1932

Abstract

Targeted therapies, immunotherapies, and improved chemotherapies are being developed to reduce the suffering and mortality that come from human cancer. Although these approaches, and in particular combinations of them, are expected to succeed eventually to a large degree, they all suffer one obstacle: Populations of replicating cells move away—typically in a high-dimensional space—from any opposing selection pressure they encounter. They evolve resistance. It is possible, however, to develop a precise mathematical understanding of the problem and to design treatment strategies that prevent resistance if possible or manage resistance otherwise. In this article, we present the fundamental equations that characterize the evolution of resistance. We provide formulas for the probability that resistant cells exist at the start of therapy, for the average number and sizes of resistant clones, and for the probability of successful combination treatment. We also demonstrate that developing new therapies that only maximize the killing rate of cancer cells may not be optimal, and that instead the parameters determining the fraction of resistant cells and their growth rate have a larger effect on the long-term control of cancer. These mathematical tools inform the search process for optimal therapies that aim to cure cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-042716-094839
2017-03-06
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/1/1/annurev-cancerbio-042716-094839.html?itemId=/content/journals/10.1146/annurev-cancerbio-042716-094839&mimeType=html&fmt=ahah

Literature Cited

  1. Abel Zur Wiesch P, Abel S, Gkotzis S, Ocampo P, Engelstadter J. et al. 2015. Classic reaction kinetics can explain complex patterns of antibiotic action. Sci. Transl. Med. 7:287ra73 [Google Scholar]
  2. Aktipis CA, Kwan VS, Johnson KA, Neuberg SL, Maley CC. 2011. Overlooking evolution: a systematic analysis of cancer relapse and therapeutic resistance research. PLOS ONE 6:e26100 [Google Scholar]
  3. Alarcon T, Byrne HM, Maini PK. 2005. A multiple scale model for tumor growth. Multiscale Model. Simul. 3:440–75 [Google Scholar]
  4. Altrock PM, Liu LL, Michor F. 2015. The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15:730–45 [Google Scholar]
  5. Anderson AR, Weaver AM, Cummings PT, Quaranta V. 2006. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127:905–15 [Google Scholar]
  6. Antal T, Krapivsky PL, Nowak MA. 2015. Spatial evolution of tumors with successive driver mutations. Phys. Rev. E 92:022705 [Google Scholar]
  7. Araten DJ, Golde DW, Zhang RH, Thaler HT, Gargiulo L. et al. 2005. A quantitative measurement of the human somatic mutation rate. Cancer Res 65:8111–17 [Google Scholar]
  8. Armitage P, Doll R. 1954. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8:1–12 [Google Scholar]
  9. Athreya KB, Ney P. 1972. Branching Processes New York: Springer-Verlag
  10. Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E. et al. 2013. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 3:658–73 [Google Scholar]
  11. Basanta D, Gatenby RA, Anderson AR. 2012. Exploiting evolution to treat drug resistance: combination therapy and the double bind. Mol. Pharm. 9:914–21 [Google Scholar]
  12. Baselga J, Cortes J, Kim SB, Im SA, Hegg R. et al. 2012. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366:109–19 [Google Scholar]
  13. Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler KW. et al. 2007. Genetic progression and the waiting time to cancer. PLOS Comput. Biol. 3:e225 [Google Scholar]
  14. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y. et al. 2014. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6:224ra24 [Google Scholar]
  15. Bhang HE, Ruddy DA, Krishnamurthy Radhakrishna V, Caushi JX, Zhao R. et al. 2015. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21:440–48 [Google Scholar]
  16. Blagoev KB, Wilkerson J, Stein WD, Yang J, Bates SE, Fojo T. 2014. Therapies with diverse mechanisms of action kill cells by a similar exponential process in advanced cancers. Cancer Res 74:4653–62 [Google Scholar]
  17. Bonhoeffer S, Lipsitch M, Levin BR. 1997. Evaluating treatment protocols to prevent antibiotic resistance. PNAS 94:12106–11 [Google Scholar]
  18. Bonhoeffer S, Nowak MA. 1997. Pre-existence and emergence of drug resistance in HIV-1 infection. Proc. Biol. Sci. 264:631–37 [Google Scholar]
  19. Bozic I, Allen B, Nowak MA. 2012. Dynamics of targeted cancer therapy. Trends Mol. Med. 18:311–16 [Google Scholar]
  20. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D. et al. 2010. Accumulation of driver and passenger mutations during tumor progression. PNAS 107:18545–50 [Google Scholar]
