Altered metabolism is a clinically actionable hallmark of cancer. Some reprogrammed activities in cancer cells have predictive value and others are associated with therapeutic liabilities. Recent years have brought increased exploration of metabolism in intact tumors, complementing a large literature on cancer cell lines. We review the expanding tool kit available for studying the metabolic features of tumors in vivo. These techniques include metabolomics, positron emission tomography, magnetic resonance spectroscopy, and multiparametric magnetic resonance imaging, and they vary according to their invasiveness and breadth of metabolic assessment. Special attention is given to the emerging role of intraoperative infusions of stable, isotope-labeled nutrients, which have provided the first view of true metabolic flux in human tumors. These studies also demonstrate markedly different metabolic phenotypes from those observed in culture, indicating the potential for this approach to provide a disease-relevant view of cancer metabolism and to nominate new therapeutic targets from reprogrammed pathways.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Almendro V, Marusyk A, Polyak K. 2013. Cellular heterogeneity and molecular evolution in cancer. Annu. Rev. Pathol. Mech. Dis. 8:277–302 [Google Scholar]
  2. Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA. et al. 2012. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci. Transl. Med. 4:116ra4 [Google Scholar]
  3. Barker HE, Paget JT, Khan AA, Harrington KJ. 2015. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15:409–25 [Google Scholar]
  4. Bathen TF, Heldahl MG, Sitter B, Vettukattil R, Bofin A. et al. 2011. In vivo MRS of locally advanced breast cancer: characteristics related to negative or positive choline detection and early monitoring of treatment response. MAGMA 24:347–57 [Google Scholar]
  5. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D. et al. 2000. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–51 [Google Scholar]
  6. Bollineni VR, Kramer GM, Jansma EP, Liu Y, Oyen WJ. 2016. A systematic review on [18F]FLT-PET uptake as a measure of treatment response in cancer patients. Eur. J. Cancer 55:81–97 [Google Scholar]
  7. Boroughs LK, DeBerardinis RJ. 2015. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17:351–59 [Google Scholar]
  8. Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H. et al. 2015. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34:189–201 [Google Scholar]
  9. Burrell RA, McGranahan N, Bartek J, Swanton C. 2013. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–45 [Google Scholar]
  10. Cairns RA, Harris IS, Mak TW. 2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11:85–95 [Google Scholar]
  11. Castro-Vega LJ, Buffet A, De Cubas AA, Cascon A, Menara M. et al. 2014. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum. Mol. Genet. 23:2440–46 [Google Scholar]
  12. Chaumeil MM, Larson PE, Yoshihara HA, Danforth OM, Vigneron DB. et al. 2013. Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nat. Commun. 4:2429 [Google Scholar]
  13. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES. et al. 2011. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. PNAS 108:8674–79 [Google Scholar]
  14. Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D. et al. 2012. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 18:624–29 [Google Scholar]
  15. Comerford SA, Huang Z, Du X, Wang Y, Cai L. et al. 2014. Acetate dependence of tumors. Cell 159:1591–602 [Google Scholar]
  16. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ. et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–37 [Google Scholar]
  17. Dang L, White DW, Gross S, Bennett BD, Bittinger MA. et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–44 [Google Scholar]
  18. Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA. et al. 2016. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab 23:517–28 [Google Scholar]
  19. DeBerardinis RJ. 2015. Analyzing metabolism in biological systems. Navigating Metabolism NS Chandel 223–31 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  20. DeBerardinis RJ, Cheng T. 2010. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–24 [Google Scholar]
  21. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M. et al. 2007. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. PNAS 104:19345–50 [Google Scholar]
  22. Delikatny EJ, Chawla S, Leung DJ, Poptani H. 2011. MR-visible lipids and the tumor microenvironment. NMR Biomed 24:592–611 [Google Scholar]
  23. Elkhaled A, Jalbert LE, Phillips JJ, Yoshihara HA, Parvataneni R. et al. 2012. Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci. Transl. Med. 4:116ra5 [Google Scholar]
  24. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. 2014. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302 [Google Scholar]
