1932

Abstract

The identification and prosecution of meritorious anticancer drug targets and the discovery of clinical candidates represent an extraordinarily time- and resource-intensive process, and the current failure rate of late-stage drugs is a critical issue that must be addressed. Relationships between academia and industry in drug discovery and development have continued to change over time as a result of technical and financial challenges and, most importantly, to the objective of translating impactful scientific discoveries into clinical opportunities. This Golden Age of anticancer drug discovery features an increased appreciation for the high-risk, high-innovation research conducted in the nonprofit sector, with the goals of infusing commercial drug development with intellectual capital and curating portfolios that are financially tenable and clinically meaningful. In this review, we discuss the history of academic-industry interactions in the context of antidrug discovery and offer a view of where these interactions are likely headed as we continue to reach new horizons in our understanding of the immense complexities of cancer biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030518-055645
2019-03-04
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/3/1/annurev-cancerbio-030518-055645.html?itemId=/content/journals/10.1146/annurev-cancerbio-030518-055645&mimeType=html&fmt=ahah

Literature Cited

  1. Adelman B. 2013. Opening up drug development to everyone. Hematology 2013:311–15
    [Google Scholar]
  2. Alix-Panabières C, Pantel K 2013. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59:1110–110
    [Google Scholar]
  3. Allen E, Doisy EA 1923. An ovarian hormone: preliminary report on its localization, extraction and partial purification, and action in test animals. JAMA 81:10819–21
    [Google Scholar]
  4. Arozarena I, Wellbrock C 2017. Overcoming resistance to BRAF inhibitors. Ann. Transl. Med. 5:19387
    [Google Scholar]
  5. Arrowsmith J. 2011.a Phase II failures: 2008–2010. Nat. Rev. Drug. Discov. 10:5328–29
    [Google Scholar]
  6. Arrowsmith J. 2011.b Phase III and submission failures: 2007–2010. Nat. Rev. Drug. Discov. 10:287
    [Google Scholar]
  7. Arrowsmith J, Miller P 2013. Phase II and phase III attrition rates 2011–2012. Nat. Rev. Drug. Discov. 12:8569
    [Google Scholar]
  8. Balko JM, Giltnane JM, Wang K, Schwarz LJ, Young CD et al. 2014. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov 4:2232–45
    [Google Scholar]
  9. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC et al. 1996. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14:3737–44
    [Google Scholar]
  10. Baumeister BH, Freeman GJ, Dranoff G, Sharpe AH 2016. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34:539–73
    [Google Scholar]
  11. Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C et al. 2017. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49:111567–75
    [Google Scholar]
  12. Besse B, Remon J, Lacroix L, Mezquita L, Jovelet C et al. 2017. Evaluation of liquid biopsies for molecular profiling in untreated patients with stage III/IV non-small cell lung cancer (NSCLC). J. Clin. Oncol. 35:1511540
    [Google Scholar]
  13. Bhang HE, Ruddy DA, Radhakrishna VK, Caushi JX, Zhao R et al. 2015. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21:5440–48
    [Google Scholar]
  14. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P et al. 2012. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov. 11:11873–86
    [Google Scholar]
  15. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D et al. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:7035913–17
    [Google Scholar]
  16. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D et al. 1992. Humanization of an anti-p185HER2 antibody for human cancer therapy. PNAS 89:104285–89
    [Google Scholar]
  17. Carugo A, Draetta GF 2018. Collapsing the tumor ecosystem: preventing adaptive response to treatment by inhibiting transcription. Cancer Discov 8:117–19
    [Google Scholar]
  18. Carugo A, Genovese G, Seth S, Nezi L, Rose JL et al. 2016. In vivo functional platform targeting patient-derived xenografts identifies WDR5-Myc association as a critical determinant of pancreatic cancer. Cell Rep 16:1133–147
