1932

Abstract

Aging is a major risk factor for many types of cancer, and the molecular mechanisms implicated in aging, progeria syndromes, and cancer pathogenesis display considerable similarities. Maintaining redox homeostasis, efficient signal transduction, and mitochondrial metabolism is essential for genome integrity and for preventing progression to cellular senescence or tumorigenesis. NAD+ is a central signaling molecule involved in these and other cellular processes implicated in age-related diseases and cancer. Growing evidence implicates NAD+ decline as a major feature of accelerated aging progeria syndromes and normal aging. Administration of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) offer promising therapeutic strategies to improve health, progeria comorbidities, and cancer therapies. This review summarizes insights from the study of aging and progeria syndromes and discusses the implications and therapeutic potential of the underlying molecular mechanisms involved in aging and how they may contribute to tumorigenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030518-055905
2019-03-04
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/3/1/annurev-cancerbio-030518-055905.html?itemId=/content/journals/10.1146/annurev-cancerbio-030518-055905&mimeType=html&fmt=ahah

Literature Cited

  1. Ali YO, Li-Kroeger D, Bellen HJ, Zhai RG, Lu HC 2013. NMNATs, evolutionarily conserved neuronal maintenance factors. Trends Neurosci 36:632–40
    [Google Scholar]
  2. Andrabi SA, Dawson TM, Dawson VL 2008. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. N.Y. Acad. Sci. 1147:233–41
    [Google Scholar]
  3. Bajrami I, Kigozi A, Van Weverwijk A, Brough R, Frankum J et al. 2012. Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells. EMBO Mol. Med. 4:1087–96
    [Google Scholar]
  4. Baker DJ, Peleg S 2017. Biphasic modeling of mitochondrial metabolism dysregulation during aging. Trends Biochem. Sci. 42:702–11
    [Google Scholar]
  5. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG et al. 2011. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–36
    [Google Scholar]
  6. Ban HS, Xu X, Jang K, Kim I, Kim BK et al. 2016. A novel malate dehydrogenase 2 inhibitor suppresses hypoxia-inducible factor-1 by regulating mitochondrial respiration. PLOS ONE 11:e0162568
    [Google Scholar]
  7. Bi TQ, Che XM, Liao XH, Zhang DJ, Long HL et al. 2011. Overexpression of Nampt in gastric cancer and chemopotentiating effects of the Nampt inhibitor FK866 in combination with fluorouracil. Oncol. Rep. 26:1251–57
    [Google Scholar]
  8. Bohr V, Anson RM, Mazur S, Dianov G 1998. Oxidative DNA damage processing and changes with aging. Toxicol. Lett. 102–103:47–52
    [Google Scholar]
  9. Bonner MY, Arbiser JL 2012. Targeting NADPH oxidases for the treatment of cancer and inflammation. Cell. Mol. Life Sci. 69:2435–42
    [Google Scholar]
  10. Bradford PT, Goldstein AM, Tamura D, Khan SG, Ueda T et al. 2011. Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. J. Med. Genet. 48:168–76
    [Google Scholar]
  11. Bringman-Rodenbarger LR, Guo AH, Lyssiotis CA, Lombard DB 2018. Emerging roles for SIRT5 in metabolism and cancer. Antioxid. Redox Signal. 28:677–90
    [Google Scholar]
  12. Bruning A. 2013. Inhibition of mTOR signaling by quercetin in cancer treatment and prevention. Anticancer Agents Med. Chem. 13:1025–31
    [Google Scholar]
  13. Bryan S, Baregzay B, Spicer D, Singal PK, Khaper N 2013. Redox-inflammatory synergy in the metabolic syndrome. Can. J. Physiol. Pharmacol. 91:22–30
    [Google Scholar]
  14. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D et al. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–17
    [Google Scholar]
  15. Bu X, Kato J, Hong JA, Merino MJ, Schrump DS et al. 2018. CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis 39:242–51
    [Google Scholar]
  16. Buonvicino D, Mazzola F, Zamporlini F, Resta F, Ranieri G et al. 2018. Identification of the nicotinamide salvage pathway as a new toxification route for antimetabolites. Cell. Chem. Biol. 25:4471–82.e7