  25. Fan TW, Lane AN, Higashi RM, Farag MA, Gao H. et al. 2009. Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope–resolved metabolomics (SIRM). Mol. Cancer 8:41 [Google Scholar]
  26. Farber S, Diamond LK, Mercer RD, Sylvester RF Jr, Wolff JA. 1948. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N. Engl. J. Med. 238:787–93 [Google Scholar]
  27. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J. et al. 2010. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–67 [Google Scholar]
  28. Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM. 2008. 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn. Reson. Med. 60:253–57 [Google Scholar]
  29. Gallagher FA, Kettunen MI, Hu DE, Jensen PR, Zandt RI. et al. 2009. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. PNAS 106:19801–6 [Google Scholar]
  30. Gambhir SS. 2002. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2:683–93 [Google Scholar]
  31. Gillies RJ, Morse DL. 2005. In vivo magnetic resonance spectroscopy in cancer. Annu. Rev. Biomed. Eng 7287–326 [Google Scholar]
  32. Glunde K, Bhujwalla ZM. 2011. Metabolic tumor imaging using magnetic resonance spectroscopy. Semin. Oncol. 38:26–41 [Google Scholar]
  33. Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC. et al. 2012. The clinical use of PET with 11C-acetate. Am. J. Nucl. Med. Mol. Imaging 2:33–47 [Google Scholar]
  34. Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR. et al. 2016. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 29:104–16 [Google Scholar]
  35. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  36. Hayes GM, Simko J, Holochwost D, Kuchinsky K, Busch R. et al. 2012. Regional cell proliferation in microdissected human prostate specimens after heavy water labeling in vivo: correlation with prostate epithelial cells isolated from seminal fluid. Clin. Cancer Res. 18:3250–60 [Google Scholar]
  37. Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E. et al. 2016. Metabolic heterogeneity in human lung tumors. Cell 164:681–94 [Google Scholar]
  38. Hermann EJ, Hattingen E, Krauss JK, Marquardt G, Pilatus U. et al. 2008. Stereotactic biopsy in gliomas guided by 3-tesla 1H-chemical-shift imaging of choline. Stereotact. Funct. Neurosurg. 86:300–7 [Google Scholar]
  39. Herranz D, Ambesi-Impiombato A, Sudderth J, Sanchez-Martin M, Belver L. et al. 2015. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat. Med. 21:1182–89 [Google Scholar]
  40. Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC. et al. 2016. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36:540–49 [Google Scholar]
  41. Hu LS, Ning S, Eschbacher JM, Gaw N, Dueck AC. et al. 2015. Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLOS ONE 10:e0141506 [Google Scholar]
  42. Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PE. et al. 2011. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab 14:131–42 [Google Scholar]
  43. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C. et al. 2005. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–53 [Google Scholar]
  44. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ. et al. 2016. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532:255–58 [Google Scholar]
  45. Jiang P, Du W, Mancuso A, Wellen KE, Yang X. 2013. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493:689–93 [Google Scholar]
  46. Kaelin WG Jr, McKnight SL. 2013. Influence of metabolism on epigenetics and disease. Cell 153:56–69 [Google Scholar]
  47. Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R. et al. 2013. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. PNAS 110:8882–87 [Google Scholar]
  48. Keshari KR, Kurhanewicz J, Bok R, Larson PE, Vigneron DB, Wilson DM. 2011. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. PNAS 108:18606–11 [Google Scholar]
  49. Ko ES, Kim JH, Lim Y, Han BK, Cho EY, Nam SJ. 2016. Assessment of invasive breast cancer heterogeneity using whole-tumor magnetic resonance imaging texture analysis: correlations with detailed pathological findings. Medicine 95:e2453 [Google Scholar]
  50. Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A. et al. 2011. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97 [Google Scholar]
  51. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ. 1996. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology 198:795–805 [Google Scholar]
  52. Lee DY, Kind T, Yoon YR, Fiehn O, Liu KH. 2014. Comparative evaluation of extraction methods for simultaneous mass-spectrometric analysis of complex lipids and primary metabolites from human blood plasma. Anal. Bioanal. Chem. 406:7275–86 [Google Scholar]
  53. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N. et al. 2013. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23:739–52 [Google Scholar]
  54. Li B, Qiu B, Lee DS, Walton ZE, Ochocki JD. et al. 2014. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513:251–55 [Google Scholar]
