Historically, it has been widely presumed that differentiated cells are determined during development and become irreversibly committed to their designated fates. In certain circumstances, however, differentiated cells can display plasticity by changing their identity, either by dedifferentiation to a progenitor-like state or by transdifferentiation to an alternative differentiated cell type. Such cellular plasticity can be triggered by physiological or oncogenic stress, or it can be experimentally induced through cellular reprogramming. Notably, physiological stresses that promote plasticity, such as severe tissue damage, inflammation, or senescence, also represent hallmarks of cancer. Furthermore, key drivers of cellular plasticity include major oncogenic and tumor suppressor pathways and can be exacerbated by drug treatment. Thus, plasticity may help cancer cells evade detection and treatment. We propose that cancer can be considered as a disease of excess plasticity, a notion that has important implications for intervention and treatment.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abate-Shen C. 2002. Deregulated homeobox gene expression in cancer: cause or consequence?. Nat. Rev. Cancer 2:777–85 [Google Scholar]
  2. Abate-Shen C, Shen MM, Gelmann E. 2008. Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation 76:717–27 [Google Scholar]
  3. Alcolea MP, Jones PH. 2013. Tracking cells in their native habitat: lineage tracing in epithelial neoplasia. Nat. Rev. Cancer 13:161–71 [Google Scholar]
  4. Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R. et al. 2011. Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 9:317–29 [Google Scholar]
  5. Aytes A, Mitrofanova A, Kinkade CW, Lefebvre C, Lei M. et al. 2013. ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer. PNAS 110:E3506–15 [Google Scholar]
  6. Banito A, Rashid ST, Acosta JC, Li S, Pereira CF. et al. 2009. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–39 [Google Scholar]
  7. Bar-Nur O, Verheul C, Sommer AG, Brumbaugh J, Schwarz BA. et al. 2015. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat. Biotechnol. 33:761–68 [Google Scholar]
  8. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L. et al. 2016. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22:298–305 [Google Scholar]
  9. Beltran H, Rickman DS, Park K, Chae SS, Sboner A. et al. 2011. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 1:487–95 [Google Scholar]
  10. Beltran H, Tomlins S, Aparicio A, Arora V, Rickman D. et al. 2014. Aggressive variants of castration-resistant prostate cancer. Clin. Cancer Res. 20:2846–50 [Google Scholar]
  11. Blackwood JK, Williamson SC, Greaves LC, Wilson L, Rigas AC. et al. 2011. In situ lineage tracking of human prostatic epithelial stem cell fate reveals a common clonal origin for basal and luminal cells. J. Pathol. 225:181–88 [Google Scholar]
  12. Blanpain C. 2013. Tracing the cellular origin of cancer. Nat. Cell Biol. 15:126–34 [Google Scholar]
  13. Blanpain C, Fuchs E. 2014. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 344:1242281 [Google Scholar]
  14. Brawley C, Matunis E. 2004. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304:1331–34 [Google Scholar]
  15. Burglin TR, Affolter M. 2016. Homeodomain proteins: an update. Chromosoma 125:497–521 [Google Scholar]
  16. Cam H, Griesmann H, Beitzinger M, Hofmann L, Beinoraviciute-Kellner R. et al. 2006. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 10:281–93 [Google Scholar]
  17. Cancer Genome Atlas Res. Netw. 2015. The molecular taxonomy of primary prostate cancer. Cell 163:1011–25 [Google Scholar]
  18. Chaffer CL, San Juan BP, Lim E, Weinberg RA. 2016. EMT, cell plasticity and metastasis. Cancer Metastasis Rev 35:645–54 [Google Scholar]
  19. Cheli Y, Giuliano S, Botton T, Rocchi S, Hofman V. et al. 2011. Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 30:2307–18 [Google Scholar]
  20. Chiche A, Le Roux I, von Joest M, Sakai H, Aguin SB. et al. 2017. Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell 20:407–14.e4 [Google Scholar]
  21. Choi N, Zhang B, Zhang L, Ittmann M, Xin L. 2012. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21:253–65 [Google Scholar]
  22. Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ. et al. 2014. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol. 16:951–61 [Google Scholar]
  23. Clevers H. 2011. The cancer stem cell: premises, promises and challenges. Nat. Med. 17:313–19 [Google Scholar]
  24. Colleypriest BJ, Farrant JM, Slack JM, Tosh D. 2010. The role of Cdx2 in Barrett's metaplasia. Biochem. Soc. Trans. 38:364–69 [Google Scholar]
  25. Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S. et al. 2009. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell 138:449–62 [Google Scholar]
  26. Cortina C, Turon G, Stork D, Hernando-Momblona X, Sevillano M. et al. 2017. A genome editing approach to study cancer stem cells in human tumors. EMBO Mol. Med. 9:869–79 [Google Scholar]
  27. Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM. et al. 1987. The endocrinology and developmental biology of the prostate. Endocr. Rev. 8:338–62 [Google Scholar]