  21. Bozic I, Gerold JM, Nowak MA. 2016. Quantifying clonal and subclonal passenger mutations in cancer evolution. PLOS Comput. Biol. 12:e1004731 [Google Scholar]
  22. Bozic I, Nowak MA. 2014. Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers. PNAS 111:15964–68 [Google Scholar]
  23. Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K. et al. 2013. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2:e00747 [Google Scholar]
  24. Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H. et al. 2016. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun. 7:11589 [Google Scholar]
  25. Burrell RA, Swanton C. 2014. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 8:1095–111 [Google Scholar]
  26. Byrne HM, Alarcon T, Owen MR, Webb SD, Maini PK. 2006. Modelling aspects of cancer dynamics: a review. Philos. Trans. R. Soc. A 364:1563–78 [Google Scholar]
  27. Callahan MK, Wolchok JD. 2013. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J. Leukoc. Biol. 94:41–53 [Google Scholar]
  28. Chang KC, Leung CC, Grosset J, Yew WW. 2011. Treatment of tuberculosis and optimal dosing schedules. Thorax 66:997–1007 [Google Scholar]
  29. Chaplain MA, McDougall SR, Anderson AR. 2006. Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng 8233–57 [Google Scholar]
  30. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P. et al. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364:2507–16 [Google Scholar]
  31. Chisholm RH, Lorenzi T, Lorz A, Larsen AK, de Ameida LN. et al. 2015. Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation. Cancer Res 75:930–39 [Google Scholar]
  32. Chmielecki J, Foo J, Oxnard GR, Hutchinson K, Ohashi K. et al. 2011. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci. Transl. Med. 3:90ra59 [Google Scholar]
  33. Choi PS, Li Y, Felsher DW. 2014. Addiction to multiple oncogenes can be exploited to prevent the emergence of therapeutic resistance. PNAS 111:E3316–24 [Google Scholar]
  34. Coldman AJ, Goldie JH. 1983. A model for the resistance of tumor-cells to cancer chemotherapeutic agents. Math. Biosci. 65:291–307 [Google Scholar]
  35. Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK. et al. 2013. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494:251–55 [Google Scholar]
  36. De Sousa EMF, Vermeulen L, Fessler E, Medema JP. 2013. Cancer heterogeneity—a multifaceted view. EMBO Rep 14:686–95 [Google Scholar]
  37. Dewanji A, Luebeck EG, Moolgavkar SH. 2005. A generalized Luria-Delbruck model. Math. Biosci. 197:140–52 [Google Scholar]
  38. Di Bisceglie AM, Sulkowski M, Gane E, Jacobson IM, Nelson D. et al. 2014. VX-222, a non-nucleoside NS5B polymerase inhibitor, in telaprevir-based regimens for genotype 1 hepatitis C virus infection. Eur. J. Gastroenterol. Hepatol. 26:761–73 [Google Scholar]
  39. Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR. et al. 2012. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–40 [Google Scholar]
  40. Dingli D, Traulsen A, Michor F. 2007. (A)symmetric stem cell replication and cancer. PLOS Comput. Biol. 3:e53 [Google Scholar]
  41. Durrett R, Foo J, Leder K, Mayberry J, Michor F. 2010. Evolutionary dynamics of tumor progression with random fitness values. Theor. Popul. Biol. 78:54–66 [Google Scholar]
  42. Durrett R, Moseley S. 2010. Evolution of resistance and progression to disease during clonal expansion of cancer. Theor. Popul. Biol. 77:42–48 [Google Scholar]
  43. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C. et al. 2007. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–43 [Google Scholar]
  44. Enriquez-Navas PM, Kam Y, Das T, Hassan S, Silva A. et al. 2016. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8:327ra24 [Google Scholar]
  45. Foo J, Chmielecki J, Pao W, Michor F. 2012. Effects of pharmacokinetic processes and varied dosing schedules on the dynamics of acquired resistance to erlotinib in EGFR-mutant lung cancer. J. Thorac. Oncol. 7:1583–93 [Google Scholar]
  46. Foo J, Michor F. 2009. Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies. PLOS Comput. Biol. 5:e1000557 [Google Scholar]
  47. Fu F, Nowak MA, Bonhoeffer S. 2015. Spatial heterogeneity in drug concentrations can facilitate the emergence of resistance to cancer therapy. PLOS Comput. Biol. 11:e1004142 [Google Scholar]
  48. Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L. 2003. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol 4:75–85 [Google Scholar]
  49. Gane EJ, Pockros PJ, Zeuzem S, Marcellin P, Shikhman A. et al. 2015. Mericitabine and ritonavir-boosted danoprevir with or without ribavirin in treatment-naive HCV genotype 1 patients: INFORM-SVR study. Liver Int 35:79–89 [Google Scholar]
