The Hippo pathway has drawn increasing interest in the past decade for its role in the regulation of cell growth, differentiation, organ size, and tissue homeostasis. Recent studies have expanded our knowledge of known upstream regulators of the Hippo pathway and have consistently demonstrated that the Hippo pathway is critical for translating cellular cues into transcriptional responses by receiving input from a wide range of upstream signals. Dramatic overgrowth phenotypes upon deregulation of the Hippo pathway have prompted investigation into its role in cancer. Here we provide an overview of the Hippo pathway, our current understanding of its role in tumorigenesis, and potential therapeutics targeting Hippo signaling.

Keyword(s): cancerHippo pathwayimmunotherapyNF2YAP

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Antonescu CR, Chen HW, Zhang L, Sung YS, Panicek D. et al. 2014. ZFP36-FOSB fusion defines a subset of epithelioid hemangioma with atypical features. Genes Chromosom. Cancer 53:951–59 [Google Scholar]
  2. Antonescu CR, Le Loarer F, Mosquera JM, Sboner A, Zhang L. et al. 2013. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosom. Cancer 52:775–84 [Google Scholar]
  3. Atkins M, Potier D, Romanelli L, Jacobs J, Mach J. et al. 2016. An ectopic network of transcription factors regulated by hippo signaling drives growth and invasion of a malignant tumor model. Curr. Biol. 26:2101–13 [Google Scholar]
  4. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S. et al. 2014. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158:157–70 [Google Scholar]
  5. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G. et al. 2012. Role of TAZ as mediator of Wnt signaling. Cell 151:1443–56 [Google Scholar]
  6. Bailey SR, Nelson MH, Himes RA, Zihai L, Mehrotra S, Paulos CM. 2014. Th17 cells in cancer: the ultimate identity crisis. Front. Immunol. 5:276 [Google Scholar]
  7. Barry ER, Morikawa T, Butler BL, Shrestha K, de la Rosa R. et al. 2013. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493:106–10 [Google Scholar]
  8. Benham-Pyle BW, Pruitt BL, Nelson WJ. 2015. Cell adhesion. Mechanical strain induces E-cadherin–dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348:1024–27 [Google Scholar]
  9. Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L. et al. 2011. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev 25:2594–609 [Google Scholar]
  10. Bianchi AB, Mitsunaga SI, Cheng JQ, Klein WM, Jhanwar SC. et al. 1995. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. PNAS 92:10854–58 [Google Scholar]
  11. Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G. et al. 2016. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 48:398–406 [Google Scholar]
  12. Britschgi A, Duss S, Kim S, Couto JP, Brinkhaus H. et al. 2017. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature 541:541–45 [Google Scholar]
  13. Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A. et al. 2016. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat. Genet. 48:407–16 [Google Scholar]
  14. Cai J, Maitra A, Anders RA, Taketo MM, Pan D. 2015. β-Catenin destruction complex-independent regulation of Hippo-YAP signaling by APC in intestinal tumorigenesis. Genes Dev 29:1493–506 [Google Scholar]
  15. Cai J, Zhang N, Zheng Y, de Wilde RF, Maitra A, Pan D. 2010. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 24:2383–88 [Google Scholar]
  16. Callus BA, Verhagen AM, Vaux DL. 2006. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J 273:4264–76 [Google Scholar]
  17. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW. et al. 2007. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17:2054–60 [Google Scholar]
  18. Chan P, Han X, Zheng B, DeRan M, Yu J. et al. 2016. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol. 12:282–89 [Google Scholar]
  19. Chan SW, Lim CJ, Guo K, Ng CP, Lee I. et al. 2008. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68:2592–98 [Google Scholar]
  20. Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH. et al. 2012. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat. Med. 18:1511–17 [Google Scholar]
  21. Chen Q, Zhang N, Gray RS, Li H, Ewald AJ. et al. 2014. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev 28:432–37 [Google Scholar]
