1932

Abstract

Targeting the function of MYC oncoproteins holds the promise of achieving conceptually new and effective anticancer therapies that can be applied to a broad range of tumors. The nature of the target however—a broadly, possibly universally acting transcription factor that has no enzymatic activity and is largely unstructured unless complexed with partner proteins—has so far defied the development of clinically applicable MYC-directed therapies. At the same time, lingering questions about exactly which functions of MYC proteins account for their pervasive oncogenic role in human tumors and need to be targeted have prevented the development of effective therapies using surrogate targets that act in critical MYC-dependent pathways. In this review, we therefore argue that rigorous testing of critical oncogenic functions and protein/protein interactions and new chemical approaches to target them are necessary to successfully eradicate MYC-driven tumors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030518-055826
2020-03-04
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/4/1/annurev-cancerbio-030518-055826.html?itemId=/content/journals/10.1146/annurev-cancerbio-030518-055826&mimeType=html&fmt=ahah

Literature Cited

  1. Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N et al. 2005. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123:409–21
    [Google Scholar]
  2. Aho ER, Wang J, Gogliotti RD, Howard GC, Phan J et al. 2019. Displacement of WDR5 from chromatin by a WIN site inhibitor with picomolar affinity. Cell Rep 26:2916–28.e13
    [Google Scholar]
  3. Annibali D, Whitfield JR, Favuzzi E, Jauset T, Serrano E et al. 2014. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nat. Commun. 5:4632
    [Google Scholar]
  4. Baluapuri A, Hofstetter J, Dudvarski Stankovic N, Endres T, Bhandare P et al. 2019. MYC recruits SPT5 to RNA polymerase II to promote processive transcription elongation. Mol. Cell 74:674–87
    [Google Scholar]
  5. Beaulieu ME, Jauset T, Masso-Valles D, Martinez-Martin S, Rahl P et al. 2019. Intrinsic cell-penetrating activity propels Omomyc from proof of concept to viable anti-MYC therapy. Sci. Transl. Med. 11:eaar5012
    [Google Scholar]
  6. Bisgrove DA, Mahmoudi T, Henklein P, Verdin E 2007. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. PNAS 104:13690–95
    [Google Scholar]
  7. Boija A, Klein IA, Sabari BR, Dall'Agnese A, Coffey EL et al. 2018. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175:1842–55.e16
    [Google Scholar]
  8. Bragelmann J, Bohm S, Guthrie MR, Mollaoglu G, Oliver TG, Sos ML 2017. Family matters: how MYC family oncogenes impact small cell lung cancer. Cell Cycle 16:1489–98
    [Google Scholar]
  9. Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE et al. 2013. Small molecule inhibitors of Aurora-A induce proteasomal degradation of N-Myc in childhood neuroblastoma. Cancer Cell 24:75–89
    [Google Scholar]
  10. Buchel G, Carstensen A, Mak KY, Roeschert I, Leen E et al. 2017. Association with Aurora-A controls N-MYC-dependent promoter escape and pause release of RNA polymerase II during the cell cycle. Cell Rep 21:3483–97
    [Google Scholar]
  11. Casey SC, Tong L, Li Y, Do R, Walz S et al. 2016. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352:227–31
    [Google Scholar]
  12. Chanthery YH, Gustafson WC, Itsara M, Persson A, Hackett CS et al. 2012. Paracrine signaling through MYCN enhances tumor-vascular interactions in neuroblastoma. Sci. Transl. Med. 4:115ra3
    [Google Scholar]
  13. Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T et al. 2014. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159:1126–39
    [Google Scholar]
  14. Chiu AC, Suzuki HI, Wu X, Mahat DB, Kriz AJ, Sharp PA 2018. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP. Mol. Cell 69:648–63.e7
    [Google Scholar]
  15. Christensen CL, Kwiatkowski N, Abraham BJ, Carretero J, Al-Shahrour F et al. 2014. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26:909–22
    [Google Scholar]