  50. Gerlee P, Anderson AR. 2007. An evolutionary hybrid cellular automaton model of solid tumour growth. J. Theor. Biol. 246:583–603 [Google Scholar]
  51. Glickman MS, Sawyers CL. 2012. Converting cancer therapies into cures: lessons from infectious diseases. Cell 148:1089–98 [Google Scholar]
  52. Goldie JH, Coldman AJ. 1979. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63:1727–33 [Google Scholar]
  53. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R. et al. 2001. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–80 [Google Scholar]
  54. Greaves M, Maley CC. 2012. Clonal evolution in cancer. Nature 481:306–13 [Google Scholar]
  55. Greulich P, Waclaw B, Allen RJ. 2012. Mutational pathway determines whether drug gradients accelerate evolution of drug-resistant cells. Phys. Rev. Lett. 109:088101 [Google Scholar]
  56. Guedj J, Dahari H, Shudo E, Smith P, Perelson AS. 2012. Hepatitis C viral kinetics with the nucleoside polymerase inhibitor mericitabine (RG7128). Hepatology 55:1030–37 [Google Scholar]
  57. Haeno H, Iwasa Y, Michor F. 2007. The evolution of two mutations during clonal expansion. Genetics 177:2209–21 [Google Scholar]
  58. Harpold HL, Alvord EC Jr, Swanson KR. 2007. The evolution of mathematical modeling of glioma proliferation and invasion. J. Neuropathol. Exp. Neurol. 66:1–9 [Google Scholar]
  59. Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM. et al. 2016. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22:262–69 [Google Scholar]
  60. Hoos A, Eggermont AM, Janetzki S, Hodi FS, Ibrahim R. et al. 2010. Improved endpoints for cancer immunotherapy trials. J. Natl. Cancer Inst. 102:1388–97 [Google Scholar]
  61. Iwasa Y, Michor F, Nowak MA. 2003. Evolutionary dynamics of escape from biomedical intervention. Proc. Biol. Sci. 270:2573–78 [Google Scholar]
  62. Iwasa Y, Nowak MA, Michor F. 2006. Evolution of resistance during clonal expansion. Genetics 172:2557–66 [Google Scholar]
  63. Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N. et al. 2008. Comparative lesion sequencing provides insights into tumor evolution. PNAS 105:4283–88 [Google Scholar]
  64. Juric D, Castel P, Griffith M, Griffith OL, Won HH. et al. 2015. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518:240–44 [Google Scholar]
  65. Katayama R, Khan TM, Benes C, Lifshits E, Ebi H. et al. 2011. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. PNAS 108:7535–40 [Google Scholar]
  66. Keller P, Antal T. 2015. Mutant number distribution in an exponentially growing population. J. Stat. Mech 2015:P01011 [Google Scholar]
  67. Kepler TB, Perelson AS. 1998. Drug concentration heterogeneity facilitates the evolution of drug resistance. PNAS 95:11514–19 [Google Scholar]
  68. Kessler DA, Levine H. 2013. Large population solution of the stochastic Luria-Delbruck evolution model. PNAS 110:11682–87 [Google Scholar]
  69. Kessler DA, Levine H. 2015. Scaling solution in the large population limit of the general asymmetric stochastic Luria-Delbruck evolution process. J. Stat. Phys. 158:783–805 [Google Scholar]
  70. Kimmel M, Axelrod DE. 2015. Branching Processes in Biology New York: Springer
  71. Komarova N. 2006. Stochastic modeling of drug resistance in cancer. J. Theor. Biol. 239:351–66 [Google Scholar]
  72. Komarova NL, Katouli AA, Wodarz D. 2009. Combination of two but not three current targeted drugs can improve therapy of chronic myeloid leukemia. PLOS ONE 4:e4423 [Google Scholar]
  73. Komarova NL, Wodarz D. 2005. Drug resistance in cancer: principles of emergence and prevention. PNAS 102:9714–19 [Google Scholar]
  74. Komarova NL, Wu L, Baldi P. 2007. The fixed-size Luria-Delbruck model with a nonzero death rate. Math. Biosci. 210:253–90 [Google Scholar]
  75. Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G. et al. 2014. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371:1867–76 [Google Scholar]
  76. Lawitz E, Mangia A, Wyles D, Rodriguez-Torres M, Hassanein T. et al. 2013. Sofosbuvir for previously untreated chronic hepatitis C infection. N. Engl. J. Med. 368:1878–87 [Google Scholar]
  77. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA. et al. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501 [Google Scholar]
  78. Leder K, Foo J, Skaggs B, Gorre M, Sawyers CL, Michor F. 2011. Fitness conferred by BCR-ABL kinase domain mutations determines the risk of pre-existing resistance in chronic myeloid leukemia. PLOS ONE 6:e27682 [Google Scholar]