    [Google Scholar]
  17. Cagnetta A, Caffa I, Acharya C, Soncini D, Acharya P et al. 2015. APO866 increases antitumor activity of cyclosporin-A by inducing mitochondrial and endoplasmic reticulum stress in leukemia cells. Clin. Cancer Res. 21:3934–45
    [Google Scholar]
  18. Caliskan Z, Mutlu T, Guven M, Tuncdemir M, Niyazioglu M et al. 2018. SIRT6 expression and oxidative DNA damage in individuals with prediabetes and type 2 diabetes mellitus. Gene 642:542–48
    [Google Scholar]
  19. Camacho-Pereira J, Tarrago MG, Chini CCS, Nin V, Escande C et al. 2016. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell. Metab. 23:1127–39
    [Google Scholar]
  20. Cambronne XA, Stewart ML, Kim D, Jones-Brunette AM, Morgan RK et al. 2016. Biosensor reveals multiple sources for mitochondrial NAD+. Science 352:1474–77
    [Google Scholar]
  21. Campisi J, d'Adda di Fagagna F 2007. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8:729–40
    [Google Scholar]
  22. Cea M, Cagnetta A, Fulciniti M, Tai YT, Hideshima T et al. 2012. Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood 120:3519–29
    [Google Scholar]
  23. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B et al. 2015. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518:258–62
    [Google Scholar]
  24. Chalkiadaki A, Guarente L 2015. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15:608–24
    [Google Scholar]
  25. Chang YL, Gao HW, Chiang CP, Wang WM, Huang SM et al. 2015. Human mitochondrial NAD(P)+-dependent malic enzyme participates in cutaneous melanoma progression and invasion. J. Investig. Dermatol. 135:807–15
    [Google Scholar]
  26. Cheng A, Yang Y, Zhou Y, Maharana C, Lu D et al. 2016. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell. Metab. 23:128–42
    [Google Scholar]
  27. Cheng CP, Huang LC, Chang YL, Hsieh CH, Huang SM, Hueng DY 2016. The mechanisms of malic enzyme 2 in the tumorigenesis of human gliomas. Oncotarget 7:41460–72
    [Google Scholar]
  28. Cheng ST, Ren JH, Cai XF, Jiang H, Chen J 2018. HBx-elevated SIRT2 promotes HBV replication and hepatocarcinogenesis. Biochem. Biophys. Res. Commun. 496:904–10
    [Google Scholar]
  29. Chiarugi A, Dolle C, Felici R, Ziegler M 2012. The NAD metabolome—a key determinant of cancer cell biology. Nat. Rev. Cancer 12:741–52
    [Google Scholar]
  30. Chin RM, Fu X, Pai MY, Vergnes L, Hwang H et al. 2014. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510:397–401
    [Google Scholar]
  31. Chini EN, Chini CCS, Espindola Netto JM, de Oliveira GC, van Schooten W 2018. The pharmacology of CD38/NADase: an emerging target in cancer and diseases of aging. Trends Pharmacol. Sci. 39:4424–36
    [Google Scholar]
  32. Chourasia AH, Boland ML, Macleod KF 2015. Mitophagy and cancer. Cancer Metab 3:4
    [Google Scholar]
  33. Clark DW, Palle K 2016. Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets. Ann. Transl. Med. 4:518
    [Google Scholar]
  34. Coppe JP, Desprez PY, Krtolica A, Campisi J 2010. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5:99–118
    [Google Scholar]
  35. Cui C, Qi J, Deng Q, Chen R, Zhai D, Yu J 2016. Nicotinamide mononucleotide adenylyl transferase 2: a promising diagnostic and therapeutic target for colorectal cancer. Biomed. Res. Int. 2016:1804137
    [Google Scholar]
  36. Dong Z, Lei Q, Liu L, Cui H 2016. [Function of SIRT6 in tumor initiation and progression]. Sheng Wu Gong Cheng Xue Bao 32:870–79
    [Google Scholar]
  37. Du L, Zhang X, Han YY, Burke NA, Kochanek PM et al. 2003. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J. Biol. Chem. 278:18426–33
    [Google Scholar]
  38. Dulaney C, Marcrom S, Stanley J, Yang ES 2017. Poly(ADP-ribose) polymerase activity and inhibition in cancer. Semin. Cell Dev. Biol. 63:144–53
    [Google Scholar]
  39. Escande C, Nin V, Price NL, Capellini V, Gomes AP et al. 2013. Flavonoid apigenin is an inhibitor of the NAD+ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62:1084–93