  22. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A. et al. 2011. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:759–72 [Google Scholar]
  23. Cottini F, Hideshima T, Xu C, Sattler M, Dori M. et al. 2014. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat. Med. 20:599–606 [Google Scholar]
  24. Dasari VR, Mazack V, Feng W, Nash J, Carey DJ, Gogoi R. 2017. Verteporfin exhibits YAP-independent anti-proliferative and cytotoxic effects in endometrial cancer cells. Oncotarget 8:28628–40 [Google Scholar]
  25. DeRan M, Yang J, Shen CH, Peters EC, Fitamant J. et al. 2014. Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep 9:495–503 [Google Scholar]
  26. Díaz-Martín J, López-García MA, Romero-Pérez L, Atienza-Amores MR, Pecero ML. et al. 2015. Nuclear TAZ expression associates with the triple-negative phenotype in breast cancer. Endocr.-Relat. Cancer 22:443–54 [Google Scholar]
  27. Diep CH, Zucker KM, Hostetter G, Watanabe A, Hu C. et al. 2012. Down-regulation of Yes Associated Protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells. PLOS ONE 7:e32783 [Google Scholar]
  28. Dong J, Feldmann G, Huang J, Wu S, Zhang N. et al. 2007. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–33 [Google Scholar]
  29. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S. et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83 [Google Scholar]
  30. Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S. et al. 2016. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 143:1674–87 [Google Scholar]
  31. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S. et al. 2015. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34:1349–70 [Google Scholar]
  32. Fan F, He Z, Kong LL, Chen Q, Yuan Q. et al. 2016. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci. Transl. Med. 8:352ra108 [Google Scholar]
  33. Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA. et al. 2014. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25:831–45 [Google Scholar]
  34. Feng X, Liu P, Zhou X, Li MT, Li FL. et al. 2016. Thromboxane A2 Activates YAP/TAZ protein to induce vascular smooth muscle cell proliferation and migration. J. Biol. Chem. 291:18947–58 [Google Scholar]
  35. Geng J, Yu S, Zhao H, Sun X, Li X. et al. 2017. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat. Immunol. 18:800–12 [Google Scholar]
  36. George NM, Day CE, Boerner BP, Johnson RL, Sarvetnick NE. 2012. Hippo signaling regulates pancreas development through inactivation of Yap. Mol. Cell. Biol. 32:5116–28 [Google Scholar]
  37. Gong R, Hong AW, Plouffe SW, Zhao B, Liu G. et al. 2015. Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell Res 25:985–88 [Google Scholar]
  38. Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. 2015. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526:715–18 [Google Scholar]
  39. Gronich N, Rennert G. 2013. Beyond aspirin—cancer prevention with statins, metformin and bisphosphonates. Nat. Rev. Clin. Oncol. 10:625–42 [Google Scholar]
  40. Guo G, Chmielecki J, Goparaju C, Heguy A, Dolgalev I. et al. 2015. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res 75:264–69 [Google Scholar]
  41. Guo PD, Lu XX, Gan WJ, Li XM, He XS. et al. 2016. RARγ downregulation contributes to colorectal tumorigenesis and metastasis by derepressing the Hippo–Yap pathway. Cancer Res 76:3813–25 [Google Scholar]
  42. Guo T, Lu Y, Li P, Yin MX, Lv D. et al. 2013. A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res 23:1201–14 [Google Scholar]
  43. Guo X, Zhao Y, Yan H, Yang Y, Shen S. et al. 2017. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev 31:247–59 [Google Scholar]
  44. Guo Y, Pan Q, Zhang J, Xu X, Liu X. et al. 2015. Functional and clinical evidence that TAZ is a candidate oncogene in hepatocellular carcinoma. J. Cell. Biochem. 116:2465–75 [Google Scholar]
  45. Gutmann DH, Giordano MJ, Fishback AS, Guha A. 1997. Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology 49:267–70 [Google Scholar]
  46. Halder G, Dupont S, Piccolo S. 2012. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13:591–600 [Google Scholar]
  47. Hansen CG, Moroishi T, Guan KL. 2015.a YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 25:499–513 [Google Scholar]
  48. Hansen CG, Ng YL, Lam WL, Plouffe SW, Guan KL. 2015.b The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res 25:1299–313 [Google Scholar]