  79. Leder K, Pitter K, Laplant Q, Hambardzumyan D, Ross BD. et al. 2014. Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules. Cell 156:603–16 [Google Scholar]
  80. Ling S, Hu Z, Yang Z, Yang F, Li Y. et al. 2015. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. PNAS 112:E6496–505 [Google Scholar]
  81. Lipsitch M, Levin BR. 1998. Population dynamics of tuberculosis treatment: mathematical models of the roles of non-compliance and bacterial heterogeneity in the evolution of drug resistance. Int. J. Tuberc. Lung. Dis. 2:187–99 [Google Scholar]
  82. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F. et al. 2014. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 371:1877–88 [Google Scholar]
  83. Luebeck EG, Moolgavkar SH. 2002. Multistage carcinogenesis and the incidence of colorectal cancer. PNAS 99:15095–100 [Google Scholar]
  84. Luria SE, Delbruck M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511 [Google Scholar]
  85. Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K. 2014. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514:54–58 [Google Scholar]
  86. McLean AR, Nowak MA. 1992. Competition between zidovudine-sensitive and zidovudine-resistant strains of HIV. AIDS 6:71–79 [Google Scholar]
  87. Merlo LM, Pepper JW, Reid BJ, Maley CC. 2006. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6:924–35 [Google Scholar]
  88. Meza R, Jeon J, Moolgavkar SH, Luebeck EG. 2008. Age-specific incidence of cancer: phases, transitions, and biological implications. PNAS 105:16284–89 [Google Scholar]
  89. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP. et al. 2005. Dynamics of chronic myeloid leukaemia. Nature 435:1267–70 [Google Scholar]
  90. Michor F, Iwasa Y, Nowak MA. 2006. The age incidence of chronic myeloid leukemia can be explained by a one-mutation model. PNAS 103:14931–34 [Google Scholar]
  91. Misale S, Arena S, Lamba S, Siravegna G, Lallo A. et al. 2014. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci. Transl. Med. 6:224ra26 [Google Scholar]
  92. Misale S, Bozic I, Tong J, Peraza-Penton A, Lallo A. et al. 2015. Vertical suppression of the EGFR pathway prevents onset of resistance in colorectal cancers. Nat. Commun. 6:8305 [Google Scholar]
  93. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M. et al. 2012. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–36 [Google Scholar]
  94. Moreno-Gamez S, Hill AL, Rosenbloom DI, Petrov DA, Nowak MA, Pennings PS. 2015. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. PNAS 112:E2874–83 [Google Scholar]
  95. Nichol D, Jeavons P, Fletcher AG, Bonomo RA, Maini PK. et al. 2015. Steering evolution with sequential therapy to prevent the emergence of bacterial antibiotic resistance. PLOS Comput. Biol. 11:e1004493 [Google Scholar]
  96. Nowak MA, Bangham CR. 1996. Population dynamics of immune responses to persistent viruses. Science 272:74–79 [Google Scholar]
  97. Nowak MA, Bonhoeffer S, Shaw GM, May RM. 1997. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. Theor. Biol. 184:203–17 [Google Scholar]
  98. Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih IM. et al. 2002. The role of chromosomal instability in tumor initiation. PNAS 99:16226–31 [Google Scholar]
  99. Nowak MA, May RM. 2000. Virus Dynamics: Mathematical Principles of Immunology and Virology New York: Oxford Univ. Press
  100. Nowak MA, Michor F, Iwasa Y. 2003. The linear process of somatic evolution. PNAS 100:14966–69 [Google Scholar]
  101. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R. et al. 2012. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–3 [Google Scholar]
  102. Reddy MB, Morcos PN, Le Pogam S, Ou Y, Frank K. et al. 2012. Pharmacokinetic/pharmacodynamic predictors of clinical potency for Hepatitis C virus non-nucleoside polymerase and protease inhibitors. Antimicrob. Agents Chemother. 56:3144–56 [Google Scholar]
  103. Regoes RR, Bonhoeffer S. 2006. Emergence of drug-resistant influenza virus: population dynamical considerations. Science 312:389–91 [Google Scholar]
  104. Ribeiro RM, Bonhoeffer S, Nowak MA. 1998. The frequency of resistant mutant virus before antiviral therapy. AIDS 12:461–65 [Google Scholar]
  105. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A. et al. 2015. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372:30–39 [Google Scholar]
  106. Romano E, Pradervand S, Paillusson A, Weber J, Harshman K. et al. 2013. Identification of multiple mechanisms of resistance to vemurafenib in a patient with BRAFV600E-mutated cutaneous melanoma successfully rechallenged after progression. Clin. Cancer Res. 19:5749–57 [Google Scholar]
