discovery. Drug Discov. Today 23:61241–50
    [Google Scholar]
  24. Chen H, Lee J, Kljavin NM, Haley B, Daemen A et al. 2015. Requirement for BUB1B/BUBR1 in tumor progression of lung adenocarcinoma. Genes Cancer 6:3–4106–18
    [Google Scholar]
  25. Chen Y, Su W, Huang J, Chao T, Jeng K et al. 2010. Polo-like kinase 1 is involved in hepatitis C virus replication by hyperphosphorylating NS5A. J. Virol. 84:167983–93
    [Google Scholar]
  26. Choi E, Choe H, Min J, Choi JY, Kim J et al. 2009. BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing of mitosis. EMBO J 28:2077–89Demonstrates that BubR1 acetylation and ubiquitination constitute additional layers of BubR1 regulation.
    [Google Scholar]
  27. Ciferri C, Pasqualato S, Screpanti E, Varetti G, Santaguida S et al. 2008. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133:3427–39
    [Google Scholar]
  28. Combes G, Alharbi I, Braga LG, Elowe S 2017. Playing polo during mitosis: PLK1 takes the lead. Oncogene 36:344819–27
    [Google Scholar]
  29. Cordeiro MH, Smith RJ, Saurin AT 2018. A fine balancing act: a delicate kinase-phosphatase equilibrium that protects against chromosomal instability and cancer. Int. J. Biochem. Cell Biol. 96:148–56
    [Google Scholar]
  30. Cotsiki M, Lock RL, Cheng Y, Williams GL, Zhao J et al. 2004. Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. PNAS 101:947–52
    [Google Scholar]
  31. Cowley DO, Muse GW, Van Dyke T 2005. A dominant interfering Bub1 mutant is insufficient to induce or alter thymic tumorigenesis in vivo, even in a sensitized genetic background. Mol. Cell Biol. 25:177796–802
    [Google Scholar]
  32. Craney A, Kelly A, Jia L, Fedrigo I, Yu H et al. 2016. Control of APC/C-dependent ubiquitin chain elongation by reversible phosphorylation. PNAS 113:1540–45
    [Google Scholar]
  33. Dai Y, Tang Y, He F, Zhang Y, Cheng A et al. 2012. Screening and functional analysis of differentially expressed genes in EBV-transformed lymphoblasts. Virol. J. 9:177
    [Google Scholar]
  34. Daniel J, Coulter J, Woo JH, Wilsbach K, Gabrielson E 2011. High levels of the Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells. PNAS 108:135384–89
    [Google Scholar]
  35. D'Arcy S, Davies OR, Blundell TL, Bolanos-Garcia VM 2010. Defining the molecular basis of BubR1 kinetochore interactions and APC/C-CDC20 inhibition. J. Biol. Chem. 285:14764–76
    [Google Scholar]
  36. Date DA, Burrows AC, Summers MK 2014. Phosphorylation regulates the p31Comet-mitotic arrest-deficient 2 (Mad2) interaction to promote spindle assembly checkpoint (SAC) activity. J. Biol. Chem. 289:1611367–73
    [Google Scholar]
  37. De Antoni A, Pearson CG, Cimini D, Canman JC, Sala V et al. 2005. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr. Biol. 15:3214–25
    [Google Scholar]
  38. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P et al. 2006. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–42
    [Google Scholar]
  39. Diaz-Martinez LA, Tian W, Li B, Warrington R, Jia L et al. 2015. The Cdc20-binding Phe box of the spindle checkpoint protein BubR1 maintains the mitotic checkpoint complex during mitosis. J. Biol. Chem. 290:42431–43
    [Google Scholar]
  40. Dou Z, Prifti DK, Gui P, Liu X, Elowe S, Yao X 2019. Recent progress on the localization of the spindle assembly checkpoint machinery to kinetochores. Cells 8:3E278
    [Google Scholar]
  41. Dou Z, von Schubert C, Körner R, Santamaria A, Elowe S et al. 2011. Quantitative mass spectrometry analysis reveals similar substrate consensus motif for human Mps1 kinase and Plk1. PLOS ONE 6:4e18793Elegantly demonstrates that Mps1 and Plk1 kinases share a similar substrate recognition consensus motif.