  49. Hao Y, Chun A, Cheung K, Rashidi B, Yang X. 2008. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem. 283:5496–509 [Google Scholar]
  50. Harvey KF, Zhang X, Thomas DM. 2013. The Hippo pathway and human cancer. Nat. Rev. Cancer 13:246–57 [Google Scholar]
  51. Hiemer SE, Szymaniak AD, Varelas X. 2014. The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. J. Biol. Chem. 289:13461–74 [Google Scholar]
  52. Hong AW, Meng Z, Yuan HX, Plouffe SW, Moon S. et al. 2017. Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep 18:72–86 [Google Scholar]
  53. Huang J, Wu S, Barrera J, Matthews K, Pan D. 2005. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122:421–34 [Google Scholar]
  54. Jiao S, Li C, Hao Q, Miao H, Zhang L. et al. 2017. VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat. Commun. 8:14058 [Google Scholar]
  55. Jiao S, Wang H, Shi Z, Dong A, Zhang W. et al. 2014. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25:166–80 [Google Scholar]
  56. Johnson R, Halder G. 2014. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat. Rev. Drug Discov. 13:63–79 [Google Scholar]
  57. Kapoor A, Yao W, Ying H, Hua S, Liewen A. et al. 2014. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158:185–97 [Google Scholar]
  58. Kim M, Kim M, Lee S, Kuninaka S, Saya H. et al. 2013. cAMP/PKA signalling reinforces the LATS–YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J 32:1543–55 [Google Scholar]
  59. Kim MH, Kim J, Hong H, Lee SH, Lee JK. et al. 2016. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J 35:462–78 [Google Scholar]
  60. Kim NG, Gumbiner BM. 2015. Adhesion to fibronectin regulates Hippo signaling via the FAK–Src–PI3K pathway. J. Cell Biol. 210:503–15 [Google Scholar]
  61. Kim NG, Koh E, Chen X, Gumbiner BM. 2011. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. PNAS 108:11930–35 [Google Scholar]
  62. Kim W, Khan SK, Gvozdenovic-Jeremic J, Kim Y, Dahlman J. et al. 2017. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J. Clin. Investig. 127:137–52 [Google Scholar]
  63. Koontz LM, Liu-Chittenden Y, Yin F, Zheng Y, Yu J. et al. 2013. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev. Cell 25:388–401 [Google Scholar]
  64. Lai D, Ho KC, Hao Y, Yang X. 2011. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71:2728–38 [Google Scholar]
  65. Lau AN, Curtis SJ, Fillmore CM, Rowbotham SP, Mohseni M. et al. 2014. Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO J 33:468–81 [Google Scholar]
  66. Lau YK, Murray LB, Houshmandi SS, Xu Y, Gutmann DH, Yu Q. 2008. Merlin is a potent inhibitor of glioma growth. Cancer Res 68:5733–42 [Google Scholar]
  67. Lee HJ, Diaz MF, Price KM, Ozuna JA, Zhang S. et al. 2017. Fluid shear stress activates YAP1 to promote cancer cell motility. Nat. Commun. 8:14122 [Google Scholar]
  68. Lee KP, Lee JH, Kim TS, Kim TH, Park HD. et al. 2010. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. PNAS 107:8248–53 [Google Scholar]
  69. Lee KW, Lee SS, Kim SB, Sohn BH, Lee HS. et al. 2015. Significant association of oncogene YAP1 with poor prognosis and cetuximab resistance in colorectal cancer patients. Clin. Cancer Res. 21:357–64 [Google Scholar]
  70. Lei QY, Zhang H, Zhao B, Zha ZY, Bai F. et al. 2008. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol. Cell. Biol. 28:2426–36 [Google Scholar]
  71. Liang N, Zhang C, Dill P, Panasyuk G, Pion D. et al. 2014. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J. Exp. Med. 211:2249–63 [Google Scholar]
  72. Lin L, Sabnis AJ, Chan E, Olivas V, Cade L. et al. 2015. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47:250–56 [Google Scholar]
  73. Liu CY, Zha ZY, Zhou X, Zhang H, Huang W. et al. 2010. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. J. Biol. Chem. 285:37159–69 [Google Scholar]
  74. Liu G, Yu FX, Kim YC, Meng Z, Naipauer J. et al. 2015. Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene 34:3536–46 [Google Scholar]
  75. Liu X, Yang N, Figel SA, Wilson KE, Morrison CD. et al. 2013. PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32:1266–73 [Google Scholar]
  76. Liu Y, Wang G, Yang Y, Mei Z, Liang Z. et al. 2016. Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial-mesenchymal transition and metastasis in a YAP-independent manner. Oncogene 35:2789–800 [Google Scholar]
