The genomics-era search for cancer-causing mutations has identified subunits of SWI/SNF (BAF) chromatin remodeling complexes as major targets of mutation. The mechanism by which mutations in SWI/SNF complexes might drive cancer has become the subject of debate, as these complexes have roles in both transcriptional regulation and maintenance of genomic integrity. Recent discoveries now reveal that SWI/SNF complexes broadly control the activity of transcriptional enhancers to regulate lineage-specific differentiation. Here, we synthesize an integrative model of SWI/SNF complex function, identifying perturbed control of enhancer activity as the central mechanism underlying tumor suppression and highlighting how this yields new opportunities for therapeutic intervention.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Albanese P, Belin M-F, Delattre O. 2006. The tumour suppressor hSNF5/INI1 controls the differentiation potential of malignant rhabdoid cells. Eur. J. Cancer 42:142326–34 [Google Scholar]
  2. Alexander JM, Hota SK, He D, Thomas S, Ho L. et al. 2015. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 142:81418–30 [Google Scholar]
  3. Alver BH, Kim KH, Lu P, Wang X, Manchester HE. et al. 2017. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat. Commun. 8:14648 [Google Scholar]
  4. Belver L, Ferrando A. 2016. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 16:8494–507 [Google Scholar]
  5. Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B. 1999. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59:174–79 [Google Scholar]
  6. Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M. et al. 2015. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nature Med 21:3231–38 [Google Scholar]
  7. Bossen C, Murre CS, Chang AN, Mansson R, Rodewald HR, Murre C. 2015. The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth. Nature Immunol 16:7775–84 [Google Scholar]
  8. Boulay G, Sandoval GJ, Riggi N, Iyer S, Buisson R. et al. 2017. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171:163–78 e19 [Google Scholar]
  9. Bradner JE, Hnisz D, Young RA. 2017. Transcriptional addiction in cancer. Cell 168:4629–43 [Google Scholar]
  10. Brizuela BJ, Elfring L, Ballard J, Tamkun JW, Kennison JA. 1994. Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72ab. Genetics 137:3803–13 [Google Scholar]
  11. Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J. et al. 2000. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6:61287–95 [Google Scholar]
  12. Cairns BR, Kim YJ, Sayre MH, Laurent BC, Kornberg RD. 1994. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. PNAS 91:51950–54 [Google Scholar]
  13. Chun H-JE, Lim EL, Heravi-Moussavi A, Saberi S, Mungall KL. et al. 2016. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29:3394–406 [Google Scholar]
  14. Cohen SM, Chastain PD, Rosson GB, Groh BS, Weissman BE. et al. 2010. BRG1 co-localizes with DNA replication factors and is required for efficient replication fork progression. Nucleic Acids Res 38:206906–19 [Google Scholar]
  15. Côté J, Quinn J, Workman JL, Peterson CL. 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:516853–60 [Google Scholar]
  16. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW. et al. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. PNAS 107:5021931–36 [Google Scholar]
  17. de la Serna IL, Carlson KA, Imbalzano AN. 2001. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat. Genet. 27:2187–90 [Google Scholar]
  18. De Raedt T Beert E, Pasmant E, Luscan A, Brems H. et al. 2014. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 514:247–51 [Google Scholar]
  19. Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A. et al. 2013. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 497:7451624–27 [Google Scholar]
  20. Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA. 2011. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr. Blood Cancer 56:17–15 [Google Scholar]
  21. Elfring LK, Daniel C, Papoulas O, Deuring R, Sarte M. et al. 1998. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 148:1251–65 [Google Scholar]
  22. Feinberg AP, Vogelstein B. 1983. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:589589–92 [Google Scholar]
  23. Fillmore CM, Xu C, Desai PT, Berry JM, Rowbotham SP. et al. 2015. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 520:239–42 [Google Scholar]
  24. Flanagan JF, Peterson CL. 1999. A role for the yeast SWI/SNF complex in DNA replication. Nucleic Acids Res 27:92022–28 [Google Scholar]