  28. Dalerba P, Sahoo D, Paik S, Guo X, Yothers G. et al. 2016. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N. Engl. J. Med. 374:211–22 [Google Scholar]
  29. Davis RL, Weintraub H, Lassar AB. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000 [Google Scholar]
  30. de Sousa e Melo F, Kurtova AV, Harnoss JM, Kljavin N, Hoeck JD. et al. 2017. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543:676–80 [Google Scholar]
  31. Deome KB, Faulkin LJ Jr., Bern HA, Blair PB. 1959. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:515–20 [Google Scholar]
  32. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate-Shen C. 2016. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science 352:1576–80 [Google Scholar]
  33. Easwaran H, Tsai HC, Baylin SB. 2014. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 54:716–27 [Google Scholar]
  34. Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM. et al. 2015. Cell lineage analysis in human brain using endogenous retroelements. Neuron 85:49–59 [Google Scholar]
  35. Fatehullah A, Tan SH, Barker N. 2016. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18:246–54 [Google Scholar]
  36. Fellous TG, McDonald SA, Burkert J, Humphries A, Islam S. et al. 2009. A methodological approach to tracing cell lineage in human epithelial tissues. Stem Cells 27:1410–20 [Google Scholar]
  37. Ferone G, Song JY, Sutherland KD, Bhaskaran R, Monkhorst K. et al. 2016. SOX2 is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells of origin. Cancer Cell 30:519–32 [Google Scholar]
  38. Fischer KR, Durrans A, Lee S, Sheng J, Li F. et al. 2015. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527:472–76 [Google Scholar]
  39. Fong H, Hohenstein KA, Donovan PJ. 2008. Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26:1931–38 [Google Scholar]
  40. Garraway LA, Sellers WR. 2006. Lineage dependency and lineage-survival oncogenes in human cancer. Nat. Rev. Cancer 6:593–602 [Google Scholar]
  41. Gehring WJ, Affolter M, Burglin T. 1994. Homeodomain proteins. Annu. Rev. Biochem. 63:487–526 [Google Scholar]
  42. Genovese G, Carugo A, Tepper J, Robinson FS, Li L. et al. 2017. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature 542:362–66 [Google Scholar]
  43. Gidekel Friedlander SY, Chu GC, Snyder EL, Girnius N, Dibelius G. et al. 2009. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16:379–89 [Google Scholar]
  44. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON. 2010. Identification of a cell of origin for human prostate cancer. Science 329:568–71 [Google Scholar]
  45. Gonzalez F, Georgieva D, Vanoli F, Shi ZD, Stadtfeld M. et al. 2013. Homologous recombination DNA repair genes play a critical role in reprogramming to a pluripotent state. Cell Rep 3:651–60 [Google Scholar]
  46. Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I. et al. 2011. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19:728–39 [Google Scholar]
  47. Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L. et al. 2007. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302 [Google Scholar]
  48. Halliday J, Helmy K, Pattwell SS, Pitter KL, LaPlant Q. et al. 2014. In vivo radiation response of proneural glioma characterized by protective p53 transcriptional program and proneural-mesenchymal shift. PNAS 111:5248–53 [Google Scholar]
  49. Hamada K, Sasaki T, Koni PA, Natsui M, Kishimoto H. et al. 2005. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19:2054–65 [Google Scholar]
  50. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  51. Hay ED. 1995. An overview of epithelio-mesenchymal transformation. Acta Anat 154:8–20 [Google Scholar]
  52. Hochedlinger K, Yamada Y, Beard C, Jaenisch R. 2005. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–77 [Google Scholar]
  53. Hoek KS, Eichhoff OM, Schlegel NC, Dobbeling U, Kobert N. et al. 2008. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 68:650–56 [Google Scholar]
  54. Hoek KS, Goding CR. 2010. Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 23:746–59 [Google Scholar]
  55. Horb ME, Shen CN, Tosh D, Slack JM. 2003. Experimental conversion of liver to pancreas. Curr. Biol. 13:105–15 [Google Scholar]
  56. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y. et al. 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–86 [Google Scholar]
  57. Ischenko I, Zhi J, Moll UM, Nemajerova A, Petrenko O. 2013. Direct reprogramming by oncogenic Ras and Myc. PNAS 110:3937–42 [Google Scholar]
  58. Jankowski JA, Harrison RF, Perry I, Balkwill F, Tselepis C. 2000. Barrett's metaplasia. Lancet 356:2079–85 [Google Scholar]
  59. Jessen KR, Mirsky R, Arthur-Farraj P. 2015. The role of cell plasticity in tissue repair: adaptive cellular reprogramming. Dev. Cell 34:613–20 [Google Scholar]
  60. Jopling C, Boue S, Izpisua Belmonte JC. 2011. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 12:79–89 [Google Scholar]
  61. Kai T, Spradling A. 2004. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 428:564–69 [Google Scholar]
  62. Kalluri R, Weinberg RA. 2009. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 119:1420–28 [Google Scholar]