  77. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ. et al. 2012. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26:1300–5 [Google Scholar]
  78. Lu L, Li Y, Kim SM, Bossuyt W, Liu P. et al. 2010. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. PNAS 107:1437–42 [Google Scholar]
  79. Meng Z, Moroishi T, Guan KL. 2016. Mechanisms of Hippo pathway regulation. Genes Dev 30:1–17 [Google Scholar]
  80. Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG. et al. 2015. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat. Commun. 6:8357 [Google Scholar]
  81. Miller E, Yang J, DeRan M, Wu C, Su AI. et al. 2012. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem. Biol. 19:955–62 [Google Scholar]
  82. Miyanaga A, Masuda M, Tsuta K, Kawasaki K, Nakamura Y. et al. 2015. Hippo pathway gene mutations in malignant mesothelioma: revealed by RNA and targeted exon sequencing. J. Thorac. Oncol. 10:844–51 [Google Scholar]
  83. Mo JS, Meng Z, Kim YC, Park HW, Hansen CG. et al. 2015. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat. Cell Biol. 17:500–10 [Google Scholar]
  84. Mo JS, Park HW, Guan KL. 2014. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 15:642–56 [Google Scholar]
  85. Mo JS, Yu FX, Gong R, Brown JH, Guan KL. 2012. Regulation of the Hippo–YAP pathway by protease-activated receptors (PARs). Genes Dev 26:2138–43 [Google Scholar]
  86. Moroishi T, Hayashi T, Pan WW, Fujita Y, Holt MV. et al. 2016. The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167:1525–39.e17 [Google Scholar]
  87. Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F. et al. 2011. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res 71:873–83 [Google Scholar]
  88. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T. et al. 2016. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. PNAS 113:E71–80 [Google Scholar]
  89. Noguchi S, Saito A, Horie M, Mikami Y, Suzuki HI. et al. 2014. An integrative analysis of the tumorigenic role of TAZ in human non–small cell lung cancer. Clin. Cancer Res. 20:4660–72 [Google Scholar]
  90. Noland CL, Gierke S, Schnier PD, Murray J, Sandoval WN. et al. 2016. Palmitoylation of TEAD transcription factors is required for their stability and function in Hippo pathway signaling. Structure 24:179–86 [Google Scholar]
  91. O'Hayre M, Vázquez-Prado J, Kufareva I, Stawiski EW, Handel TM. et al. 2013. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat. Rev. Cancer 13:412–24 [Google Scholar]
  92. Oh JE, Ohta T, Satomi K, Foll M, Durand G. et al. 2015. Alterations in the NF2/LATS1/LATS2/YAP pathway in schwannomas. J. Neuropathol. Exp. Neurol. 74:952–59 [Google Scholar]
  93. Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG. 2011. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J. Neuropathol. Exp. Neurol. 70:568–77 [Google Scholar]
  94. Ota M, Sasaki H. 2008. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135:4059–69 [Google Scholar]
  95. Overholtzer M, Zhang J, Smolen GA, Muir B, Li W. et al. 2006. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. PNAS 103:12405–10 [Google Scholar]
  96. Park HW, Kim YC, Yu B, Moroishi T, Mo JS. et al. 2015. Alternative Wnt signaling activates YAP/TAZ. Cell 162:780–94 [Google Scholar]
  97. Park YY, Sohn BH, Johnson RL, Kang MH, Kim SB. et al. 2016. Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology 63:159–72 [Google Scholar]
  98. Pobbati AV, Han X, Hung AW, Weiguang S, Huda N. et al. 2015. Targeting the central pocket in human transcription factor TEAD as a potential cancer therapeutic strategy. Structure 23:2076–86 [Google Scholar]
  99. Porazinski S, Wang H, Asaoka Y, Behrndt M, Miyamoto T. et al. 2015. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521:217–21 [Google Scholar]
  100. Praskova M, Xia F, Avruch J. 2008. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr. Biol. 18:311–21 [Google Scholar]
  101. Qin H, Hejna M, Liu Y, Percharde M, Wossidlo M. et al. 2016. YAP induces human naive pluripotency. Cell Rep 14:2301–12 [Google Scholar]
  102. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT. et al. 2012. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151:1457–73 [Google Scholar]
  103. Sekido Y, Pass HI, Bader S, Mew DJ, Christman MF. et al. 1995. Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res 55:1227–31 [Google Scholar]