    [Google Scholar]
  42. Elowe S. 2011. Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol. Cell Biol. 31:153085–93
    [Google Scholar]
  43. Elowe S, Hümmer S, Uldschmid A, Li X, Nigg EA 2007. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21:172205–19
    [Google Scholar]
  44. Faesen AC, Musacchio A. 2015. The (phospho) needle in the (MELT) haystack. Mol. Cell 57:5765–66
    [Google Scholar]
  45. Faesen AC, Thanasoula M, Maffini S, Breit C, Müller F et al. 2017. Basis of catalytic assembly of the mitotic checkpoint complex. Nature 542:7642498–502
    [Google Scholar]
  46. Fava LL, Kaulich M, Nigg EA, Santamaria A 2011. Probing the in vivo function of Mad1:C-Mad2 in the spindle assembly checkpoint. EMBO J 30:163322–36
    [Google Scholar]
  47. Fehr A, Yu D. 2013. Control the host cell cycle: viral regulation of the anaphase-promoting complex. J. Virol. 87:8818–25
    [Google Scholar]
  48. Foe I, Toczyski D. 2011. Structural biology: a new look for the APC. Nature 470:7333182–83
    [Google Scholar]
  49. Foss KM, Robeson AC, Kornbluth S, Zhang L 2016. Mitotic phosphatase activity is required for MCC maintenance during the spindle checkpoint. Cell Cycle 15:2225–33
    [Google Scholar]
  50. Fujimitsu K, Grimaldi M, Yamano H 2016. Cyclin dependent kinase 1–dependent activation of APC/C ubiquitin ligase. Science 352:1121–24
    [Google Scholar]
  51. Ge S, Skaar JR, Pagano M 2009. APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation. Cell Cycle 8:167–71
    [Google Scholar]
  52. Gelens L, Qian J, Bollen M, Saurin AT 2018. The importance of kinase-phosphatase integration: lessons from mitosis. Trends Cell Biol 28:16–21A comprehensive revision of how kinases and phosphatases work together to regulate SAC signaling.
    [Google Scholar]
  53. Ghongane P, Kapanidou M, Asghar A, Elowe S, Bolanos-Garcia VM 2014. The dynamic protein Knl1—a kinetochore rendezvous. J. Cell Sci. 127:163415–23
    [Google Scholar]
  54. Goldstein M, Kastan MB. 2015. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 66:129–43
    [Google Scholar]
  55. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A et al. 2005. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–13
    [Google Scholar]
  56. Halazonetis TD, Gorgoulis VG, Bartek J 2008. An oncogene-induced DNA damage model for cancer development. Science 319:1352–55
    [Google Scholar]
  57. Han JS, Holland AJ, Fachinetti D, Kulukian A, Cetin B et al. 2013. Catalytic assembly of the mitotic checkpoint inhibitor BubR1-Cdc20 by a Mad2-induced functional switch in Cdc20. Mol. Cell 51:192–104
    [Google Scholar]
  58. Hanks S, Coleman K, Reid S, Plaja A, Firth H et al. 2004. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 36:111159–61
    [Google Scholar]
  59. Hein JB, Hertz EPT, Garvanska DH, Kruse T, Nilsson J 2017. Distinct kinetics of serine and threonine dephosphorylation are essential for mitosis. Nat. Cell Biol. 19:1433–40
    [Google Scholar]
  60. Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA et al. 2019. Mitosis inhibitors in anticancer therapy: when blocking the exit becomes a solution. Cancer Lett 440–41:64–81
    [Google Scholar]
  61. Herzog F, Primorac I, Dube P, Lenart P, Sander B et al. 2009. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 323:59201477–81Reports the first structural details of APC/C inhibition by the MCC.