    [Google Scholar]
  40. Fang EF, Kassahun H, Croteau DL, Scheibye-Knudsen M, Marosi K et al. 2016.a NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab 24:566–81
    [Google Scholar]
  41. Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL et al. 2017. NAD+ in aging: molecular mechanisms and translational implications. Trends Mol. Med. 23:899–916
    [Google Scholar]
  42. Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T et al. 2014. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157:882–96
    [Google Scholar]
  43. Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA 2016.b Nuclear DNA damage signalling to mitochondria in ageing. Nat. Rev. Mol. Cell Biol. 17:308–21
    [Google Scholar]
  44. Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L 2006. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20:1075–80
    [Google Scholar]
  45. Fritze CE, Verschueren K, Strich R, Easton Esposito R 1997. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J 16:6495–509
    [Google Scholar]
  46. Furuta E, Okuda H, Kobayashi A, Watabe K 2010. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim. Biophys. Acta 1805:141–52
    [Google Scholar]
  47. Gao X, Sun J, Huang C, Hu X, Jiang N, Lu C 2017. RNAi-mediated silencing of NOX4 inhibited the invasion of gastric cancer cells through JAK2/STAT3 signaling. Am. J. Transl. Res. 9:4440–49
    [Google Scholar]
  48. Gibson GE, Blass JP, Beal MF, Bunik V 2005. The α-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol. Neurobiol. 31:43–63
    [Google Scholar]
  49. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM et al. 2010. Diabetes and cancer: a consensus report. Diabetes Care 33:1674–85
    [Google Scholar]
  50. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK et al. 2013. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–38
    [Google Scholar]
  51. Green AR, Caracappa D, Benhasouna AA, Alshareeda A, Nolan CC et al. 2015. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res. Treat. 149:353–62
    [Google Scholar]
  52. Grolla AA, Travelli C, Genazzani AA, Sethi JK 2016. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine. Br. J. Pharmacol. 173:2182–94
    [Google Scholar]
  53. Guarente L. 2005. Calorie restriction and SIR2 genes—towards a mechanism. Mech. Ageing Dev. 126:923–28
    [Google Scholar]
  54. Han X, Tai H, Wang X, Wang Z, Zhou J et al. 2016. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD+ elevation. Aging Cell 15:416–27
    [Google Scholar]
  55. Hanahan D, Weinberg RA 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  56. Hasmann M, Schemainda I 2003. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res 63:7436–42
    [Google Scholar]
  57. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau DL et al. 2018. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. PNAS 115:E1876–85
    [Google Scholar]
  58. Houtkooper RH, Argmann C, Houten SM, Canto C, Jeninga EH et al. 2011. The metabolic footprint of aging in mice. Sci. Rep. 1:134
    [Google Scholar]
  59. Houtkooper RH, Pirinen E, Auwerx J 2012. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13:225–38
    [Google Scholar]
  60. Imai S, Guarente L 2014. NAD+ and sirtuins in aging and disease. Trends Cell Biol 24:464–71
    [Google Scholar]
  61. Japp AS, Kursunel MA, Meier S, Malzer JN, Li X et al. 2015. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol. Immunother. 64:1487–94
    [Google Scholar]
  62. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ et al. 2017. Mitophagy and Alzheimer's disease: cellular and molecular mechanisms. Trends Neurosci 40:151–66
    [Google Scholar]
  63. Kim HC, Song JS, Lee JC, Lee DH, Kim SW et al. 2014. Clinical significance of NQO1 polymorphism and expression of p53, SOD2, PARP1 in limited-stage small cell lung cancer. Int. J. Clin. Exp. Pathol. 7:6743–51
    [Google Scholar]