  25. Forcales SV, Albini S, Giordani L, Malecova B, Cignolo L. et al. 2012. Signal-dependent incorporation of MyoD–BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J 31:2301–16 [Google Scholar]
  26. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J. et al. 2005. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37:4391–400 [Google Scholar]
  27. Gadd S, Sredni ST, Huang C-C, Perlman EJ. 2010. Rhabdoid tumor: gene expression clues to pathogenesis and potential therapeutic targets. Lab. Investig. 90:5724–38 [Google Scholar]
  28. Garraway LA, Lander ES. 2013. Lessons from the cancer genome. Cell 153:117–37 [Google Scholar]
  29. Gonda TJ, Ramsay RG. 2015. Directly targeting transcriptional dysregulation in cancer. Nat. Rev. Cancer 15:11686–94 [Google Scholar]
  30. Gong F, Fahy D, Smerdon MJ. 2006. Rad4–Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair. Nat. Struct. Mol. Biol. 13:10902–7 [Google Scholar]
  31. Gresh L, Bourachot B, Reimann A, Guigas B, Fiette L. et al. 2005. The SWI/SNF chromatin-remodeling complex subunit SNF5 is essential for hepatocyte differentiation. EMBO J 24:183313–24 [Google Scholar]
  32. Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA. et al. 2001. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol. Cell. Biol. 21:103598–603 [Google Scholar]
  33. Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:157–70 [Google Scholar]
  34. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:5646–74 [Google Scholar]
  35. Hara R, Sancar A. 2002. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle. Mol. Cell. Biol. 22:196779–87 [Google Scholar]
  36. Hasselblatt M, Isken S, Linge A, Eikmeier K, Jeibmann A. et al. 2013. High-resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromosom. Cancer 52:2185–90 [Google Scholar]
  37. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ. 1991. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 253:501579–82 [Google Scholar]
  38. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A. et al. 2009. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:7243108–112 [Google Scholar]
  39. Helming KC, Wang X, Roberts CWM. 2014.a Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell 26:3309–17 [Google Scholar]
  40. Helming KC, Wang X, Wilson BG, Vazquez F, Haswell JR. et al. 2014.b ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20:3251–54 [Google Scholar]
  41. Henssen A, Reed C, Jiang E, Garcia HD, von Stebut J. et al. 2017. Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors.. Sci. Transl. Med. 9414eaam9078
  42. Hirschhorn JN, Brown SA, Clark CD, Winston F. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6:12A2288–98 [Google Scholar]
  43. Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. A phase separation model for transcriptional control. Cell 169:113–23 [Google Scholar]
  44. Ho L, Ronan JL, Wu J, Staahl BT, Chen L. et al. 2009. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. PNAS 106:135181–86 [Google Scholar]
  45. Hoffman GR, Rahal R, Buxton F, Xiang K, McAllister G. et al. 2014. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. PNAS 111:83128–33 [Google Scholar]
  46. Hu G, Schones DE, Cui K, Ybarra R, Northrup D. et al. 2011. Regulation of nucleosome landscape and transcription factor targeting at tissue-specific enhancers by BRG1. Genome Res 21:101650–58 [Google Scholar]
  47. Imbalzano AN, Kwon H, Green MR, Kingston RE. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:6489481–85 [Google Scholar]
  48. Jagani Z, Mora-Blanco EL, Sansam CG, McKenna ES, Wilson B. et al. 2010. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat. Med. 16:121429–33 [Google Scholar]
  49. Jelinic P, Mueller JJ, Olvera N, Dao F, Scott SN. et al. 2014. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat. Genet. 46:5424–26 [Google Scholar]
  50. Johann PD, Erkek S, Zapatka M, Kerl K, Buchhalter I. et al. 2016. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29:379–93 [Google Scholar]
  51. Jones PA, Issa J-PJ, Baylin S. 2016. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17:10630–41 [Google Scholar]
  52. Kadoch C, Crabtree GR. 2013. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 153:171–85 [Google Scholar]
  53. Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L. et al. 2013. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45:6592–601 [Google Scholar]
  54. Kadoch C, Williams RT, Calarco JP, Miller EL, Weber CM. et al. 2017. Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49:2213–22 [Google Scholar]