    [Google Scholar]
  62. Hills SA, Diffley JF. 2014. DNA replication and oncogene-induced replicative stress. Curr. Biol. 24:R435–44
    [Google Scholar]
  63. Hiruma Y, Sacristan C, Pachis ST, Adamopoulos A, Kuijt T et al. 2015. Cell division cycle. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348:62401264–67
    [Google Scholar]
  64. Höckner S, Neumann-Arnold L, Seufert W 2016. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1. Mol. Biol. Cell 27:2198–212
    [Google Scholar]
  65. Hu L, Filippakis H, Huang H, Yen T, Gjoerup O 2013. Replication stress and mitotic dysfunction in cells expressing simian virus 40 large T antigen. J. Virol. 87:2413179–92
    [Google Scholar]
  66. Ikeda M, Tanaka K. 2017. Plk1 bound to Bub1 contributes to spindle assembly checkpoint activity during mitosis. Sci. Rep. 7:8794
    [Google Scholar]
  67. Janssen A, Kops GJ, Medema RH 2009. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. PNAS 106:4519108–13
    [Google Scholar]
  68. Ji W, Luo Y, Ahmad E, Liu ST 2018. Direct interactions of mitotic arrest deficient 1 (MAD1) domains with each other and MAD2 conformers are required for mitotic checkpoint signaling. J. Biol. Chem. 293:2484–96
    [Google Scholar]
  69. Ji Z, Gao H, Jia L, Li B, Yu H 2017. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling. eLife 6:e22513
    [Google Scholar]
  70. Ji Z, Gao H, Yu H 2015. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80c. Science 348:62401260–64
    [Google Scholar]
  71. Jia L, Li B, Yu H 2016. The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat. Commun. 7:10818
    [Google Scholar]
  72. Jin D, Spencer F, Jeang K 1998. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93:81–91
    [Google Scholar]
  73. Joglekar AP, Aravamudhan P. 2016. How the kinetochore switches off the spindle assembly checkpoint. Cell Cycle 15:17–8
    [Google Scholar]
  74. Joglekar AP, DeLuca JG. 2009. Chromosome segregation: Ndc80 can carry the load. Curr. Biol. 19:10R404–7
    [Google Scholar]
  75. Kalinin A, Higgins G, Reamaroon N, Soroushmehr S, Allyn-Feuer A et al. 2018. Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics 19:7629–50
    [Google Scholar]
  76. Kang J, Chen Y, Zhao Y, Yu H 2007. Autophosphorylation-dependent activation of human Mps1 is required for the spindle checkpoint. PNAS 104:5120232–37
    [Google Scholar]
  77. Karra H, Repo H, Ahonen I, Löyttyniemi E, Pitkänen R et al. 2014. Cdc20 and securin overexpression predict short-term breast cancer survival. Br. J. Cancer 110:2905–13
    [Google Scholar]
  78. Kasai T, Iwanaga Y, Iha H, Jeang K 2002. Prevalent loss of mitotic spindle checkpoint in adult T-cell leukemia confers resistance to microtubule inhibitors. J. Biol. Chem. 277:75187–93
    [Google Scholar]
  79. Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M et al. 2012. Overexpression of CDC20 predicts poor prognosis in primary non-small cell lung cancer patients. J. Surg. Oncol. 106:423–30
    [Google Scholar]
  80. Kawakami M, Liu X, Dmitrovsky E 2019. New cell cycle inhibitors target aneuploidy in cancer therapy. Annu. Rev. Pharmacol. Toxicol. 59:361–77
    [Google Scholar]
  81. Kawakubo E, Matsumoto T, Yoshiya K, Yamashita S, Jogo T et al. 2018. BUBR1 insufficiency is correlated with eNOS reduction experimentally in vitro and in vivo, and in gastric cancer tissue. Anticancer Res 38:116099–106
    [Google Scholar]
  82. Kim S, Park S, Yong H, Famulski J, Chae S et al. 2008. HBV X protein targets hBubR1, which induces dysregulation of the mitotic checkpoint. Oncogene 27:243457–64
    [Google Scholar]
  83. Kiyomitsu T, Obuse C, Yanagida M 2007. Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev. Cell 13:5663–76Identifies Knl1 (aka Blinkin/AF15q14) as a multidocking platform that mediates kinetochore-based checkpoint signaling.