    [Google Scholar]
  19. Chabner BA, Roberts TG 2005. Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer 5:165–72
    [Google Scholar]
  20. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN et al. 2016. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6:8827–37
    [Google Scholar]
  21. Chiou SH, Winters IP, Wang J, Naranjo S, Dudgeon C et al. 2015. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev 29:141576–85
    [Google Scholar]
  22. Clegg NJ, Wongvipat J, Joseph JD, Tran C, Ouk S et al. 2012. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res 72:61494–503
    [Google Scholar]
  23. Cohen JD, Javed AA, Thoburn C, Wong F, Tie J et al. 2017. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. PNAS 114:3810202–7
    [Google Scholar]
  24. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ et al. 2012. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 367:222075–88
    [Google Scholar]
  25. Cosset E, Ilmjärv S, Dutoit V, Elliott K, von Schalscha T et al. 2017. Glut3 addiction is a druggable vulnerability for a molecularly defined subpopulation of glioblastoma. Cancer Cell 32:6856–68
    [Google Scholar]
  26. Curreri AR, Ansfield FJ, McIver FA, Waisman HA, Heidelberger C 1958. Clinical studies with 5-fluorouracil. Cancer Res 18:4478–84
    [Google Scholar]
  27. Davies H, Bignell GR, Cox C, Stephens P, Edkins S et al. 2002. Mutations of the BRAF gene in human cancer. Nature 417:6892949–54
    [Google Scholar]
  28. deBono JS, Logothetis CJ, Molina A, Fizazi K, North S et al. 2011. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364:211995–2005
    [Google Scholar]
  29. Denayer T, Stöhr T, Van Roy M 2014. Animal models in translational medicine: validation and prediction. New Horiz. Transl. Med. 2:15–11
    [Google Scholar]
  30. DeVita JR, Chu E. 2008. A history of cancer chemotherapy. Cancer Res 68:218643–53
    [Google Scholar]
  31. DiMasi JA, Reichert JM, Feldman L, Malins A 2013. Clinical approval success rates for investigational cancer drugs. Clin. Pharmacol. Ther. 94:3329–35
    [Google Scholar]
  32. Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66
    [Google Scholar]
  33. Donehower RC. 1996. The clinical development of paclitaxel: a successful collaboration of academia, industry and the National Cancer Institute. Oncologist 1:4240–43
    [Google Scholar]
  34. Dong H, Zhu G, Tamada K, Chen L 1999. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:121365–69
    [Google Scholar]
  35. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, et al. 2001. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344:141031–37
    [Google Scholar]
  36. Egeblad M, Nakasone ES, Werb Z 2010. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18:6884–901
    [Google Scholar]
  37. Ellinger B, Gribbon P 2016. Risk mitigation in academic drug discovery. Expert. Opin. Drug Discov. 11:4333–36
    [Google Scholar]
  38. Fan S, Wang J, Yuan R, Ma Y, Meng Q et al. 1999. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 284:54181354–56
    [Google Scholar]
  39. Farber S, Diamond LK 1948. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238:23787–93
    [Google Scholar]
  40. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA et al. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:7035917–21
    [Google Scholar]
  41. Fiskus W, Mitsiades N 2016. B-Raf inhibition in the clinic: present and future. Annu. Rev. Med. 67:29–43
    [Google Scholar]
  42. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, et al. 2012. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367:181694–703
    [Google Scholar]
  43. Fodale V, Pierobon M, Liotta L, Petricoin E 2011. Mechanism of cell adaptation: When and how do cancer cells develop chemoresistance. Cancer J 17:289–95
    [Google Scholar]
  44. Folkman J. 1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285:211182–86
    [Google Scholar]
  45. Fong PC, Boss DS, Yap TA, Tutt A, Wu P et al. 2009. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361:2123–34
    [Google Scholar]
  46. Frantz S. 2006. Pipeline problems are increasing the urge to merge. Nat. Rev. Drug Discov. 5:12977–79
    [Google Scholar]
  47. Frearson J, Wyatt P 2010. Drug discovery in academia—the third way. Expert Opin. Drug Discov. 5:10909–909