  107. Rosenbloom DI, Hill AL, Rabi SA, Siliciano RF, Nowak MA. 2012. Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nat. Med. 18:1378–85 [Google Scholar]
  108. Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G. et al. 2016. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov 6:147–53 [Google Scholar]
  109. Sawyers CL. 2013. Perspective: combined forces. Nature 498:S7 [Google Scholar]
  110. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL. et al. 2002. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–25 [Google Scholar]
  111. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F. et al. 2010. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80 [Google Scholar]
  112. Shi H, Hugo W, Kong X, Hong A, Koya RC. et al. 2014. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 4:80–93 [Google Scholar]
  113. Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP. et al. 2015. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47:209–16 [Google Scholar]
  114. Stein WD, Gulley JL, Schlom J, Madan RA, Dahut W. et al. 2011. Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: the growth rate constant as an indicator of therapeutic efficacy. Clin. Cancer Res. 17:907–17 [Google Scholar]
  115. Stein WD, Huang H, Menefee M, Edgerly M, Kotz H. et al. 2009. Other paradigms: Growth rate constants and tumor burden determined using computed tomography data correlate strongly with the overall survival of patients with renal cell carcinoma. Cancer J 15:441–47 [Google Scholar]
  116. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V. et al. 2015. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 372:724–34 [Google Scholar]
  117. Swanson KR, Bridge C, Murray JD, Alvord EC Jr. 2003. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216:1–10 [Google Scholar]
  118. Tlsty TD. 1990. Normal diploid human and rodent cells lack a detectable frequency of gene amplification. PNAS 87:3132–36 [Google Scholar]
  119. Tlsty TD, Margolin BH, Lum K. 1989. Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbruck fluctuation analysis. PNAS 86:9441–45 [Google Scholar]
  120. Tomasetti C, Levy D. 2010a. An elementary approach to modeling drug resistance in cancer. Math. Biosci. Eng. 7:905–18 [Google Scholar]
  121. Tomasetti C, Levy D. 2010b. Role of symmetric and asymmetric division of stem cells in developing drug resistance. PNAS 107:16766–71 [Google Scholar]
  122. Tomasetti C, Marchionni L, Nowak MA, Parmigiani G, Vogelstein B. 2015. Only three driver gene mutations are required for the development of lung and colorectal cancers. PNAS 112:118–23 [Google Scholar]
  123. Tomasetti C, Vogelstein B, Parmigiani G. 2013. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. PNAS 110:1999–2004 [Google Scholar]
  124. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D. et al. 2010. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17:77–88 [Google Scholar]
  125. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. 2013. Cancer genome landscapes. Science 339:1546–58 [Google Scholar]
  126. Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA. 2015. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525:261–64 [Google Scholar]
  127. Watson PA, Arora VK, Sawyers CL. 2015. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer. 15:701–11 [Google Scholar]
  128. Werner B, Dingli D, Lenaerts T, Pacheco JM, Traulsen A. 2011. Dynamics of mutant cells in hierarchical organized tissues. PLOS Comput. Biol. 7:e1002290 [Google Scholar]
  129. Werner B, Scott JG, Sottoriva A, Anderson AR, Traulsen A, Altrock PM. 2016. The cancer stem cell fraction in hierarchically organized tumors can be estimated using mathematical modeling and patient-specific treatment trajectories. Cancer Res 76:1705–13 [Google Scholar]
  130. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. 2016. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48:238–44 [Google Scholar]
  131. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T. et al. 2007. The genomic landscapes of human breast and colorectal cancers. Science 318:1108–13 [Google Scholar]
  132. Yachida S, Jones S, Bozic I, Antal T, Leary R. et al. 2010. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114–17 [Google Scholar]
  133. Zhao B, Hemann MT, Lauffenburger DA. 2014. Intratumor heterogeneity alters most effective drugs in designed combinations. PNAS 111:10773–78 [Google Scholar]
  134. Zheng Q. 1999. Progress of a half century in the study of the Luria-Delbruck distribution. Math. Biosci. 162:1–32 [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-042716-094839
Loading
/content/journals/10.1146/annurev-cancerbio-042716-094839
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error