  104. Seo E, Basu-Roy U, Gunaratne PH, Coarfa C, Lim DS. et al. 2013. SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Rep 3:2075–87 [Google Scholar]
  105. Serrano I, McDonald PC, Lock F, Muller WJ, Dedhar S. 2013. Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat. Commun. 4:2976 [Google Scholar]
  106. Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F. et al. 2014. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158:171–84 [Google Scholar]
  107. Sharma P, Allison JP. 2015. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–14 [Google Scholar]
  108. Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM. et al. 2011. α-Catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci. Signal. 4:ra33 [Google Scholar]
  109. Skibinski A, Breindel JL, Prat A, Galvan P, Smith E. et al. 2014. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment. Cell Rep 6:1059–72 [Google Scholar]
  110. Song H, Mak KK, Topol L, Yun K, Hu J. et al. 2010. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. PNAS 107:1431–36 [Google Scholar]
  111. Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M. et al. 2014. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16:357–66 [Google Scholar]
  112. Tanas MR, Ma S, Jadaan FO, Ng CK, Weigelt B. et al. 2016. Mechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoprotein. Oncogene 35:929–38 [Google Scholar]
  113. Tanas MR, Sboner A, Oliveira AM, Erickson-Johnson MR, Hespelt J. et al. 2011. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci. Transl. Med. 3:98ra82 [Google Scholar]
  114. Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA. et al. 2002. salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110:467–78 [Google Scholar]
  115. Touil Y, Igoudjil W, Corvaisier M, Dessein AF, Vandomme J. et al. 2014. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin. Cancer Res. 20:837–46 [Google Scholar]
  116. Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H. et al. 2012. YAP mediates crosstalk between the Hippo and PI3K-TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 14:1322–29 [Google Scholar]
  117. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L. et al. 2009. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457:599–602 [Google Scholar]
  118. Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S. et al. 2010. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363:2191–99 [Google Scholar]
  119. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. 2001. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15:1229–41 [Google Scholar]
  120. Verfaillie A, Imrichova H, Atak ZK, Dewaele M, Rambow F. et al. 2015. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat. Commun. 6:6683 [Google Scholar]
  121. Wang G, Lu X, Dey P, Deng P, Wu CC. et al. 2016. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov 6:80–95 [Google Scholar]
  122. Wang KC, Yeh YT, Nguyen P, Limqueco E, Lopez J. et al. 2016. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. PNAS 113:11525–30 [Google Scholar]
  123. Wang L, Luo JY, Li B, Tian XY, Chen LJ. et al. 2016. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540:579–82 [Google Scholar]
  124. Wang L, Shi S, Guo Z, Zhang X, Han S. et al. 2013. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLOS ONE 8:e65539 [Google Scholar]
  125. Wang W, Xiao ZD, Li X, Aziz KE, Gan B. et al. 2015. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat. Cell Biol. 17:490–99 [Google Scholar]
  126. Wang X, Su L, Ou Q. 2012. Yes-associated protein promotes tumour development in luminal epithelial derived breast cancer. Eur. J. Cancer 48:1227–34 [Google Scholar]
  127. Wang Y, Dong Q, Zhang Q, Li Z, Wang E, Qiu X. 2010. Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci 101:1279–85 [Google Scholar]
  128. Wang Z, Liu P, Zhou X, Wang T, Feng X. et al. 2017. Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ. Cancer Res 77:2413–23 [Google Scholar]
  129. Wang Z, Wu Y, Wang H, Zhang Y, Mei L. et al. 2014. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. PNAS 111:E89–98 [Google Scholar]
  130. Wierzbicki PM, Adrych K, Kartanowicz D, Stanislawowski M, Kowalczyk A. et al. 2013. Underexpression of LATS1 TSG in colorectal cancer is associated with promoter hypermethylation. World J. Gastroenterol. 19:4363–73 [Google Scholar]
  131. Wu S, Huang J, Dong J, Pan D. 2003. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114:445–56 [Google Scholar]