    [Google Scholar]
  48. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T et al. 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192:71027–34
    [Google Scholar]
  49. Frye SV, Crosby MD, Edwards TP, Juliano RL 2011. Academic drug discovery in the US: a survey and analysis. Nat. Rev. Drug Discov. 10:6409–10
    [Google Scholar]
  50. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K et al. 2003. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J. Clin. Oncol 21:122237–46 Erratum 2003. J. Clin. Oncol. 22:234863
    [Google Scholar]
  51. Galmarini D, Galmarini CM, Galmarini FC 2012. Cancer chemotherapy: a critical analysis of its 60 years of history. Crit. Rev. Oncol. Hematol. 84:2181–99
    [Google Scholar]
  52. Gamo NJ, Birknow MR, Sullivan D, Kondo MA, Horiuchi Y et al. 2017. Valley of death: a proposal to build a “translational bridge” for the next generation. Neurosci. Res. 115:1–4
    [Google Scholar]
  53. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y et al. 2015. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21:111318–1318
    [Google Scholar]
  54. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS et al. 2015. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372:212018–28
    [Google Scholar]
  55. Gawad C, Koh W, Quake SR 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:3175–88
    [Google Scholar]
  56. Genovese G, Carugo A, Tepper J, Robinson FS, Li L et al. 2017. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature 542:7641362–66
    [Google Scholar]
  57. Goel HL, Mercurio AM 2013. VEGF targets the tumour cell. Nat. Rev. Cancer 13:12871–82
    [Google Scholar]
  58. Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, McLennan MT 1946. Nitrogen mustard therapy: use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J. Am. Med. Assoc. 132:126–32
    [Google Scholar]
  59. Goodwin S, McPherson JD, McCombie WR 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17:6333–51
    [Google Scholar]
  60. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC et al. 2018. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359:637197–103
    [Google Scholar]
  61. Gray NS. 2006. Drug discovery through industry-academic partnerships. Nat. Chem. Biol. 2:12649–53
    [Google Scholar]
  62. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK et al. 2017. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551:7679247–50
    [Google Scholar]
  63. Harper MJ, Walpole AL 1967. A new derivative of triphenylethylene: effect on implantation and mode of action in rats. J. Reprod. Fertil. 13:1101–19
    [Google Scholar]
  64. Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L et al. 1957. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179:4561663–66
    [Google Scholar]
  65. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G 1985. Structural organization of the bcr gene and its role in the Ph′ translocation. Nature 315:6022758–61
    [Google Scholar]
  66. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:8711–23
    [Google Scholar]
  67. Huber MA, Kraut N 2015. Key drivers of biomedical innovation in cancer drug discovery. EMBO Mol. Med. 7:112–16
    [Google Scholar]
  68. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A 1989. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol. Cell. Biol. 9:31165–72
    [Google Scholar]
  69. Huggins C, Hodges CV 1941. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1:4293–97
    [Google Scholar]
  70. Hughes B. 2008. Pharma pursues novel models for academic collaboration. Nat. Rev. Drug. Discov. 7:8631–32
    [Google Scholar]
  71. Ishida Y, Agata Y, Shibahara K, Honjo T 1992. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:113887–95
    [Google Scholar]
  72. Ivinson AJ. 2005. University investment in drug discovery. Science 310:5749777
    [Google Scholar]
  73. Jayson GC, Kerbel R, Ellis LM, Harris AL 2016. Antiangiogenic therapy in oncology: current status and future directions. Lancet 388:10043518–29
    [Google Scholar]
  74. Jensen EV, Block GE, Smith S, Kyser K, DeSombre ER 1971. Estrogen receptors and breast cancer response to adrenalectomy. Natl. Cancer Inst. Monogr. 34:55–70
    [Google Scholar]
  75. Jensen EV, Jordan VC 2003. The estrogen receptor: a model for molecular medicine. Clin. Cancer Res. 9:61980–89
