Recurrent driver mutations in the genes encoding histones have been recently described in pediatric brain tumors, as well as in chondroblastomas and giant cell tumors of the bone. The mutations are often heterozygous and frequently comprise single amino acid substitutions in the tails of histone variants. Substitutions of methionine to lysine on H3.3K27 or H3.3K36 are the most common alterations, occurring in diffuse intrinsic pontine gliomas (DIPGs) and chondroblastomas, respectively. Current data suggest that histone mutations alter the epigenetic landscape in tumor cells and lead to a blockade of differentiation, but the mechanisms underlying oncogenesis are not fully understood. These mutations also exhibit a propensity for exclusive expression in specific cell lineages and, in the case of brain tumors, a remarkable anatomic and developmental specificity. The histone mutations have raised interest in promising novel therapeutic strategies that incorporate epigenetic drugs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aihara K, Mukasa A, Gotoh K, Saito K, Nagae G. et al. 2014. H3F3A K27M mutations in thalamic gliomas from young adult patients. Neuro-Oncology 16:140–46 [Google Scholar]
  2. Allis CD, Caparros M-L, Jenuwein T, Lachner M, Reinberg D. 2015. Overview and concepts. Epigenetics CD Allis, M-L Caparros, T Jenuwein, D Reinberg 47–115 New York: Cold Spring Harb. Lab, 2nd ed.. [Google Scholar]
  3. Andrieu G, Belkina AC, Denis GV. 2016. Clinical trials for BET inhibitors run ahead of the science. Drug Discov. Today Technol. 19:45–50 [Google Scholar]
  4. Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG. et al. 2003. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3:189–95 [Google Scholar]
  5. Banaszynski LA, Allis CD, Lewis PW. 2010. Histone variants in metazoan development. Dev. Cell 19:5662–74 [Google Scholar]
  6. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N. et al. 2013. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 45:121479–82 [Google Scholar]
  7. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DTW. et al. 2013. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:5660–72 [Google Scholar]
  8. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J. et al. 2011. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20:166–78 [Google Scholar]
  9. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A. et al. 2013. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3:512–19 [Google Scholar]
  10. Borkin D, He S, Miao H, Kempinska K, Pollock J. et al. 2015. Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 27:4589–602 [Google Scholar]
  11. Brown ZZ, Müller MM, Jain SU, Allis CD, Lewis PW, Muir TW. 2014. Strategy for “detoxification” of a cancer-derived histone mutant based on mapping its interaction with the methyltransferase PRC2. J. Am. Chem. Soc. 136:3913498–501 [Google Scholar]
  12. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L. et al. 2014. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat. Genet. 46:5451–56 [Google Scholar]
  13. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK. et al. 2005. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:4581–92 [Google Scholar]
  14. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N. et al. 2015. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130:6815–27 [Google Scholar]
  15. Chan KM, Fang D, Gan H, Hashizume R, Yu C. et al. 2013. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27:9985–90 [Google Scholar]
  16. Chen P, Zhao J, Wang Y, Wang M, Long H. et al. 2013. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev 27:192109–24 [Google Scholar]
  17. Dang L, White DW, Gross S, Bennett BD, Bittinger MA. et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:7274739–44 [Google Scholar]
  18. Dawson MA. 2017. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science 355:63301147–52 [Google Scholar]
  19. Dawson MA, Kouzarides T. 2012. Cancer epigenetics: from mechanism to therapy. Cell 150:112–27 [Google Scholar]
  20. Ehrlich M, Lacey M. 2013. DNA hypomethylation and hemimethylation in cancer. Epigenetic Alterations in Oncogenesis AR Karpf 31–56 Adv. Exp. Med. Biol. 754 New York: Springer Sci. Bus. Media [Google Scholar]
  21. El Kennani S, Adrait A, Shaytan AK, Khochbin S, Bruley C. et al. 2017. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones. Epigenet. Chromatin 10:2 [Google Scholar]
  22. Elsässer SJ, Huang H, Lewis PW, Chin JW, Allis CD, Patel DJ. 2012. DAXX envelops a histone H3.3–H4 dimer for H3.3-specific recognition. Nature 491:7425560–65 [Google Scholar]
  23. Elsässer SJ, Noh K-M, Diaz N, Allis CD, Banaszynski LA. 2015. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522:7555240–44 [Google Scholar]