  16. Clarke MF, Kukowska-Latallo JF, Westin E, Smith M, Prochownik EV 1988. Constitutive expression of a c-myb cDNA blocks Friend murine erythroleukemia cell differentiation. Mol. Cell. Biol. 8:884–92
    [Google Scholar]
  17. D'Andrea A, Gritti I, Nicoli P, Giorgio M, Doni M et al. 2016. The mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas. Oncotarget 7:72415–30
    [Google Scholar]
  18. Dang CV. 2012. MYC on the path to cancer. Cell 149:22–35
    [Google Scholar]
  19. Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A et al. 2016. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30:563–77
    [Google Scholar]
  20. Dauch D, Rudalska R, Cossa G, Nault JC, Kang TW et al. 2016. A MYC–aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat. Med. 22:744–53
    [Google Scholar]
  21. de Pretis S, Kress TR, Morelli MJ, Sabo A, Locarno C et al. 2017. Integrative analysis of RNA polymerase II and transcriptional dynamics upon MYC activation. Genome Res 27:1658–64
    [Google Scholar]
  22. Dejure FR, Royla N, Herold S, Kalb J, Walz S et al. 2017. The MYC mRNA 3′-UTR couples RNA polymerase II function to glutamine and ribonucleotide levels. EMBO J 36:1854–68
    [Google Scholar]
  23. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J et al. 2011. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–17
    [Google Scholar]
  24. Devi GR, Beer TM, Corless CL, Arora V, Weller DL, Iversen PL 2005. In vivo bioavailability and pharmacokinetics of a c-MYC antisense phosphorodiamidate morpholino oligomer, AVI-4126, in solid tumors. Clin. Cancer Res. 11:3930–38
    [Google Scholar]
  25. Diefenbacher ME, Chakraborty A, Blake SM, Mitter R, Popov N et al. 2015. Usp28 counteracts Fbw7 in intestinal homeostasis and cancer. Cancer Res 75:1181–86
    [Google Scholar]
  26. Diefenbacher ME, Popov N, Blake SM, Schulein-Volk C, Nye E et al. 2014. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J. Clin. Investig. 124:3407–18
    [Google Scholar]
  27. Drygin D, Siddiqui-Jain A, O'Brien S, Schwaebe M, Lin A et al. 2009. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res 69:7653–61
    [Google Scholar]
  28. Dubois NC, Adolphe C, Ehninger A, Wang RA, Robertson EJ, Trumpp A 2008. Placental rescue reveals a sole requirement for c-Myc in embryonic erythroblast survival and hematopoietic stem cell function. Development 135:2455–65
    [Google Scholar]
  29. Dubois SG, Mosse YP, Fox E, Kudgus RA, Reid JM et al. 2018. Phase 2 trial of alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma. Clin. Cancer Res. 24:6142–49
    [Google Scholar]
  30. Farrell AS, Sears RC. 2014. MYC degradation. Cold Spring Harb. Perspect. Med. 4:a014365
    [Google Scholar]
  31. Felsher DW, Bishop JM. 1999. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4:199–207
    [Google Scholar]
  32. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB et al. 2010. Selective inhibition of BET bromodomains. Nature 468:1067–73
    [Google Scholar]
  33. Gabay M, Li Y, Felsher DW 2014. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med. 4:a014241
    [Google Scholar]
  34. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K et al. 2009. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–65
    [Google Scholar]
  35. Gerlach JM, Furrer M, Gallant M, Birkel D, Baluapuri A et al. 2017. PAF1 complex component Leo1 helps recruit Drosophila Myc to promoters. PNAS 114:E9224–32
    [Google Scholar]
  36. Guo J, Li T, Schipper J, Nilson KA, Fordjour FK et al. 2014. Sequence specificity incompletely defines the genome-wide occupancy of Myc. Genome Biol 15:482
    [Google Scholar]
  37. Haikala HM, Anttila JM, Marques E, Raatikainen T, Ilander M et al. 2019. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat. Commun. 10:620
    [Google Scholar]
  38. Heidelberger JB, Voigt A, Borisova ME, Petrosino G, Ruf S et al. 2018. Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function. EMBO Rep 19:e44754
    [Google Scholar]
  39. Herold S, Kalb J, Buchel G, Ade CP, Baluapuri A et al. 2019. Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA polymerase. Nature 567:545–49