  64. Kimmelman AC, White E 2017. Autophagy and tumor metabolism. Cell Metab 25:1037–43
    [Google Scholar]
  65. Klauschen F, von Winterfeld M, Stenzinger A, Sinn BV, Budczies J et al. 2012. High nuclear poly-(ADP-ribose)-polymerase expression is prognostic of improved survival in pancreatic cancer. Histopathology 61:409–16
    [Google Scholar]
  66. Lafuente MJ, Casterad X, Trias M, Ascaso C, Molina R et al. 2000. NAD(P)H:quinone oxidoreductase-dependent risk for colorectal cancer and its association with the presence of K-ras mutations in tumors. Carcinogenesis 21:1813–19
    [Google Scholar]
  67. Lai Y, Chen Y, Watkins SC, Nathaniel PD, Guo F et al. 2008. Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J. Neurochem. 104:1700–11
    [Google Scholar]
  68. Lau C, Dolle C, Gossmann TI, Agledal L, Niere M, Ziegler M 2010. Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases. J. Biol. Chem. 285:18868–76
    [Google Scholar]
  69. Lebel M, Monnat RJ Jr. 2018. Werner syndrome (WRN) gene variants and their association with altered function and age-associated diseases. Ageing Res. Rev. 41:82–97
    [Google Scholar]
  70. Lee H, Oh ET, Choi BH, Park MT, Lee JK et al. 2015. NQO1-induced activation of AMPK contributes to cancer cell death by oxygen-glucose deprivation. Sci. Rep. 5:7769
    [Google Scholar]
  71. Li M, Yu X 2013. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23:693–704
    [Google Scholar]
  72. Ligibel J. 2012. Lifestyle factors in cancer survivorship. J. Clin. Oncol. 30:3697–704
    [Google Scholar]
  73. Lin F, Qin ZH 2013. Degradation of misfolded proteins by autophagy: Is it a strategy for Huntington's disease treatment. J. Huntingt. Dis. 2:149–57
    [Google Scholar]
  74. Lin H, Hao Y, Zhao Z, Tong Y 2017. Sirtuin 6 contributes to migration and invasion of osteosarcoma cells via the ERK1/2/MMP9 pathway. FEBS Open Bio 7:1291–301
    [Google Scholar]
  75. Lin SJ, Guarente L 2003. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr. Opin. Cell Biol. 15:241–46
    [Google Scholar]
  76. Liu F, Arias-Vasquez A, Sleegers K, Aulchenko YS, Kayser M et al. 2007. A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population. Am. J. Hum. Genet. 81:17–31
    [Google Scholar]
  77. Liu X, Grogan TR, Hieronymus H, Hashimoto T, Mottahedeh J et al. 2016. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep 17:2596–606
    [Google Scholar]
  78. Liu X, Zhang L, Wang P, Li X, Qiu D et al. 2017. Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice. Cell Cycle 16:1302–8
    [Google Scholar]
  79. Liu Y, Zhang Y, Zhao Y, Gao D, Xing J, Liu H 2016. High PARP-1 expression is associated with tumor invasion and poor prognosis in gastric cancer. Oncol. Lett. 12:3825–35
    [Google Scholar]
  80. Ljungberg MC, Ali YO, Zhu J, Wu CS, Oka K et al. 2012. CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum. Mol. Genet. 21:251–67
    [Google Scholar]
  81. Long HL, Che XM, Bi TQ, Li HJ, Liu JS, Li DW 2012. [The expression of nicotinamide phosphoribosyl transferase and vascular endothelial growth factor-A in gastric carcinoma and their clinical significance]. Zhonghua Wai Ke Za Zhi 50:839–42
    [Google Scholar]
  82. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G 2013. The hallmarks of aging. Cell 153:1194–217
    [Google Scholar]
  83. Lu GW, Wang QJ, Xia MM, Qian J 2014. Elevated plasma visfatin levels correlate with poor prognosis of gastric cancer patients. Peptides 58:60–64
    [Google Scholar]
  84. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S et al. 2007. Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol. Cell Biol. 27:3282–89
    [Google Scholar]
  85. Madala HR, Punganuru SR, Arutla V, Misra S, Thomas TJ, Srivenugopal KS 2018. Beyond brooding on oncometabolic havoc in IDH-mutant gliomas and AML: current and future therapeutic strategies. Cancers 10:249
    [Google Scholar]
  86. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N 2011. CD38 and chronic lymphocytic leukemia: a decade later. Blood 118:3470–78