  24. Fang D, Gan H, Lee J-H, Han J, Wang Z. et al. 2016. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352:1344–48 [Google Scholar]
  25. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J. et al. 2010. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:6553–67 [Google Scholar]
  26. Filipescu D, Szenker E, Almouzni G. 2013. Developmental roles of histone H3 variants and their chaperones. Trends Genet 29:11630–40 [Google Scholar]
  27. Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR. et al. 2015. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347:6219273–77 [Google Scholar]
  28. Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N. et al. 2014. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat. Genet. 46:462–66 [Google Scholar]
  29. Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, Liu XY, Sturm D. et al. 2013. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 125:5659–69 [Google Scholar]
  30. Funato K, Major T, Lewis PW, Allis CD, Tabar V. 2014. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346:62161529–33 [Google Scholar]
  31. Goldberg AD, Banaszynski LA, Noh K-M, Lewis PW, Elsaesser SJ. et al. 2010. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:5678–91 [Google Scholar]
  32. Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L. et al. 2015. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med. 21:6555–59 [Google Scholar]
  33. Guo R, Zheng L, Park JW, Lv R, Chen H. et al. 2014. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol. Cell 56:2298–310 [Google Scholar]
  34. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H. et al. 2014. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat. Med. 20:121394–96 [Google Scholar]
  35. Henikoff S, Smith MM. 2015. Histone variants and epigenetics. Cold Spring Harb. Perspect. Biol. 7:1a019364 [Google Scholar]
  36. Hennika T, Hu G, Olaciregui NG, Barton KL, Ehteda A. et al. 2017. Pre-clinical study of panobinostat in xenograft and genetically engineered murine diffuse intrinsic pontine glioma models. PLOS ONE 12:1e0169485 [Google Scholar]
  37. Herz H-M, Morgan M, Gao X, Jackson J, Rickels R. et al. 2014. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science 345:62001065–70 [Google Scholar]
  38. Hyun K, Jeon J, Park K, Kim J. 2017. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 49:4e324 [Google Scholar]
  39. Jayaram H, Hoelper D, Jain SU, Cantone N, Lundgren SM. et al. 2016. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3. PNAS 113:226182–87 [Google Scholar]
  40. Jones C, Baker SJ. 2014. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat. Rev. Cancer 14:10651–61 [Google Scholar]
  41. Joshi AA, Struhl K. 2005. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to pol II elongation. Mol. Cell 20:6971–78 [Google Scholar]
  42. Justin N, Zhang Y, Tarricone C, Martin SR, Chen S. et al. 2016. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nat. Commun. 7:11316 [Google Scholar]
  43. Kelly AD, Issa J-PJ. 2017. The promise of epigenetic therapy: reprogramming the cancer epigenome. Curr. Opin. Genet. Dev. 42:68–77 [Google Scholar]
  44. Khuong-Quang D-A, Buczkowicz P, Rakopoulos P, Liu X-Y, Fontebasso AM. et al. 2012. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:3439–47 [Google Scholar]
  45. Kim KH, Roberts CWM. 2016. Targeting EZH2 in cancer. Nat. Med. 22:2128–34 [Google Scholar]
  46. Krivtsov AV, Armstrong SA. 2007. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7:11823–33 [Google Scholar]
  47. Labrie V, Pai S, Petronis A. 2012. Epigenetics of major psychosis: progress, problems and perspectives. Trends Genet 28:9427–35 [Google Scholar]
  48. Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN. et al. 2014. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 46:111227–32 [Google Scholar]
  49. Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S. et al. 2013. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:6134857–61 [Google Scholar]
  50. Li H, Kaminski MS, Li Y, Yildiz M, Ouillette P. et al. 2014. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 123:101487–98 [Google Scholar]
  51. Li J. 2002. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J. Biol. Chem. 277:5149383–88 [Google Scholar]
  52. Liu C-P, Xiong C, Wang M, Yu Z, Yang N. et al. 2012. Structure of the variant histone H3.3–H4 heterodimer in complex with its chaperone DAXX. Nat. Struct. Mol. Biol. 19:121287–92 [Google Scholar]
  53. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D. et al. 2016. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:6803–20 [Google Scholar]
  54. Lu C, Jain SU, Hoelper D, Bechet D, Molden RC. et al. 2016. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352:6287844–49 [Google Scholar]