    [Google Scholar]
  84. Kops GJ, Kim Y, Weaver BA, Mao Y, McLeod I et al. 2005. ZW10 links mitotic checkpoint signaling to the structural kinetochore. J. Cell Biol. 169:49–60
    [Google Scholar]
  85. Kornitzer D, Sharf R, Kleinberger T 2001. Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in Saccharomyces cerevisiae and interacts with the anaphase-promoting complex/cyclosome. J. Cell Biol. 154:2331–44
    [Google Scholar]
  86. Krenn V, Overlack K, Primorac I, van Gerwen S, Musacchio A 2014. KI motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint complexes around MELT repeats. Curr. Biol. 24:129–39
    [Google Scholar]
  87. Krenn V, Wehenkel A, Li X, Santaguida S, Musacchio A 2012. Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction. J. Cell Biol. 196:4451–67
    [Google Scholar]
  88. Kudalkar EM, Scarborough EA, Umbreit NT, Zelter A, Gestaut DR et al. 2015. Regulation of outer kinetochore Ndc80 complex-based microtubule attachments by the central kinetochore Mis12/MIND complex. PNAS 112:41E5583–89
    [Google Scholar]
  89. Kwiatkowski N, Jelluma N, Filippakopoulos P, Soundararajan M, Manak MS et al. 2010. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat. Chem. Biol. 6:5359–68
    [Google Scholar]
  90. Larsen NA, Al-Bassam J, Wei RR, Harrison SC 2007. Structural analysis of Bub3 interactions in the mitotic spindle checkpoint. PNAS 104:1201–6
    [Google Scholar]
  91. Leao M, Anderton E, Wade M, Meekings K, Allday M 2007. Epstein-Barr virus-induced resistance to drugs that activate the mitotic spindle assembly checkpoint in Burkitt's lymphoma cells. J. Virol. 81:1248–60
    [Google Scholar]
  92. Lee S, Thebault P, Freschi L, Beaufils S, Blundell TL et al. 2012. Characterization of spindle checkpoint kinase Mps1 reveals domain with functional and structural similarities to tetratricopeptide repeat motifs of Bub1 and BubR1 checkpoint kinases. J. Biol. Chem. 287:85988–6001
    [Google Scholar]
  93. Lenart P, Petronczki M, Steegmaier M, Di Fiore B, Lipp JJ et al. 2007. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol 17:304–15
    [Google Scholar]
  94. Li J, Gao JZ, Du JL, Huang ZX, Wei LX 2014. Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma. Int. J. Oncol. 45:1547–55
    [Google Scholar]
  95. Liao S, Deng D, Hu X, Wang W, Li L et al. 2012. HPV16/18 E5, a promising candidate for cervical cancer vaccines, affects SCPs, cell proliferation and cell cycle, and forms a potential network with E6 and E7. Int. J. Mol. Med. 31:1120–28
    [Google Scholar]
  96. Lira RC, Miranda FA, Guimarães MC, Simões RT, Donadi EA et al. 2010. BUBR1 expression in benign oral lesions and squamous cell carcinomas: correlation with human papillomavirus. Oncol. Rep. 23:41027–36
    [Google Scholar]
  97. Lischetti T, Zhang G, Sedgwick GG, Bolanos-Garcia VM, Nilsson J 2014. The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing. Nat. Commun. 5:5563
    [Google Scholar]
  98. Liu D, Davydenko O, Lampson MA 2012. Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing. J. Cell Biol. 198:4491–99
    [Google Scholar]
  99. Londhe V, Bhasin B. 2019. Artificial intelligence and its potential in oncology. Drug Discov. Today 24:1228–32
    [Google Scholar]
  100. Luo X, Tang Z, Rizo J, Yu H 2002. The MAD2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either MAD1 or CDC20. Mol. Cell 9:59–71
    [Google Scholar]
  101. Luo Y, Ahmad E, Liu ST 2018. MAD1: kinetochore receptors and catalytic mechanisms. Front. Cell Dev. Biol. 6:51
    [Google Scholar]
  102. Machida K, Liu J, McNamara G, Levine A, Duan L et al. 2009. Hepatitis C virus causes uncoupling of mitotic checkpoint and chromosomal polyploidy through the Rb pathway. J. Virol. 83:2312590–600
    [Google Scholar]
  103. Mak K, Pichika M. 2019. Artificial intelligence in drug development: present status and future prospects. Drug Discov. Today 24:3773–80
    [Google Scholar]
  104. Manic G, Corradi F, Sistigu A, Siteni S, Vitale I 2017. Molecular regulation of the spindle assembly checkpoint by kinases and phosphatases. Int. Rev. Cell Mol. Biol. 328:105–61
    [Google Scholar]
  105. Mapelli M, Filipp FV, Rancati G, Massimiliano L, Nezi L et al. 2006. Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J 25:61273–84
    [Google Scholar]
  106. Marquardt JR, Perkins JL, Beuoy KJ, Fisk HA 2016. Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore. PNAS 113:287828–33
    [Google Scholar]