  55. Kennison JA, Tamkun JW. 1988. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. PNAS 85:218136–40 [Google Scholar]
  56. Khavari PA, Peterson CL, Tamkun JW, Mendel DB, Crabtree GR. 1993. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366:6451170–74 [Google Scholar]
  57. Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP. 2008. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol. Cell. Biol. 28:103457–64 [Google Scholar]
  58. Kieran MW, Roberts CWM, Chi SN, Ligon KL, Rich BE. et al. 2012. Absence of oncogenic canonical pathway mutations in aggressive pediatric rhabdoid tumors. Pediatr. Blood Cancer 59:71155–57 [Google Scholar]
  59. Kim KH, Roberts CWM. 2016. Targeting EZH2 in cancer. Nat. Med. 22:2128–34 [Google Scholar]
  60. Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C, Yaniv M. 2000. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 1:6500–6 [Google Scholar]
  61. Knudson AG. 1971. Mutation and cancer: statistical study of retinoblastoma. PNAS 68:4820–23 [Google Scholar]
  62. Knutson SK, Warholic NM, Wigle TJ, Klaus CR, Allain CJ. et al. 2013. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. PNAS 110:197922–27 [Google Scholar]
  63. Korsmeyer SJ. 1992. Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Annu. Rev. Immunol. 10:1785–807 [Google Scholar]
  64. Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR. 1994. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370:6489477–81 [Google Scholar]
  65. Laurent BC, Treich I, Carlson M. 1993. The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev 7:4583–91 [Google Scholar]
  66. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K. et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:7457214–18 [Google Scholar]
  67. Lee RS, Stewart C, Carter SL, Ambrogio L, Cibulskis K. et al. 2012. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Investig. 122:82983–88 [Google Scholar]
  68. Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM. et al. 2007. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:2201–15 [Google Scholar]
  69. Lickert H, Takeuchi JK, von Both I, Walls JR, McAuliffe F. et al. 2004. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432:7013107–12 [Google Scholar]
  70. Liu X, Li M, Xia X, Li X, Chen Z. 2017. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 544:7651440–45 [Google Scholar]
  71. Long HK, Prescott SL, Wysocka J. 2016. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167:51170–87 [Google Scholar]
  72. Masliah-Planchon J, Bièche I, Guinebretière J-M, Bourdeaut F, Delattre O. 2015. SWI/SNF chromatin remodeling and human malignancies. Annu. Rev. Pathol. 10:1145–71 [Google Scholar]
  73. Mathur R, Alver BH, San Roman AK, Wilson BG, Wang X. et al. 2017. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat. Genet. 49:2296–302 [Google Scholar]
  74. McKenna ES, Sansam CG, Cho Y-J, Greulich H, Evans JA. et al. 2008. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol. Cell. Biol. 28:206223–33 [Google Scholar]
  75. Miller EL, Hargreaves DC, Kadoch C, Chang C-Y, Calarco JP. et al. 2017. TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat. Struct. Mol. Biol. 24:344–52 [Google Scholar]
  76. Mora-Blanco EL, Mishina Y, Tillman EJ, Cho Y-J, Thom CS. et al. 2014. Activation of β-catenin/TCF targets following loss of the tumor suppressor SNF5. Oncogene 33:7933–38 [Google Scholar]
  77. Neigeborn L, Carlson M. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:4845–58 [Google Scholar]
  78. Nie Z, Xue Y, Yang D, Zhou S, Deroo BJ. et al. 2000. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol. Cell. Biol. 20:238879–88 [Google Scholar]
  79. Park J-H, Park E-J, Lee H-S, Kim SJ, Hur S-K. et al. 2006. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J 25:173986–97 [Google Scholar]
  80. Pedersen TA, Kowenz-Leutz E, Leutz A, Nerlov C. 2001. Cooperation between C/EBPα TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation. Genes Dev 15:233208–16 [Google Scholar]
  81. Peterson CL, Herskowitz I. 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:3573–83 [Google Scholar]
  82. Phelan ML, Sif S, Narlikar GJ, Kingston RE. 1999. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3:2247–53 [Google Scholar]
  83. Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R, Lichter P. 2013. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14:11765–80 [Google Scholar]
  84. Porter EG, Dykhuizen EC. 2017. Individual bromodomains of polybromo-1 contribute to chromatin association and tumor suppression in clear cell renal carcinoma. J. Biol. Chem. 292:72601–10 [Google Scholar]