  55. Markolovic S, Leissing TM, Chowdhury R, Wilkins SE, Lu X, Schofield CJ. 2016. Structure–function relationships of human JmjC oxygenases—demethylases versus hydroxylases. Curr. Opin. Struct. Biol. 41:62–72 [Google Scholar]
  56. Maze I, Noh K-M, Soshnev AA, Allis CD. 2014. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 15:4259–71 [Google Scholar]
  57. McMahon KA, Hiew SY-L, Hadjur S, Veiga-Fernandes H, Menzel U. et al. 2007. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1:3338–45 [Google Scholar]
  58. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Højfeldt JW. et al. 2017. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 23:4483–92 [Google Scholar]
  59. Okosun J, Bödör C, Wang J, Araf S, Yang CY. et al. 2014. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46:2176–81 [Google Scholar]
  60. Papillon-Cavanagh S, Lu C, Gayden T, Mikael LG, Bechet D. et al. 2017. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat. Genet. 49:2180–85 [Google Scholar]
  61. Paugh BS, Zhu X, Qu C, Endersby R, Diaz AK. et al. 2013. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res 73:206219–29 [Google Scholar]
  62. Pfister SX, Markkanen E, Jiang Y, Sarkar S, Woodcock M. et al. 2015. Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell 28:5557–68 [Google Scholar]
  63. Piña B, Suau P. 1987. Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Dev. Biol. 123:151–58 [Google Scholar]
  64. Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM. et al. 2017. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med. 23:4493–500 [Google Scholar]
  65. Portela A, Esteller M. 2010. Epigenetic modifications and human disease. Nat. Biotechnol. 28:101057–68 [Google Scholar]
  66. Puget S, Philippe C, Bax DA, Job B, Varlet P. et al. 2012. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLOS ONE 7:2e30313 [Google Scholar]
  67. Reinberg D, Sims RJ. 2006. De FACTo nucleosome dynamics. J. Biol. Chem. 281:3323297–301 [Google Scholar]
  68. Robison AJ, Nestler EJ. 2011. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. 12:11623–37 [Google Scholar]
  69. Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E. et al. 2012. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:7384226–31 [Google Scholar]
  70. Shah MA, Denton EL, Arrowsmith CH, Lupien M, Schapira M. 2014. A global assessment of cancer genomic alterations in epigenetic mechanisms. Epigenet. Chromatin 7:129 [Google Scholar]
  71. Shain AH, Pollack JR. 2013. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLOS ONE 8:1e55119 [Google Scholar]
  72. Shan CM, Wang J, Xu K, Chen H, Yue JX. et al. 2016. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading. eLife 5:e17903 [Google Scholar]
  73. Shen H, Laird PW. 2013. Interplay between the cancer genome and epigenome. Cell 153:138–55 [Google Scholar]
  74. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ. et al. 2006. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat. Genet. 38:5525–27 [Google Scholar]
  75. St. Pierre R, Kadoch C. 2017. Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. Curr. Opin. Genet. Dev. 42:56–67 [Google Scholar]
  76. Sturm D, Bender S, Jones DTW, Lichter P, Grill J. et al. 2014. Paediatric and adult glioblastoma: Multiform (epi)genomic culprits emerge. Nat. Rev. Cancer 14:292–107 [Google Scholar]
  77. Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones DTW. et al. 2012. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cell 22:425–37 [Google Scholar]
  78. Taylor KR, Mackay A, Truffaux N, Butterfield YS, Morozova O. et al. 2014. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat. Genet. 46:5457–61 [Google Scholar]
  79. Thiel AT, Blessington P, Zou T, Feather D, Wu X. et al. 2010. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17:2148–59 [Google Scholar]
  80. Warren KE. 2012. Diffuse intrinsic pontine glioma: poised for progress. Front. Oncol. 2:205 [Google Scholar]
  81. Weber CM, Henikoff S. 2014. Histone variants: dynamic punctuation in transcription. Genes Dev 28:7672–82 [Google Scholar]
  82. Wen H, Li Y, Xi Y, Jiang S, Stratton S. et al. 2014. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508:7495263–68 [Google Scholar]
  83. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS. et al. 2012. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44:251–53 [Google Scholar]
  84. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B. et al. 2014. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 46:444–50 [Google Scholar]
  85. Yingmin Z, Garcia BA. 2015. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb. Perspect. Biol. 7:a025064 [Google Scholar]
  86. Zaret KS, Carroll JS. 2011. Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:212227–41 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error