  132. Xiao H, Jiang N, Zhou B, Liu Q, Du C. 2015. TAZ regulates cell proliferation and epithelial-mesenchymal transition of human hepatocellular carcinoma. Cancer Sci 106:151–59 [Google Scholar]
  133. Xie D, Cui J, Xia T, Jia Z, Wang L. et al. 2015. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression. Oncotarget 6:35949–63 [Google Scholar]
  134. Xu CM, Liu WW, Liu CJ, Wen C, Lu HF, Wan FS. 2013. Mst1 overexpression inhibited the growth of human non-small cell lung cancer in vitro and in vivo. Cancer Gene Ther 20:453–60 [Google Scholar]
  135. Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST. et al. 2011. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene 30:1229–40 [Google Scholar]
  136. Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT. et al. 2009. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer 115:4576–85 [Google Scholar]
  137. Yang S, Zhang L, Purohit V, Shukla SK, Chen X. et al. 2015. Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3. Oncotarget 6:36019–31 [Google Scholar]
  138. Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B. et al. 2014. Hippo pathway activity influences liver cell fate. Cell 157:1324–38 [Google Scholar]
  139. Yu FX, Luo J, Mo JS, Liu G, Kim YC. et al. 2014. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25:822–30 [Google Scholar]
  140. Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q. et al. 2013. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 27:1223–32 [Google Scholar]
  141. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I. et al. 2012. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150:780–91 [Google Scholar]
  142. Yuen HF, McCrudden CM, Huang YH, Tham JM, Zhang X. et al. 2013. TAZ expression as a prognostic indicator in colorectal cancer. PLOS ONE 8:e54211 [Google Scholar]
  143. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E. et al. 2015. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17:1218–27 [Google Scholar]
  144. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C. et al. 2006. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125:1253–67 [Google Scholar]
  145. Zhang H, Liu CY, Zha ZY, Zhao B, Yao J. et al. 2009. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem. 284:13355–62 [Google Scholar]
  146. Zhang K, Hu Z, Qi H, Shi Z, Chang Y. et al. 2016. G-protein-coupled receptors mediate ω-3 PUFAs-inhibited colorectal cancer by activating the Hippo pathway. Oncotarget 7:58315–30 [Google Scholar]
  147. Zhang N, Bai H, David KK, Dong J, Zheng Y. et al. 2010. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19:27–38 [Google Scholar]
  148. Zhang W, Gao Y, Li F, Tong X, Ren Y. et al. 2015. YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of survivin. Cancer Res 75:4450–57 [Google Scholar]
  149. Zhang W, Gao Y, Li P, Shi Z, Guo T. et al. 2014.a VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res 24:331–43 [Google Scholar]
  150. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A. et al. 2014.b Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci. Signal. 7:ra42 [Google Scholar]
  151. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. 2010. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev 24:72–85 [Google Scholar]
  152. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL. 2012. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26:54–68 [Google Scholar]
  153. Zhao B, Wei X, Li W, Udan RS, Yang Q. et al. 2007. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–61 [Google Scholar]
  154. Zhao B, Ye X, Yu J, Li L, Li W. et al. 2008. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22:1962–71 [Google Scholar]
  155. Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D. 2015. Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase cascade. Dev. Cell 34:642–55 [Google Scholar]
  156. Zhou D, Zhang Y, Wu H, Barry E, Yin Y. et al. 2011. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. PNAS 108:E1312–20 [Google Scholar]
  157. Zhou X, Wang S, Wang Z, Feng X, Liu P. et al. 2015. Estrogen regulates Hippo signaling via GPER in breast cancer. J. Clin. Investig. 125:2123–35 [Google Scholar]
  158. Zhou Z, Hao Y, Liu N, Raptis L, Tsao MS, Yang X. 2011. TAZ is a novel oncogene in non-small cell lung cancer. Oncogene 30:2181–86 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error