  107. Martin-Lluesma S, Schaeffer C, Robert E, van Breugel P, Leupin O et al. 2008. Hepatitis B virus X protein affects S phase progression leading to chromosome segregation defects by binding to damaged DNA binding protein 1. Hepatology 48:1467–76
    [Google Scholar]
  108. Mattison CP, Old WM, Steiner E, Huneycutt BJ, Resing KA et al. 2007. Mps1 activation loop autophosphorylation enhances kinase activity. J. Biol. Chem. 282:4230553–61
    [Google Scholar]
  109. Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B et al. 2001. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409:6818355–59
    [Google Scholar]
  110. Moura M, Osswald M, Leça N, Barbosa J, Pereira AJ et al. 2017. Protein phosphatase 1 inactivates Mps1 to ensure efficient spindle assembly checkpoint silencing. eLife 6:e25366
    [Google Scholar]
  111. Mui M, Roopchand D, Gentry M, Hallberg R, Vogel J et al. 2010. Adenovirus protein E4orf4 induces premature APCCdc20 activation in Saccharomyces cerevisiae by a protein phosphatase 2A-dependent mechanism. J. Virol. 84:4798–809
    [Google Scholar]
  112. Nijenhuis W, von Castelmur E, Littler D, De Marco V, Tromer E et al. 2013. A TPR domain-containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B. J. Cell Biol. 201:2217–31
    [Google Scholar]
  113. North BJ, Rosenberg MA, Jeganathan KB, Hafner AV, Michan S et al. 2014. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J 33:131438–53
    [Google Scholar]
  114. Ochiai H, Miyamoto T, Kanai A, Hosoba K, Sakuma T et al. 2014. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome. PNAS 111:41461–66
    [Google Scholar]
  115. Overlack K, Primorac I, Vleugel M, Krenn V, Maffini S et al. 2015. A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint. eLife 4:e05269
    [Google Scholar]
  116. Pachis ST, Kops GJPL. 2018. Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis. Open Biol 8:180109
    [Google Scholar]
  117. Patel D, McCance D. 2010. Compromised spindle assembly checkpoint due to altered expression of Ubch10 and Cdc20 in human papillomavirus type 16 E6- and E7-expressing keratinocytes. J. Virol. 84:10956–64
    [Google Scholar]
  118. Pesenti ME, Weir JR, Musacchio A 2016. Progress in the structural and functional characterization of kinetochores. Curr. Opin. Struct. Biol. 37:152–63
    [Google Scholar]
  119. Petrovic A, Pasqualato S, Dube P, Krenn V, Santaguida S et al. 2010. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J. Cell Biol. 190:5835–52
    [Google Scholar]
  120. Piao J, Zhu L, Sun J, Li N, Dong B et al. 2019. High expression of CDK1 and BUB1 predicts poor prognosis of pancreatic ductal adenocarcinoma. Gene 701:15–22
    [Google Scholar]
  121. Pinto M, Vieira J, Ribeiro FR, Soares MJ, Henrique R et al. 2008. Overexpression of the mitotic checkpoint genes BUB1 and BUBR1 is associated with genomic complexity in clear cell kidney carcinomas. Cell. Oncol. 30:5389–95
    [Google Scholar]
  122. Primorac I, Weir JR, Chiroli E, Gross F, Hoffmann I et al. 2013. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. eLife 2:e01030
    [Google Scholar]
  123. Przewloka MR, Glover DM. 2009. The kinetochore and the centromere: a working long distance relationship. Annu. Rev. Genet. 43:439–65
    [Google Scholar]
  124. Qi W, Tang ZY, Yu HT 2006. Phosphorylation- and polo-box-dependent binding of Plk1 to Bub1 is required for the kinetochore localization of Plk1. Mol. Biol. Cell 17:3705–16
    [Google Scholar]
  125. Rabbani M, Kanevsky J, Kafi K, Chandelier F, Giles F 2018. Role of artificial intelligence in the care of patients with nonsmall cell lung cancer. Eur. J. Clin. Investig. 48:4e12901
    [Google Scholar]
  126. Ricke RM, Jeganathan KB, van Deursen JM 2011. Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. J. Cell. Biol. 193:61049–64
    [Google Scholar]
  127. Robertson S, Azizpour H, Smith K, Hartman J 2018. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence. Transl. Res. 194:19–35
    [Google Scholar]
  128. Saeki A, Tamura S, Ito N, Kiso S, Matsuda Y et al. 2002. Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer 94:72047–54
    [Google Scholar]
  129. Saurin AT. 2018. Kinase and phosphatase cross-talk at the kinetochore. Front. Cell Dev. Biol. 6:62
    [Google Scholar]
  130. Schmidt M, Budirahardja Y, Klompmaker R, Medema RH 2005. Ablation of the spindle assembly checkpoint by a compound targeting Mps1. EMBO Rep 6:9866–72Reports early evidence of the druggability of the SAC by small compounds.