    [Google Scholar]
  87. Marcon E, Jain H, Bhattacharya A, Guo H, Phanse S et al. 2015. Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nat. Methods 12:725–31
    [Google Scholar]
  88. Masmoudi A, Mandel P 1987. ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. Biochemistry 26:1965–69
    [Google Scholar]
  89. McCord RA, Michishita E, Hong T, Berber E, Boxer LD et al. 2009. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging 1:109–21
    [Google Scholar]
  90. Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J et al. 2012. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. PNAS 109:E187–96
    [Google Scholar]
  91. Miao P, Sheng S, Sun X, Liu J, Huang G 2013. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life 65:904–10
    [Google Scholar]
  92. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H et al. 2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–96
    [Google Scholar]
  93. Minor RK, Allard JS, Younts CM, Ward TM, de Cabo R 2010. Dietary interventions to extend life span and health span based on calorie restriction. J. Gerontol. A 65:695–703
    [Google Scholar]
  94. Montero JC, Seoane S, Ocana A, Pandiella A 2011. Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin. Cancer Res. 17:5546–52
    [Google Scholar]
  95. Moreira OC, Estebanez B, Martinez-Florez S, de Paz JA, Cuevas MJ, Gonzalez-Gallego J 2017. Mitochondrial function and mitophagy in the elderly: effects of exercise. Oxid. Med. Cell. Longev. 2017:2012798
    [Google Scholar]
  96. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR et al. 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–29
    [Google Scholar]
  97. Nawab A, Nichols A, Klug R, Shapiro JI, Sodhi K 2017. Spin trapping: a review for the study of obesity related oxidative stress and Na+/K+-ATPase. J. Clin. Cell. Immunol. 8:3505
    [Google Scholar]
  98. Nergiz Avcioğlu S, Altinkaya SO, Küçük M, Yuksel H, Ömürlü IK, Yanik S 2015. Visfatin concentrations in patients with endometrial cancer. Gynecol. Endocrinol. 31:202–7
    [Google Scholar]
  99. Neubauer K, Misa IB, Diakowska D, Kapturkiewicz B, Gamian A, Krzystek-Korpacka M 2015. Nampt/PBEF/visfatin upregulation in colorectal tumors, mirrored in normal tissue and whole blood of colorectal cancer patients, is associated with metastasis, hypoxia, IL1β, and anemia. Biomed. Res. Int. 2015:523930
    [Google Scholar]
  100. Nikiforov A, Kulikova V, Ziegler M 2015. The human NAD metabolome: functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 50:284–97
    [Google Scholar]
  101. Nishida Y, Rardin MJ, Carrico C, He W, Sahu AK et al. 2015. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell. 59:321–32
    [Google Scholar]
  102. Oh ET, Kim JW, Kim JM, Kim SJ, Lee JS et al. 2016. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat. Commun. 7:13593
    [Google Scholar]
  103. Oh ET, Park HJ 2015. Implications of NQO1 in cancer therapy. BMB Rep 48:609–17
    [Google Scholar]
  104. Pankotai E, Lacza Z, Muranyi M, Szabo C 2009. Intra-mitochondrial poly(ADP-ribosyl)ation: potential role for alpha-ketoglutarate dehydrogenase. Mitochondrion 9:159–64
    [Google Scholar]
  105. Park J, Chen Y, Tishkoff DX, Peng C, Tan M et al. 2013. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50:919–30
    [Google Scholar]
  106. Proietti-De-Santis L, Balzerano A, Prantera G 2018. CSB: an emerging actionable target for cancer therapy. Trends Cancer 4:172–75
    [Google Scholar]
  107. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D 2010. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662–67
    [Google Scholar]
  108. Raedler LA. 2016. Darzalex (daratumumab): first anti-CD38 monoclonal antibody approved for patients with relapsed multiple myeloma. Am. Health Drug Benefits 9:70–73
    [Google Scholar]
  109. Reid-Bayliss KS, Arron ST, Loeb LA, Bezrookove V, Cleaver JE 2016. Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency. PNAS 113:10151–56
    [Google Scholar]