    [Google Scholar]
  40. Hill RM, Kuijper S, Lindsey JC, Petrie K, Schwalbe EC et al. 2015. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell 27:72–84
    [Google Scholar]
  41. Hsu TY, Simon LM, Neill NJ, Marcotte R, Sayad A et al. 2015. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525:384–88
    [Google Scholar]
  42. Huber AL, Papp SJ, Chan AB, Henriksson E, Jordan SD et al. 2016. CRY2 and FBXL3 cooperatively degrade c-MYC. Mol. Cell 64:774–89
    [Google Scholar]
  43. Jaenicke LA, von Eyss B, Carstensen A, Wolf E, Xu W et al. 2016. Ubiquitin-dependent turnover of MYC antagonizes MYC/PAF1C complex accumulation to drive transcriptional elongation. Mol. Cell 61:54–67
    [Google Scholar]
  44. Janghorban M, Farrell AS, Allen-Petersen BL, Pelz C, Daniel CJ et al. 2014. Targeting c-MYC by antagonizing PP2A inhibitors in breast cancer. PNAS 111:9157–62
    [Google Scholar]
  45. Jiang H, Bower KE, Beuscher AE, Zhou B, Bobkov AA et al. 2009. Stabilizers of the Max homodimer identified in virtual ligand screening inhibit Myc function. Mol. Pharmacol. 76:491–502
    [Google Scholar]
  46. Jung LA, Gebhardt A, Koelmel W, Ade CP, Walz S et al. 2017. OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. Oncogene 36:1911–24
    [Google Scholar]
  47. Kalkat M, Resetca D, Lourenco C, Chan PK, Wei Y et al. 2018. MYC protein interactome profiling reveals functionally distinct regions that cooperate to drive tumorigenesis. Mol. Cell 72:836–48.e7
    [Google Scholar]
  48. Kawauchi D, Robinson G, Uziel T, Gibson P, Rehg J et al. 2012. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21:168–80
    [Google Scholar]
  49. Kfoury A, Armaro M, Collodet C, Sordet-Dessimoz J, Giner MP et al. 2018. AMPK promotes survival of c-Myc-positive melanoma cells by suppressing oxidative stress. EMBO J 37:e97673
    [Google Scholar]
  50. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP 2003. Skp2 regulates Myc protein stability and activity. Mol. Cell 11:1177–88
    [Google Scholar]
  51. Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L et al. 2017. Myc cooperates with Ras by programming inflammation and immune suppression. Cell 171:1301–15.e14
    [Google Scholar]
  52. Kress TR, Sabo A, Amati B 2015. MYC: connecting selective transcriptional control to global RNA production. Nat. Rev. Cancer 15:593–607
    [Google Scholar]
  53. Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J et al. 2014. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511:616–20
    [Google Scholar]
  54. Li Y, Zhang B, Zhang H, Zhu X, Feng D et al. 2013. Oncolytic adenovirus armed with shRNA targeting MYCN gene inhibits neuroblastoma cell proliferation and in vivo xenograft tumor growth. J. Cancer Res. Clin. Oncol. 139:933–41
    [Google Scholar]
  55. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB et al. 2012. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151:56–67
    [Google Scholar]
  56. Liu L, Ulbrich J, Muller J, Wustefeld T, Aeberhard L et al. 2012. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 483:608–12
    [Google Scholar]
  57. Lorenzin F, Benary U, Baluapuri A, Walz S, Jung LA et al. 2016. Different promoter affinities account for specificity in MYC-dependent gene regulation. eLife 5:e15161
    [Google Scholar]
  58. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA et al. 2013. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–34
    [Google Scholar]
  59. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J et al. 2018. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science 360:800–5
    [Google Scholar]
  60. Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H et al. 2006. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol. Cell. Biol 26:8418–26
    [Google Scholar]
  61. Nie Z, Hu G, Wei G, Cui K, Yamane A et al. 2012. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151:68–79
    [Google Scholar]
  62. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L et al. 2009. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 15:67–78