    [Google Scholar]
  131. Shirnekhi H, Kelley E, DeLuca J, Herman J 2017. Spindle assembly checkpoint signaling and sister chromatid cohesion are disrupted by HPV E6-mediated transformation. Mol. Biol. Cell 28:152035–41
    [Google Scholar]
  132. Simmons AJ, Park R, Sterling NA, Jang MH, van Deursen JMA et al. 2019. Nearly complete deletion of BubR1 causes microcephaly through shortened mitosis and massive cell death. Hum. Mol. Genet. 28:111822–36
    [Google Scholar]
  133. Sinha D, Duijf PHG, Khanna KK 2019. Mitotic slippage: an old tale with a new twist. Cell Cycle 18:7–15
    [Google Scholar]
  134. Sironi L, Mapelli M, Knapp S, De Antoni A, Jeang KT, Musacchio A 2002. Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J 21:102496–506
    [Google Scholar]
  135. Skinner JJ, Wood S, Shorter J, Englander SW, Black BE 2008. The Mad2 partial unfolding model: regulating mitosis through Mad2 conformational switching. J. Cell Biol. 183:5761–68
    [Google Scholar]
  136. Steegmaier M, Hoffmann M, Baum A, Lénárt P, Petronczki M et al. 2007. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17:316–22
    [Google Scholar]
  137. Suijkerbuijk SJ, van Dam TJ, Karagöz GE, von Castelmur E, Hubner NC et al. 2012a. The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev. Cell 22:61321–29Discusses the evolution of Bub1 and BubR1 kinases and postulates that BubR1 is a pseudokinase.
    [Google Scholar]
  138. Suijkerbuijk SJ, Vleugel M, Teixeira A, Kops GJ 2012b. Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev. Cell 23:4745–55
    [Google Scholar]
  139. Sun Z, Jha H, Robertson E 2015. Bub1 in complex with LANA recruits PCNA to regulate Kaposi's sarcoma-associated herpesvirus latent replication and DNA translesion synthesis. J. Virol. 89:2010206–18
    [Google Scholar]
  140. Sun Z, Xiao B, Jha HC, Lu J, Banerjee S et al. 2014. Kaposi's sarcoma-associated herpesvirus-encoded LANA can induce chromosomal instability through targeted degradation of the mitotic checkpoint kinase Bub1. J. Virol. 88:137367–78
    [Google Scholar]
  141. Tan C, Teissier S, Gunaratne J, Quek L, Bellanger S 2015. Stranglehold on the spindle assembly checkpoint: the human papillomavirus E2 protein provokes BUBR1-dependent aneuploidy. Cell Cycle 14:1459–70
    [Google Scholar]
  142. Tang Z, Bharadwaj R, Li B, Yu H 2001. MAD2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1:227–37
    [Google Scholar]
  143. Taniguchi K, Momiyama N, Ueda M, Matsuyama R, Mori R et al. 2008. Targeting of CDC20 via small interfering RNA causes enhancement of the cytotoxicity of chemoradiation. Anticancer Res 28:1559–63
    [Google Scholar]
  144. Thebault P, Chirgadze DY, Dou Z, Blundell TL, Elowe S, Bolanos-Garcia VM 2012. Structural and functional insights into the role of the N-terminal Mps1 TPR domain in the SAC (spindle assembly checkpoint). Biochem. J. 448:3321–28
    [Google Scholar]
  145. Tomoni A, Lees J, Santana AG, Bolanos-Garcia VM, Bastida A 2019. Pseudokinases: from allosteric regulation of catalytic domains and the formation of macromolecular assemblies to emerging drug targets. Catalysts 9:9778
    [Google Scholar]
  146. Touati SA, Kataria M, Jones AW, Snijders AP, Uhlmann F 2018. Phosphoproteome dynamics during mitotic exit in budding yeast. EMBO J 37:e98745
    [Google Scholar]
  147. Vleugel M, Omerzu M, Groenewold V, Hadders MA, Lens SMA et al. 2015. Sequential multisite phospho-regulation of KNL1-BUB3 interfaces at mitotic kinetochores. Mol. Cell 57:5824–35