  110. Reitman ZJ, Yan H 2010. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J. Natl. Cancer Inst. 102:932–41
    [Google Scholar]
  111. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M 2008. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–78
    [Google Scholar]
  112. Rodier F, Campisi J, Bhaumik D 2007. Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–84
    [Google Scholar]
  113. Rodriguez MI, Peralta-Leal A, O'Valle F, Rodriguez-Vargas JM, Gonzalez-Flores A et al. 2013. PARP-1 regulates metastatic melanoma through modulation of vimentin-induced malignant transformation. PLOS Genet 9:e1003531
    [Google Scholar]
  114. Roichman A, Kanfi Y, Glazz R, Naiman S, Amit U et al. 2017. SIRT6 overexpression improves various aspects of mouse healthspan. J. Gerontol. A 72:603–15
    [Google Scholar]
  115. Ross JM, Oberg J, Brene S, Coppotelli G, Terzioglu M et al. 2010. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. PNAS 107:20087–92
    [Google Scholar]
  116. Rossi MN, Carbone M, Mostocotto C, Mancone C, Tripodi M et al. 2009. Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity. J. Biol. Chem. 284:31616–24
    [Google Scholar]
  117. Roy K, Wu Y, Meitzler JL, Juhasz A, Liu H et al. 2015. NADPH oxidases and cancer. Clin. Sci. 128:863–75
    [Google Scholar]
  118. Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N et al. 2016. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22:879–88
    [Google Scholar]
  119. Saha SK, Parachoniak CA, Ghanta KS, Fitamant J, Ross KN et al. 2014. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 513:110–14
    [Google Scholar]
  120. Sahar S, Nin V, Barbosa MT, Chini EN, Sassone-Corsi P 2011. Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging 3:794–802
    [Google Scholar]
  121. Sahoo D, Wei W, Auman H, Hurtado-Coll A, Carroll PR et al. 2018. Boolean analysis identifies CD38 as a biomarker of aggressive localized prostate cancer. Oncotarget 9:6550–61
    [Google Scholar]
  122. Santana-Codina N, Mancias JD, Kimmelman AC 2017. The role of autophagy in cancer. Annu. Rev. Cancer Biol. 1:19–39
    [Google Scholar]
  123. Santidrian AF, LeBoeuf SE, Wold ED, Ritland M, Forsyth JS, Felding BH 2014. Nicotinamide phosphoribosyltransferase can affect metastatic activity and cell adhesive functions by regulating integrins in breast cancer. DNA Repair 23:79–87
    [Google Scholar]
  124. Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T et al. 2014. A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in Cockayne syndrome. Cell Metab 20:840–55
    [Google Scholar]
  125. Shackelford R, Hirsh S, Henry K, Abdel-Mageed A, Kandil E, Coppola D 2013.a Nicotinamide phosphoribosyltransferase and SIRT3 expression are increased in well-differentiated thyroid carcinomas. Anticancer Res 33:3047–52
    [Google Scholar]
  126. Shackelford RE, Mayhall K, Maxwell NM, Kandil E, Coppola D 2013.b Nicotinamide phosphoribosyltransferase in malignancy: a review. Genes Cancer 4:447–56
    [Google Scholar]
  127. Sharif T, Ahn DG, Liu RZ, Pringle E, Martell E et al. 2016. The NAD+ salvage pathway modulates cancer cell viability via p73. Cell Death Differ 23:669–80
    [Google Scholar]
  128. Shi R, Guberman M, Kirshenbaum LA 2017. Mitochondrial quality control: the role of mitophagy in aging. Trends Cardiovasc. Med. 28:4246–60
    [Google Scholar]
  129. Si J, Fu X, Behar J, Wands J, Beer DG et al. 2007. NADPH oxidase NOX5-S mediates acid-induced cyclooxygenase-2 expression via activation of NF-κB in Barrett's esophageal adenocarcinoma cells. J. Biol. Chem. 282:16244–55
    [Google Scholar]
  130. Sinclair DA. 2005. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126:987–1002
    [Google Scholar]
  131. Skonieczna M, Hejmo T, Poterala-Hejmo A, Cieslar-Pobuda A, Buldak RJ 2017. NADPH oxidases: insights into selected functions and mechanisms of action in cancer and stem cells. Oxid. Med. Cell. Longev. 2017:9420539
    [Google Scholar]