    [Google Scholar]
  63. Pelengaris S, Khan M, Evan G 2002. c-MYC: more than just a matter of life and death. Nat. Rev. Cancer 2:764–76
    [Google Scholar]
  64. Pelizzola M, Morelli MJ, Sabo A, Kress TR, de Pretis S, Amati B 2015. Selective transcriptional regulation by Myc: experimental design and computational analysis of high-throughput sequencing data. Data Brief 3:40–46
    [Google Scholar]
  65. Peter S, Bultinck J, Myant K, Jaenicke LA, Walz S et al. 2014. Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase. EMBO Mol. Med. 6:1525–41
    [Google Scholar]
  66. Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R et al. 2007. The ubiquitin-specific protease USP28 is required for MYC stability. Nat. Cell Biol. 9:765–74
    [Google Scholar]
  67. Postel-Vinay S, Herbschleb K, Massard C, Woodcock V, Soria JC et al. 2019. First-in-human phase I study of the bromodomain and extraterminal motif inhibitor BAY 1238097: emerging pharmacokinetic/pharmacodynamic relationship and early termination due to unexpected toxicity. Eur. J. Cancer 109:103–10
    [Google Scholar]
  68. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S et al. 2010. c-Myc regulates transcriptional pause release. Cell 141:432–45
    [Google Scholar]
  69. Raina K, Lu J, Qian Y, Altieri M, Gordon D et al. 2016. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. PNAS 113:7124–29
    [Google Scholar]
  70. Rangan A, Fedoroff OY, Hurley LH 2001. Induction of duplex to G-quadruplex transition in the c-myc promoter region by a small molecule. J. Biol. Chem. 276:4640–46
    [Google Scholar]
  71. Richards MW, Burgess SG, Poon E, Carstensen A, Eilers M et al. 2016. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. PNAS 113:13726–31
    [Google Scholar]
  72. Rickman DS, Schulte JH, Eilers M 2018. The expanding world of N-MYC-driven tumors. Cancer Discov 8:150–63
    [Google Scholar]
  73. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ 2001. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. PNAS 98:8554–59
    [Google Scholar]
  74. Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA et al. 2007. Myc deletion rescues Apc deficiency in the small intestine. Nature 446:676–79
    [Google Scholar]
  75. Schatz JH, Oricchio E, Wolfe AL, Jiang M, Linkov I et al. 2011. Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. J. Exp. Med. 208:1799–807
    [Google Scholar]
  76. Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB et al. 2018. Pan-cancer alterations of the MYC oncogene and its proximal network across the Cancer Genome Atlas. Cell Syst 6:282–300.e2
    [Google Scholar]
  77. Schulein-Volk C, Wolf E, Zhu J, Xu W, Taranets L et al. 2014. Dual regulation of Fbw7 function and oncogenic transformation by Usp28. Cell Rep 9:1099–109
    [Google Scholar]
  78. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH 2002. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. PNAS 99:11593–98
    [Google Scholar]
  79. Simonsson T, Pecinka P, Kubista M 1998. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res 26:1167–72
    [Google Scholar]
  80. Sklar MD, Thompson E, Welsh MJ, Liebert M, Harney J et al. 1991. Depletion of c-myc with specific antisense sequences reverses the transformed phenotype in ras oncogene-transformed NIH 3T3 cells. Mol. Cell. Biol. 11:3699–710
    [Google Scholar]
  81. Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI, Soucek L 2011. Endogenous Myc maintains the tumor microenvironment. Genes Dev 25:907–16
    [Google Scholar]
  82. Soucek L, Nasi S, Evan GI 2004. Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ 11:1038–45
    [Google Scholar]
  83. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ et al. 2008. Modelling Myc inhibition as a cancer therapy. Nature 455:679–83
    [Google Scholar]
  84. Soucek L, Whitfield JR, Sodir NM, Masso-Valles D, Serrano E et al. 2013. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev 27:504–13
    [Google Scholar]
  85. Stathis A, Bertoni F. 2018. BET proteins as targets for anticancer treatment. Cancer Discov 8:24–36