    [Google Scholar]
  148. Vleugel M, Tromer E, Omerzu M, Groenewold V, Nijenhuis W et al. 2013. Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation. J. Cell Biol. 203:6943–55
    [Google Scholar]
  149. von Schubert C, Cubizolles F, Bracher JM, Sliedrecht T, Kops GJPL et al. 2015. Plk1 and Mps1 cooperatively regulate the spindle assembly checkpoint in human cells. Cell Rep 12:166–78
    [Google Scholar]
  150. Wada N, Yoshida A, Miyagi Y, Yamamoto T, Nakayama H et al. 2008. Overexpression of the mitotic spindle assembly checkpoint genes hBUB1, hBUBR1 and hMAD2 in thyroid carcinomas with aggressive nature. Anticancer Res 28:1A139–44
    [Google Scholar]
  151. Wan X, O'Quinn RP, Pierce HL, Joglekar AP, Gall WE et al. 2009. Protein architecture of the human kinetochore microtubule attachment site. Cell 137:4672–84
    [Google Scholar]
  152. Watson ER, Brown NG, Peters JM, Stark H, Schulman BA 2019. Posing the APC/C E3 ubiquitin ligase to orchestrate cell division. Trends Cell Biol 29:2117–34Presents an authoritative revision of APC/C structure, function, and complex mode of regulation.
    [Google Scholar]
  153. Wei RR, Al-Bassam J, Harrison SC 2007. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat. Struct. Mol. Biol. 14:154–59
    [Google Scholar]
  154. Wong OK, Fang G. 2007. Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope. J. Cell Biol. 179:4611–17
    [Google Scholar]
  155. Xiao B, Verma S, Cai Q, Kaul R, Lu J et al. 2010. Bub1 and CENP-F can contribute to Kaposi's sarcoma-associated herpesvirus genome persistence by targeting LANA to kinetochores. J. Virol. 84:199718–32Reports Bub1’s role in the long-term persistence of an oncovirus genome in the infected cell.
    [Google Scholar]
  156. Yamano H. 2019. APC/C: current understanding and future perspectives. F1000Research 8:725
    [Google Scholar]
  157. Yang M, Li B, Tomchick DR, Machius M, Rizo J et al. 2007. p31comet blocks Mad2 activation through structural mimicry. Cell 131:4744–55
    [Google Scholar]
  158. Yu H. 2006. Structural activation of Mad2 in the mitotic spindle checkpoint: the two-state Mad2 model versus the Mad2 template model. J. Cell Biol. 173:2153–57
    [Google Scholar]
  159. Zhang G, Lischetti T, Nilsson J 2014. A minimal number of MELT repeats supports all the functions of KNL1 in chromosome segregation. J. Cell Sci. 127:Pt. 4871–84
    [Google Scholar]
  160. Zhang G, Mendez BL, Sedgwick GG, Nilsson J 2016. Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation. Nat. Commun. 7:12256
    [Google Scholar]
  161. Zhang G, Nilsson J. 2018. The closed form of Mad2 is bound to Mad1 and Cdc20 at unattached kinetochores. Cell Cycle 17:91087–91
    [Google Scholar]
  162. Zhang L, Tan J, Han D, Zhu H 2017. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov. Today 22:111680–85
    [Google Scholar]
  163. Zhang S, Chang L, Alfieri C, Zhang Z, Yang J et al. 2016. Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature 533:260–64
    [Google Scholar]
  164. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA et al. 2019. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37:1038–40
    [Google Scholar]
  165. Zhou Z, He M, Shah AA, Wan Y 2016. Insights into APC/C: from cellular function to diseases and therapeutics. Cell Div 11:9
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030419-033541
Loading
/content/journals/10.1146/annurev-cancerbio-030419-033541
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error