  132. Song NY, Surh YJ 2012. Janus-faced role of SIRT1 in tumorigenesis. Ann. N.Y. Acad. Sci. 1271:10–19
    [Google Scholar]
  133. Springer MZ, Macleod KF 2016. In brief: mitophagy: mechanisms and role in human disease. J. Pathol. 240:253–55
    [Google Scholar]
  134. Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE et al. 2004. Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24:7779–88
    [Google Scholar]
  135. Stefanatos R, Sanz A 2011. Mitochondrial complex I: a central regulator of the aging process. Cell Cycle 10:1528–32
    [Google Scholar]
  136. Sun N, Yun J, Liu J, Malide D, Liu C et al. 2015. Measuring in vivo mitophagy. Mol. Cell 60:685–96
    [Google Scholar]
  137. Surjana D, Halliday GM, Damian DL 2010. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J. Nucleic Acids 2010:157591
    [Google Scholar]
  138. Tan B, Dong S, Shepard RL, Kays L, Roth KD et al. 2015. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, leads to altered carbohydrate metabolism in cancer cells. J. Biol. Chem. 290:15812–24
    [Google Scholar]
  139. Tateishi K, Wakimoto H, Iafrate AJ, Tanaka S, Loebel F et al. 2015. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell 28:773–84
    [Google Scholar]
  140. Tedeschi PM, Bansal N, Kerrigan JE, Abali EE, Scotto KW, Bertino JR 2016. NAD+ kinase as a therapeutic target in cancer. Clin Cancer Res 22:5189–95
    [Google Scholar]
  141. Thonsri U, Seubwai W, Waraasawapati S, Sawanyawisuth K, Vaeteewoottacharn K et al. 2017. Overexpression of lactate dehydrogenase A in cholangiocarcinoma is correlated with poor prognosis. Histol. Histopathol. 32:503–10
    [Google Scholar]
  142. Tissenbaum HA, Guarente L 2001. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–30
    [Google Scholar]
  143. Torrens-Mas M, Oliver J, Roca P, Sastre-Serra J 2017. SIRT3: oncogene and tumor suppressor in cancer. Cancers 9:90
    [Google Scholar]
  144. van Deursen JM. 2014. The role of senescent cells in ageing. Nature 509:439–46
    [Google Scholar]
  145. Van Meter M, Simon M, Tombline G, May A, Morello TD et al. 2016. JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Rep 16:2641–50
    [Google Scholar]
  146. Vatrinet R, Leone G, De Luise M, Girolimetti G, Vidone M et al. 2017. The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab 5:3
    [Google Scholar]
  147. Vermeij WP, Hoeijmakers JH, Pothof J 2016. Genome integrity in aging: human syndromes, mouse models, and therapeutic options. Annu. Rev. Pharmacol. Toxicol. 56:427–45
    [Google Scholar]
  148. Wang B. 2012. BRCA1 tumor suppressor network: focusing on its tail. Cell Biosci 2:6
    [Google Scholar]
  149. Wang B, Hasan MK, Alvarado E, Yuan H, Wu H, Chen WY 2011. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene 30:907–21
    [Google Scholar]
  150. Wang G, Tian W, Liu Y, Ju Y, Shen Y et al. 2016. Visfatin triggers the cell motility of non-small cell lung cancer via up-regulation of matrix metalloproteinases. Basic Clin. Pharmacol. Toxicol. 119:548–54
    [Google Scholar]
  151. Wang P, Shi Q, Deng WH, Yu J, Zuo T et al. 2015. Relationship between expression of NADPH oxidase 2 and invasion and prognosis of human gastric cancer. World J. Gastroenterol. 21:6271–79
    [Google Scholar]
  152. Wang XY, Wang JZ, Gao L, Zhang FY, Wang Q et al. 2017. Inhibition of nicotinamide phosphoribosyltransferase and depletion of nicotinamide adenine dinucleotide contribute to arsenic trioxide suppression of oral squamous cell carcinoma. Toxicol. Appl. Pharmacol. 331:54–61
    [Google Scholar]
  153. Wang YQ, Hao LW, Jie X, Juan T, Lin NF et al. 2018. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat. Commun. 9:1545
    [Google Scholar]
  154. Warburg O. 1956. On the origin of cancer cells. Science 123:309–14
    [Google Scholar]
  155. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA et al. 2016. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23:303–14
    [Google Scholar]
  156. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK et al. 2018. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24:1246–56