  85. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q. et al. 2013. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 45:111392–98 [Google Scholar]
  86. Priam P, Krasteva V, Rousseau P, D'Angelo G, Gaboury L. et al. 2017. SMARCD2 subunit of SWI/SNF chromatin-remodeling complexes mediates granulopoiesis through a CEBPɛ dependent mechanism. Nat. Genet. 49:753–64 [Google Scholar]
  87. Raab JR, Resnick S, Magnuson T. 2015. Genome-wide transcriptional regulation mediated by biochemically distinct SWI/SNF complexes. PLOS Genet 11:12e1005748 [Google Scholar]
  88. Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH. 2000. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. PNAS 97:2513796–800 [Google Scholar]
  89. Roberts CW, Leroux MM, Fleming MD, Orkin SH. 2002. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2:5415–25 [Google Scholar]
  90. Roberts CW, Sonder AM, Lumsden A, Korsmeyer SJ. 1995. Development expression of Hox11 and specification of splenic cell fate. Am. J. Pathol. 146:51089–101 [Google Scholar]
  91. Seligson DB, Horvath S, Shi T, Yu H, Tze S. et al. 2005. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:70461262–66 [Google Scholar]
  92. Shain AH, Pollack JR. 2013. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLOS ONE 8:1e55119 [Google Scholar]
  93. Shang L, Cho MT, Retterer K, Folk L, Humberson J. et al. 2015. Mutations in ARID2 are associated with intellectual disabilities. Neurogenetics 16:4307–14 [Google Scholar]
  94. Shih C, Weinberg RA. 1982. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29:1161–69 [Google Scholar]
  95. Shlyueva D, Stampfel G, Stark A. 2014. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15:4272–86 [Google Scholar]
  96. Stanton BZ, Hodges C, Calarco JP, Braun SMG, Ku WL. et al. 2017. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49:2282–88 [Google Scholar]
  97. Stern M, Jensen R, Herskowitz I. 1984. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178:4853–68 [Google Scholar]
  98. Sur I, Taipale J. 2016. The role of enhancers in cancer. Nat. Rev. Cancer 16:8483–93 [Google Scholar]
  99. Takeuchi JK, Bruneau BG. 2009. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459:7247708–11 [Google Scholar]
  100. Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y. et al. 2012. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat. Genet. 44:4376–78 [Google Scholar]
  101. Van Houdt JKJ, Nowakowska BA, Sousa SB, van Schaik BDC, Seuntjens E. et al. 2012. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat. Genet. 44:4445–49 [Google Scholar]
  102. Versteege I, Sévenet N, Lange J, Rousseau-Merck MF, Ambros P. et al. 1998. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:6689203–6 [Google Scholar]
  103. Wang L, Zhao Z, Meyer MB, Saha S, Yu M. et al. 2014. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 25:121–36 [Google Scholar]
  104. Wang W, Côté J, Xue Y, Zhou S, Khavari PA. et al. 1996.a Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J 15:195370–82 [Google Scholar]
  105. Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, Crabtree GR. 1996.b Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev 10:172117–30 [Google Scholar]
  106. Wang X, Lee RS, Alver BH, Haswell JR, Wang S. et al. 2017. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49:289–95 [Google Scholar]
  107. Wang X, Werneck MBF, Wilson BG, Kim H-J, Kluk MJ. et al. 2011. TCR-dependent transformation of mature memory phenotype T cells in mice. J. Clin. Investig. 121:103834–45 [Google Scholar]
  108. Wilsker D, Patsialou A, Zumbrun SD, Kim S, Chen Y. et al. 2004. The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res 32:41345–53 [Google Scholar]
  109. Wilson BG, Helming KC, Wang X, Kim Y, Vazquez F. et al. 2014. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell. Biol. 34:61136–44 [Google Scholar]
  110. Wilson BG, Wang X, Shen X, McKenna ES, Lemieux ME. et al. 2010. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18:4316–28 [Google Scholar]
  111. Witkowski L, Carrot-Zhang J, Albrecht S, Fahiminiya S, Hamel N. et al. 2014. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat. Genet. 46:5438–43 [Google Scholar]
  112. Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T. et al. 2017. Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat. Genet. 49:742–52 [Google Scholar]
  113. Yu Y, Chen Y, Kim B, Wang H, Zhao C. et al. 2013. Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell 152:1-2248–61 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error