    [Google Scholar]
  76. Jordan VC. 2003. Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2:3205–13
    [Google Scholar]
  77. Khorashad JS, Kelley TW, Szankasi P, Mason CC, Soverini S et al. 2013. BCR-ABL1 compound mutations in tyrosine kinase inhibitor–resistant CML: frequency and clonal relationships. Blood 121:3489–98
    [Google Scholar]
  78. Kneller R. 2010. The importance of new companies for drug discovery: origins of a decade of new drugs. Nat. Rev. Drug. Discov. 9:11867–82
    [Google Scholar]
  79. Kozikowski AP, Roth B, Tropsha A 2006. Why academic drug discovery makes sense. Science 313:57911235–36
    [Google Scholar]
  80. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B et al. 2010. Anaplastic lymphoma kinase inhibition in non–small-cell lung cancer. N. Engl. J. Med. 363:181693–703
    [Google Scholar]
  81. Lan X, Jörg DJ, Cavalli FMG, Richards LM, Nguyen LV et al. 2017. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature 549:7671227–32
    [Google Scholar]
  82. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M et al. 2001. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2:3261–68
    [Google Scholar]
  83. Leach DR, Krummel MF, Allison JP 1996. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:52561734–36
    [Google Scholar]
  84. Lee CH, Yoon HJ 2017. Medical big data: promise and challenges. Kidney Res. Clin. Pract. 36:13–11
    [Google Scholar]
  85. Lengauer C, Diaz LA, Saha S 2005. Cancer drug discovery through collaboration. Nat. Rev. Drug Discov. 4:5375–80
    [Google Scholar]
  86. Li JJ. 2014. Blockbuster Drugs: The Rise and Decline of the Pharmaceutical Industry Oxford: Oxford Univ. Press
    [Google Scholar]
  87. Loise V, Stevens AJ 2010. The Bayh-Dole Act turns 30. Sci. Transl. Med. 2:52cm27
    [Google Scholar]
  88. Longley DB, Harkin DP, Johnston PG 2003. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer. 3:5330–38
    [Google Scholar]
  89. Lugo TG, Pendergast AM, Muller AJ, Witte ON 1990. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:49461079–82
    [Google Scholar]
  90. Luo J, Solimini NL, Elledge SJ 2009. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:5823–37
    [Google Scholar]
  91. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA et al. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350:212129–39
    [Google Scholar]
  92. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB et al. 2017. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547:7664413–18
    [Google Scholar]
  93. Marzaro G, Guiotto A, Chilin A 2012. Quinazoline derivatives as potential anticancer agents: a patent review (2007–2010). Expert Opin. Ther. Pat. 22:3223–52
    [Google Scholar]
  94. Maxwell RA, Eckhardt SB 1990. Drug Discovery: A Casebook and Analysis New York: Humana
    [Google Scholar]
  95. Mayr LM, Fuerst P 2008. The future of high-throughput screening. J. Biomol. Screen. 13:6443–48
    [Google Scholar]
  96. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF et al. 2008. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68:114447–54
    [Google Scholar]
  97. Moudi M, Go R, Yien CY, Nazre M 2013. Vinca alkaloids. Int. J. Prev. Med. 4:111231–35
    [Google Scholar]
  98. Moyer JD, Barbacci EG, Iwata KK, Arnold L, Boman B, et al. 1997. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 57:214838–48
    [Google Scholar]
  99. Muller FL, Aquilanti EA, DePinho RA 2015. Collateral lethality: a new therapeutic strategy in oncology. Trends Cancer 1:3161–73
    [Google Scholar]
  100. Nagel R, Semenova EA, Berns A 2016. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep 17:111516–31
    [Google Scholar]
  101. Natl. Cancer Inst. 2005. Research paradigm 1955–1975: mouse L1210 leukemia model 50th Anniv. Timeline, Dev. Ther. Progr., Natl. Cancer Inst Bethesda, MD: https://dtp.cancer.gov/timeline/flash/milestones/M9_L1210.htm
    [Google Scholar]
  102. Natl. Cancer Inst. 2015. NCI-60 human tumor cell lines screen Fact Sheet, Dev. Ther. Progr., Natl. Cancer Inst Bethesda, MD: updated Aug. 26. https://dtp.cancer.gov/discovery_development/nci-60/
    [Google Scholar]
  103. Noble RL. 1990. The discovery of the vinca alkaloids—chemotherapeutic agents against cancer. Biochem. Cell. Biol. 68:121344–51