    [Google Scholar]
  157. Xu SN, Wang TS, Li X, Wang YP 2016. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation. Sci. Rep. 6:32734
    [Google Scholar]
  158. Xue T, Luo P, Zhu H, Zhao Y, Wu H et al. 2012. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes. Toxicol. Appl. Pharmacol. 261:280–91
    [Google Scholar]
  159. Yang FY, Guan QK, Cui YH, Zhao ZQ, Rao W, Xi Z 2012. NAD(P)H quinone oxidoreductase 1 (NQO1) genetic C609T polymorphism is associated with the risk of digestive tract cancer: a meta-analysis based on 21 case–control studies. Eur. J. Cancer Prev. 21:432–41
    [Google Scholar]
  160. Yang J, Zhang K, Song H, Wu M, Li J et al. 2016. Visfatin is involved in promotion of colorectal carcinoma malignancy through an inducing EMT mechanism. Oncotarget 7:32306–17
    [Google Scholar]
  161. Yang L, Huang K, Li X, Du M, Kang X et al. 2013. Identification of poly(ADP-ribose) polymerase-1 as a cell cycle regulator through modulating Sp1 mediated transcription in human hepatoma cells. PLOS ONE 8:e82872
    [Google Scholar]
  162. Yang Y, Ding J, Gao ZG, Wang ZJ 2017. A variant in SIRT2 gene 3′-UTR is associated with susceptibility to colorectal cancer. Oncotarget 8:41021–25
    [Google Scholar]
  163. Yoshino J, Baur JA, Imai SI 2017. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab 27:3513–28
    [Google Scholar]
  164. Yoshizawa T, Karim MF, Sato Y, Senokuchi T, Miyata K et al. 2014. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab 19:712–21
    [Google Scholar]
  165. Youle RJ, Narendra DP 2011. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12:9–14
    [Google Scholar]
  166. Young GS, Choleris E, Lund FE, Kirkland JB 2006. Decreased cADPR and increased NAD+ in the Cd38−/− mouse. Biochem. Biophys. Res. Commun. 346:188–92
    [Google Scholar]
  167. Yu W, Dittenhafer-Reed KE, Denu JM 2012. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J. Biol. Chem. 287:14078–86
    [Google Scholar]
  168. Zeng L, Morinibu A, Kobayashi M, Zhu Y, Wang X et al. 2015. Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis. Oncogene 34:4758–66
    [Google Scholar]
  169. Zhang J, Schulz WA, Li Y, Wang R, Zotz R et al. 2003. Association of NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism with esophageal squamous cell carcinoma in a German Caucasian and a northern Chinese population. Carcinogenesis 24:905–9
    [Google Scholar]
  170. Zhang Y, Bharathi SS, Rardin MJ, Lu J, Maringer KV et al. 2017. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain. J. Biol. Chem. 292:10239–49
    [Google Scholar]
  171. Zhao Y, Liu XZ, Tian WW, Guan YF, Wang P, Miao CY 2014. Extracellular visfatin has nicotinamide phosphoribosyltransferase enzymatic activity and is neuroprotective against ischemic injury. CNS Neurosci. Ther. 20:539–47
    [Google Scholar]
  172. Zhou L, Wang F, Sun R, Chen X, Zhang M et al. 2016. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep 17:811–22
    [Google Scholar]
  173. Zhou T, Wang T, Garcia JG 2014. Expression of nicotinamide phosphoribosyltransferase-influenced genes predicts recurrence-free survival in lung and breast cancers. Sci. Rep. 4:6107
    [Google Scholar]
  174. Zhu XH, Lu M, Lee BY, Ugurbil K, Chen W 2015.a In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. PNAS 112:2876–81
    [Google Scholar]
  175. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H et al. 2015.b The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–58
    [Google Scholar]
  176. Zhu Y, Yan Y, Principe DR, Zou X, Vassilopoulos A, Gius D 2014. SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer Metab 2:15
    [Google Scholar]
  177. Ziegler DV, Wiley CD, Velarde MC 2015. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell 14:1–7
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030518-055905
Loading
/content/journals/10.1146/annurev-cancerbio-030518-055905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error