    [Google Scholar]
  86. Struntz NB, Chen A, Deutzmann A, Wilson RM, Stefan E et al. 2019. Stabilization of the Max homodimer with a small molecule attenuates Myc-driven transcription. Cell Chem. Biol. 26:711–23
    [Google Scholar]
  87. Su Y, Pelz C, Huang T, Torkenczy K, Wang X et al. 2018. Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes Dev 32:1398–419
    [Google Scholar]
  88. Teloni F, Michelena J, Lezaja A, Kilic S, Ambrosi C et al. 2019. Efficient pre-mRNA cleavage prevents replication-stress-associated genome instability. Mol. Cell 73:670–83.e12
    [Google Scholar]
  89. Thomas LR, Wang Q, Grieb BC, Phan J, Foshage AM et al. 2015. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol. Cell 58:440–52
    [Google Scholar]
  90. Topper MJ, Vaz M, Chiappinelli KB, DeStefano Shields CE, Niknafs N et al. 2017. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171:1284–300.e21
    [Google Scholar]
  91. Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M et al. 2001. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414:768–73
    [Google Scholar]
  92. Turnbull AP, Ioannidis S, Krajewski WW, Pinto-Fernandez A, Heride C et al. 2017. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 550:481–86
    [Google Scholar]
  93. van Riggelen J, Muller J, Otto T, Beuger V, Yetil A et al. 2010. The interaction between Myc and Miz1 is required to antagonize TGFβ-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev 24:1281–94
    [Google Scholar]
  94. Vaseva AV, Blake DR, Gilbert TSK, Ng S, Hostetter G et al. 2018. KRAS suppression-induced degradation of MYC is antagonized by a MEK5-ERK5 compensatory mechanism. Cancer Cell 34:807–22.e7
    [Google Scholar]
  95. Vo BT, Wolf E, Kawauchi D, Gebhardt A, Rehg JE et al. 2016. The interaction of Myc with Miz1 defines medulloblastoma subgroup identity. Cancer Cell 29:5–16
    [Google Scholar]
  96. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A et al. 2003. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11:1189–200
    [Google Scholar]
  97. Walsby E, Lazenby M, Pepper C, Burnett AK 2011. The cyclin-dependent kinase inhibitor SNS-032 has single agent activity in AML cells and is highly synergistic with cytarabine. Leukemia 25:411–19
    [Google Scholar]
  98. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B et al. 2014. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 511:483–87
    [Google Scholar]
  99. Welcker M, Orian A, Jin J, Grim JE, Harper JW et al. 2004. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. PNAS 101:9085–90
    [Google Scholar]
  100. Westermarck J, Hahn WC. 2008. Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol. Med. 14:152–60
    [Google Scholar]
  101. Wiegering A, Uthe FW, Jamieson T, Ruoss Y, Huttenrauch M et al. 2015. Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal cancer. Cancer Discov 5:768–81
    [Google Scholar]
  102. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD et al. 2004. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18:2747–63
    [Google Scholar]
  103. Winter GE, Mayer A, Buckley DL, Erb MA, Roderick JE et al. 2017. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell 67:5–18.e19
    [Google Scholar]
  104. Xu H, Di Antonio M, McKinney S, Mathew V, Ho B et al. 2017. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun. 8:14432
    [Google Scholar]
  105. Yin X, Giap C, Lazo JS, Prochownik EV 2003. Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 22:6151–59
    [Google Scholar]
  106. Zanet J, Pibre S, Jacquet C, Ramirez A, de Alboran IM, Gandarillas A 2005. Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J. Cell Sci. 118:1693–704
    [Google Scholar]
  107. Zirath H, Frenzel A, Oliynyk G, Segerstrom L, Westermark UK et al. 2013. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. PNAS 110:10258–63
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030518-055826
Loading
/content/journals/10.1146/annurev-cancerbio-030518-055826
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error