  63. Kamachi Y, Kondoh H. 2013. Sox proteins: regulators of cell fate specification and differentiation. Development 140:4129–44 [Google Scholar]
  64. Kareta MS, Gorges LL, Hafeez S, Benayoun BA, Marro S. et al. 2015. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16:39–50 [Google Scholar]
  65. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R. et al. 2014. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159:163–75 [Google Scholar]
  66. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB. et al. 2009. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–44 [Google Scholar]
  67. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA. et al. 2014. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov 4:816–27 [Google Scholar]
  68. Kretzschmar K, Watt FM. 2012. Lineage tracing. Cell 148:33–45 [Google Scholar]
  69. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M. et al. 2017. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355:78–83 [Google Scholar]
  70. Kwon OJ, Zhang B, Zhang L, Xin L. 2016. High fat diet promotes prostatic basal-to-luminal differentiation and accelerates initiation of prostate epithelial hyperplasia originated from basal cells. Stem Cell Res 16:682–91 [Google Scholar]
  71. Kwon OJ, Zhang L, Ittmann MM, Xin L. 2014. Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. PNAS 111:E592–600 [Google Scholar]
  72. Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA. et al. 2017. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20:233–46.e7 [Google Scholar]
  73. Lin SC, Chou YT, Jiang SS, Chang JL, Chung CH. et al. 2016. Epigenetic switch between SOX2 and SOX9 regulates cancer cell plasticity. Cancer Res 76:7036–48 [Google Scholar]
  74. Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S. et al. 2011. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–21 [Google Scholar]
  75. Liu X, Grogan TR, Hieronymus H, Hashimoto T, Mottahedeh J. et al. 2016. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep 17:2596–606 [Google Scholar]
  76. Livet J, Weissman TA, Kang H, Draft RW, Lu J. et al. 2007. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62 [Google Scholar]
  77. Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK. et al. 2015. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94–98 [Google Scholar]
  78. Lotan TL, Gupta NS, Wang W, Toubaji A, Haffner MC. et al. 2011. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod. Pathol. 24:820–28 [Google Scholar]
  79. Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG. et al. 1993. Pancreatitis and the risk of pancreatic cancer. N. Engl. J. Med. 328:1433–37 [Google Scholar]
  80. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A. et al. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–15 [Google Scholar]
  81. Marion RM, Strati K, Li H, Murga M, Blanco R. et al. 2009. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–53 [Google Scholar]
  82. Maza I, Caspi I, Zviran A, Chomsky E, Rais Y. et al. 2015. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat. Biotechnol. 33:769–74 [Google Scholar]
  83. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. 2016. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353:aaf7907 [Google Scholar]
  84. Meacham CE, Morrison SJ. 2013. Tumour heterogeneity and cancer cell plasticity. Nature 501:328–37 [Google Scholar]
  85. Merrell AJ, Stanger BZ. 2016. Adult cell plasticity in vivo: De-differentiation and transdifferentiation are back in style. Nat. Rev. Mol. Cell Biol. 17:413–25 [Google Scholar]
  86. Metzger D, Clifford J, Chiba H, Chambon P. 1995. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. PNAS 92:6991–95 [Google Scholar]
  87. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. 2003. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4:181–89 [Google Scholar]
  88. Morris SA, Daley GQ. 2013. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res 23:33–48 [Google Scholar]
  89. Mosteiro L, Pantoja C, Alcazar N, Marion RM, Chondronasiou D. et al. 2016. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354:aaf4445 [Google Scholar]
  90. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E. et al. 2017. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355:84–88 [Google Scholar]
  91. Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S. 2010. Promotion of direct reprogramming by transformation-deficient Myc. PNAS 107:14152–57 [Google Scholar]
  92. Nassar D, Blanpain C. 2016. Cancer stem cells: basic concepts and therapeutic implications. Annu. Rev. Pathol. 11:47–76 [Google Scholar]
  93. Navin N, Kendall J, Troge J, Andrews P, Rodgers L. et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94 [Google Scholar]
  94. Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL. et al. 2015. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun. 6:6377 [Google Scholar]
  95. Nieto MA, Huang RY, Jackson RA, Thiery JP. 2016. Emt: 2016. Cell 166:21–45 [Google Scholar]
  96. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H. et al. 2012. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22:709–24 [Google Scholar]