    [Google Scholar]
  104. Noble RL, Beer CT, Cutts JH 1958. Role of chance observations in chemotherapy: Vinca rosea. Ann. N.Y. Acad. Sci 76:3882–94
    [Google Scholar]
  105. Nowell P, Hungerford D 1960. A minute chromosome in human chronic granulocytic leukemia. Science 132:1497
    [Google Scholar]
  106. O'Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM et al. 2009. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16:5401–12
    [Google Scholar]
  107. O'Leary J, Muggia FM 1998. Camptothecins: a review of their development and schedules of administration. Eur. J. Cancer 34:101500–8
    [Google Scholar]
  108. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H et al. 2004. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:56761497–500
    [Google Scholar]
  109. Palmer M, Chaguturu R 2017. Academia-pharma partnerships for novel drug discovery: Essential or nice to have. Expert Opin. Drug Discov. 12:6537–40
    [Google Scholar]
  110. Parkes EE, Kennedy RD 2016. Clinical application of poly(ADP-ribose) polymerase inhibitors in high-grade serous ovarian cancer. Oncologist 21:5586–93
    [Google Scholar]
  111. Perakis S, Speicher MR 2017. Emerging concepts in liquid biopsies. BMC Med 15:75
    [Google Scholar]
  112. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:2440–55
    [Google Scholar]
  113. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y et al. 2014. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:7528558–62
    [Google Scholar]
  114. Prinz F, Schlange T, Asadullah K 2011. Believe it or not: How much can we rely on published data on potential drug targets. Nat. Rev. Drug. Discov. 10:9712
    [Google Scholar]
  115. Rathkopf D, Scher HI 2013. Androgen receptor antagonists in castration-resistant prostate cancer. Cancer J 19:143–49
    [Google Scholar]
  116. Richmond A, Su Y 2008. Mouse xenograft models versus GEM models for human cancer therapeutics. Dis. Model Mech. 1:2–378–82
    [Google Scholar]
  117. Robert C, Schachter J, Long GV, Arance A, Grob JJ et al. 2015. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372:262521–32
    [Google Scholar]
  118. Roife D, Dai B, Kang Y, Perez MVR, Pratt M et al. 2016. Ex vivo testing of patient-derived xenografts mirrors the clinical outcome of patients with pancreatic ductal adenocarcinoma. Clin. Cancer Res. 22:246021–30
    [Google Scholar]
  119. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT et al. 2018. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:637191–97
    [Google Scholar]
  120. Ruivo CF, Adem B, Silva M, Melo SA 2017. The biology of cancer exosomes: insights and new perspectives. Cancer Res 77:236480–88
    [Google Scholar]
  121. Rusan M, Li K, Li Y, Christensen CL, Abraham BJ et al. 2018. Suppression of adaptive responses to targeted cancer therapy by transcriptional repression. Cancer Discov 8:159–73
    [Google Scholar]
  122. Salgia R, Kulkarni P 2018. The genetic/non-genetic duality of drug ‘resistance’ in cancer. Trends Cancer 4:2110–18
    [Google Scholar]
  123. Scannell JW, Blanckley A, Boldon H, Warrington B 2012. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11:3191–200
    [Google Scholar]
  124. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN et al. 2012. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367:131187–97
    [Google Scholar]
  125. Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V et al. 2013. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31:273327–34
    [Google Scholar]
  126. Shamas-Din A, Schimmer AD 2015. Drug discovery in academia. Exp. Hematol. 43:8713–17
    [Google Scholar]
  127. Sharma PS, Sharma R, Tyagi T 2011. VEGF/VEGFR pathway inhibitors as anti-angiogenic agents: present and future. Curr. Cancer Drug Targets 11:5624–53
    [Google Scholar]
  128. Shaw AT, Solomon BJ 2015. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 372:7683–84
    [Google Scholar]
  129. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V et al. 2005. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353:2123–32
    [Google Scholar]
  130. Siddik Z. 2017. Alkylating agents and platinum antitumor compounds. Holland-Frei Cancer Medicine RC Bast, CM Croce, WN Hait, WK Hong, DW Kufe et al.649–64 Hoboken, NJ: Wiley, 9th ed..