  97. Oser MG, Niederst MJ, Sequist LV, Engelman JA. 2015. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol 16:e165–72 [Google Scholar]
  98. Pisco AO, Huang S. 2015. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘What does not kill me strengthens me’. Br. J. Cancer 112:1725–32 [Google Scholar]
  99. Pribluda A, Elyada E, Wiener Z, Hamza H, Goldstein RE. et al. 2013. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell 24:242–56 [Google Scholar]
  100. Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS. et al. 2010. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18:510–23 [Google Scholar]
  101. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. 2008. Efficient tumour formation by single human melanoma cells. Nature 456:593–98 [Google Scholar]
  102. Rasmussen MA, Holst B, Tumer Z, Johnsen MG, Zhou S. et al. 2014. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage. Stem Cell Rep 3:404–13 [Google Scholar]
  103. Reya T, Morrison SJ, Clarke MF, Weissman IL. 2001. Stem cells, cancer, and cancer stem cells. Nature 414:105–11 [Google Scholar]
  104. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM. et al. 2012. EMT and dissemination precede pancreatic tumor formation. Cell 148:349–61 [Google Scholar]
  105. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC. et al. 2017. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev 31:172–83 [Google Scholar]
  106. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ. et al. 2015. Integrative clinical genomics of advanced prostate cancer. Cell 161:1215–28 [Google Scholar]
  107. Roy N, Hebrok M. 2015. Regulation of cellular identity in cancer. Dev. Cell 35:674–84 [Google Scholar]
  108. Sancho-Martinez I, Baek SH, Izpisua Belmonte JC. 2012. Lineage conversion methodologies meet the reprogramming toolbox. Nat. Cell Biol. 14:892–99 [Google Scholar]
  109. Sarkar A, Hochedlinger K. 2013. The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–30 [Google Scholar]
  110. Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I. et al. 2013. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23:93–106 [Google Scholar]
  111. Sekiya S, Suzuki A. 2012. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J. Clin. Investig. 122:3914–18 [Google Scholar]
  112. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB. et al. 2011. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3:75ra26 [Google Scholar]
  113. Sfanos KS, De Marzo AM. 2012. Prostate cancer and inflammation: the evidence. Histopathology 60:199–215 [Google Scholar]
  114. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F. et al. 2010. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80 [Google Scholar]
  115. Shibue T, Weinberg RA. 2017. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14:611–29 [Google Scholar]
  116. Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A. et al. 2017. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545:187–92 [Google Scholar]
  117. Slack JM. 2007. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat. Rev. Mol. Cell Biol. 8:369–78 [Google Scholar]
  118. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M. et al. 2010. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–44 [Google Scholar]
  119. Snyder EL, Watanabe H, Magendantz M, Hoersch S, Chen TA. et al. 2013. Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma. Mol. Cell 50:185–99 [Google Scholar]
  120. Soriano P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21:70–71 [Google Scholar]
  121. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. 1997. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386:399–402 [Google Scholar]
  122. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y. et al. 2001. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1:4 [Google Scholar]
  123. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K. et al. 2005. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–102 [Google Scholar]
  124. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T. et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–72 [Google Scholar]
  125. Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76 [Google Scholar]
  126. Talchai C, Xuan S, Kitamura T, DePinho RA, Accili D. 2012.a Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat. Genet. 44:406–S1 [Google Scholar]
  127. Talchai C, Xuan S, Lin HV, Sussel L, Accili D. 2012.b Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150:1223–34 [Google Scholar]
  128. Talos F, Mitrofanova A, Bergren SK, Califano A, Shen MM. 2017. A computational systems approach identifies synergistic specification genes that facilitate lineage conversion to prostate tissue. Nat. Commun. 8:14662 [Google Scholar]
  129. Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM. et al. 2014. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15:605–18 [Google Scholar]
  130. Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M. et al. 2013. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503:218–23 [Google Scholar]
  131. Tata PR, Rajagopal J. 2016. Cellular plasticity: 1712 to the present day. Curr. Opin. Cell Biol. 43:46–54 [Google Scholar]