    [Google Scholar]
  131. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL 1987. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:4785177–82
    [Google Scholar]
  132. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V et al. 2001. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344:11783–92
    [Google Scholar]
  133. Slusher BS, Conn PJ, Frye S, Glicksman M, Arkin M 2013. Bringing together the academic drug discovery community. Nat. Rev. Drug. Discov. 12:11811–12
    [Google Scholar]
  134. Smith MR, Saad F, Chowdhury S, Oudard S, Hadaschik BA et al. 2018. Apalutamide treatment and metastasis-free survival in prostate cancer. N. Engl. J. Med. 378:151408–18
    [Google Scholar]
  135. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y et al. 2007. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:7153561–66
    [Google Scholar]
  136. Spector JM, Harrison RS, Fishman MC 2018. Fundamental science behind today's important medicines. Sci. Transl. Med. 10:438eaaq1787
    [Google Scholar]
  137. Spranger S, Sivan A, Corrales L, Gajewski TF 2016. Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv. Immunol. 130:75–93
    [Google Scholar]
  138. Stevens AJ, Jensen JJ, Wyller K, Kilgore PC, Chatterjee S, Rohrbaugh ML 2011. The role of public-sector research in the discovery of drugs and vaccines. N. Engl. J. Med. 364:6535–41
    [Google Scholar]
  139. Suffness M. 1993. Taxol: from discovery to therapeutic use. Ann. Rep. Med. Chem. 28:305–14
    [Google Scholar]
  140. Sullivan I, Planchard D 2017. Next-generation EGFR tyrosine kinase inhibitors for treating EGFR-mutant lung cancer beyond first line. Front. Med. 18:376
    [Google Scholar]
  141. Toniatti C, Jones P, Graham H, Pagliara B, Draetta G 2014. Oncology drug discovery: planning a turnaround. Cancer Discov 4:4397–404
    [Google Scholar]
  142. Tralau-Stewart CJ, Wyatt CA, Kleyn DE, Ayad A 2009. Drug discovery: new models for industry-academic partnerships. Drug Discov. Today 14:1–295–101
    [Google Scholar]
  143. Twomey JD, Brahme NN, Zhang B 2017. Drug-biomarker co-development in oncology—20 years and counting. Drug Resist. Update 30:48–62
    [Google Scholar]
  144. Vallance P. 2016. Industry-academic relationship in a new era of drug discovery. J. Clin. Oncol. 34:293570–75
    [Google Scholar]
  145. Van Norman GA, Eisenkot R 2017. Technology transfer: from the research bench to commercialization: part 2: the commercialization process. JACC: Basic Transl. Sci. 2:2197–208
    [Google Scholar]
  146. Vanderford NL, Weiss LT, Weiss HL 2013. A survey of the barriers associated with academic-based cancer research commercialization. PLOS ONE 8:8e72268
    [Google Scholar]
  147. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N et al. 2014. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:7524628–32
    [Google Scholar]
  148. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN et al. 2002. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20:3719–26
    [Google Scholar]
  149. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW 2013. Cancer genome landscapes. Science 339:61271546–58
    [Google Scholar]
  150. Wall ME, Wani MC 1995. Camptothecin and taxol: discovery to clinic—thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 55:4753–60
    [Google Scholar]
  151. Weber J, Öllinger R, Friedrich M, Ehmer U, Barenboim M et al. 2015. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. PNAS 112:4513982–87
    [Google Scholar]
  152. Weeber F, Ooft SN, Dijkstra KK, Voest EE 2017. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell. Chem. Biol. 24:91092–100
    [Google Scholar]
  153. Workman P, Draetta GF, Schellens JHM, Bernards R 2017. How much longer will we put up with $100,000 cancer drugs. Cell 168:4579–83
    [Google Scholar]
  154. Yuan Y, Van Allen EM, Omberg L, Wagle N, Amin-Mansour A et al. 2014. Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol. 32:7644–52
    [Google Scholar]
  155. Zajicek G. 1978. Cancer as a systemic disease. Med. Hypotheses 4:3193–207
    [Google Scholar]
  156. Zaratin P, Battaglia MB, Abbracchio MP 2014. Nonprofit foundations spur translational research. Trends Pharmacol. Sci. 35:11552–55
    [Google Scholar]
  157. Zhang C, Tan C, Ding H, Xin T, Jiang Y 2012. Selective VEGFR inhibitors for anticancer therapeutics in clinical use and clinical trials. Curr. Pharma Des. 18:202921–35
    [Google Scholar]
  158. Zubrod CG, Schepartz SA, Carter SK 1977. Historical background of the National Cancer Institute's drug development thrust. Natl. Cancer Inst. Monogr. 45:7–11
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030518-055645
Loading
/content/journals/10.1146/annurev-cancerbio-030518-055645
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error