  132. Thiery JP, Acloque H, Huang RY, Nieto MA. 2009. Epithelial-mesenchymal transitions in development and disease. Cell 139:871–90 [Google Scholar]
  133. Thomas P, Beddington R. 1996. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6:1487–96 [Google Scholar]
  134. Thorel F, Nepote V, Avril I, Kohno K, Desgraz R. et al. 2010. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464:1149–54 [Google Scholar]
  135. Tian H, Biehs B, Warming S, Leong KG, Rangell L. et al. 2011. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478:255–59 [Google Scholar]
  136. Toivanen R, Mohan A, Shen MM. 2016. Basal progenitors contribute to repair of the prostate epithelium following induced luminal anoikis. Stem Cell Rep 6:660–67 [Google Scholar]
  137. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. 2012. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22:725–36 [Google Scholar]
  138. Tschaharganeh DF, Xue W, Calvisi DF, Evert M, Michurina TV. et al. 2014. p53-dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell 158:579–92 [Google Scholar]
  139. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W. et al. 2009. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–48 [Google Scholar]
  140. van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee AN. et al. 2012. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14:1099–104 [Google Scholar]
  141. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. 2010. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–41 [Google Scholar]
  142. Visvader JE, Stingl J. 2014. Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev 28:1143–58 [Google Scholar]
  143. Waddington CH. 1957. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology London: Allen & Unwin [Google Scholar]
  144. Wang Q, Zou Y, Nowotschin S, Kim SY, Li QV. et al. 2017. The p53 family coordinates Wnt and nodal inputs in mesendodermal differentiation of embryonic stem cells. Cell Stem Cell 20:70–86 [Google Scholar]
  145. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H. et al. 2009. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500 [Google Scholar]
  146. Wang ZA, Mitrofanova A, Bergren SK, Abate-Shen C, Cardiff RD. et al. 2013. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat. Cell Biol. 15:274–83 [Google Scholar]
  147. Wang ZA, Toivanen R, Bergren SK, Chambon P, Shen MM. 2014. Luminal cells are favored as the cell of origin for prostate cancer. Cell Rep 8:1339–46 [Google Scholar]
  148. Watanabe H, Francis JM, Woo MS, Etemad B, Lin W. et al. 2013. Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target. Genes Dev 27:197–210 [Google Scholar]
  149. Watson PA, Arora VK, Sawyers CL. 2015. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15:701–11 [Google Scholar]
  150. Wei D, Wang L, Yan Y, Jia Z, Gagea M. et al. 2016. KLF4 is essential for induction of cellular identity change and acinar-to-ductal reprogramming during early pancreatic carcinogenesis. Cancer Cell 29:324–38 [Google Scholar]
  151. Wernig M, Meissner A, Cassady JP, Jaenisch R. 2008. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2:10–12 [Google Scholar]
  152. Winslow MM, Dayton TL, Verhaak RG, Kim-Kiselak C, Snyder EL. et al. 2011. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 473:101–4 [Google Scholar]
  153. Woodworth MB, Girskis KM, Walsh CA. 2017. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat. Rev. Genet. 18:230–44 [Google Scholar]
  154. Worley MI, Setiawan L, Hariharan IK. 2012. Regeneration and transdetermination in Drosophila imaginal discs. Annu. Rev. Genet. 46:289–310 [Google Scholar]
  155. Wu L, de Bruin A, Saavedra HI, Starovic M, Trimboli A. et al. 2003. Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 421:942–47 [Google Scholar]
  156. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA. et al. 2004. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–39 [Google Scholar]
  157. Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R. et al. 2013. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 27:719–24 [Google Scholar]
  158. Yi L, Lu C, Hu W, Sun Y, Levine AJ. 2012. Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res 72:5635–45 [Google Scholar]
  159. Yu VW, Yusuf RZ, Oki T, Wu J, Saez B. et al. 2017. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 168:944–45 [Google Scholar]
  160. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J. et al. 2015. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527:525–30 [Google Scholar]
  161. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. 2008. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455:627–32 [Google Scholar]
  162. Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW. et al. 2006. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 66:7889–98 [Google Scholar]
  163. Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L. 2005. Mosaic analysis with double markers in mice. Cell 121:479–92 [Google Scholar]
  164. Zou M, Toivanen R, Mitrofanova A, Floc'h N, Hayati S. et al. 2017. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov 7:736–49 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error