  55. Lieberman BP, Ploessl K, Wang L, Qu W, Zha Z. et al. 2011. PET imaging of glutaminolysis in tumors by 18F-(2S,4R)4-fluoroglutamine. J. Nucl. Med. 52:1947–55 [Google Scholar]
  56. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S. et al. 2012. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–78 [Google Scholar]
  57. Lu W, Bennett BD, Rabinowitz JD. 2008. Analytical strategies for LC-MS-based targeted metabolomics. J. Chromatogr. B. 871:236–42 [Google Scholar]
  58. Lum JJ, Bauer DE, Kong M, Harris MH, Li C. et al. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–48 [Google Scholar]
  59. Lunt SY, Vander Heiden MG. 2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27:441–64 [Google Scholar]
  60. Lyssiotis CA, Cantley LC. 2014. Acetate fuels the cancer engine. Cell 159:1492–94 [Google Scholar]
  61. Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J. et al. 2012. Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR Biomed 25:1234–44 [Google Scholar]
  62. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H. et al. 2012. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 15:827–37 [Google Scholar]
  63. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK. et al. 2014. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–14 [Google Scholar]
  64. Mullen AR, DeBerardinis RJ. 2012. Genetically-defined metabolic reprogramming in cancer. Trends Endocrinol. Metab. 23:552–59 [Google Scholar]
  65. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL. et al. 2013. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl. Med. 5:198ra08 [Google Scholar]
  66. O'Brien PJ, Lee M, Spilker ME, Zhang CC, Yan Z. et al. 2013. Monitoring metabolic responses to chemotherapy in single cells and tumors using nanostructure-initiator mass spectrometry (NIMS) imaging. Cancer Metab 1:4 [Google Scholar]
  67. O'Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A. 2015. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin. Cancer Res. 21:249–57 [Google Scholar]
  68. Olivares O, Dabritz JH, King A, Gottlieb E, Halsey C. 2015. Research into cancer metabolomics: towards a clinical metamorphosis. Semin. Cell Dev. Biol. 43:52–64 [Google Scholar]
  69. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ. et al. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–12 [Google Scholar]
  70. Pavlova NN, Thompson CB. 2016. The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47 [Google Scholar]
  71. Pollard PJ, Wortham NC, Tomlinson IP. 2003. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann. Med. 35:632–39 [Google Scholar]
  72. Pope WB, Prins RM, Thomas MA, Nagarajan R, Yen KE. et al. 2012. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J. Neuro-Oncology 107:197–205 [Google Scholar]
  73. Rabinowitz JD, White E. 2010. Autophagy and metabolism. Science 330:1344–48 [Google Scholar]
  74. Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D. et al. 2008. Germline SDHB mutations and familial renal cell carcinoma. J. Natl. Cancer Inst. 100:1260–62 [Google Scholar]
  75. Rodrigues TB, Serrao EM, Kennedy BW, Hu DE, Kettunen MI, Brindle KM. 2014. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat. Med. 20:93–97 [Google Scholar]
  76. Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C. et al. 2013. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–30 [Google Scholar]
  77. Sabharwal SS, Schumacker PT. 2014. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel. Nat. Rev. Cancer 14:709–21 [Google Scholar]
  78. Sachpekidis C, Thieke C, Askoxylakis V, Nicolay NH, Huber PE. et al. 2015. Combined use of 18F-FDG and 18F-FMISO in unresectable non-small cell lung cancer patients planned for radiotherapy: a dynamic PET/CT study. Am. J. Nucl. Med. Mol. Imaging 5:127–42 [Google Scholar]
  79. Schnall MD, Blume J, Bluemke DA, DeAngelis GA, DeBruhl N. et al. 2006. Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. Radiology 238:42–53 [Google Scholar]
  80. Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S. et al. 2015. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27:57–71 [Google Scholar]
  81. Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, Henriques da Costa AS. et al. 2016. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature. In press. doi: 10.1038/nature19353 [Google Scholar]
  82. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG. et al. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7:77–85 [Google Scholar]
  83. Sellers K, Fox MP 2nd, Bousamra M, Slone SP, Higashi RM. et al. 2015. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Investig. 125:687–98 [Google Scholar]
  84. Shroff EH, Eberlin LS, Dang VM, Gouw AM, Gabay M. et al. 2015. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. PNAS 112:6539–44 [Google Scholar]
  85. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J. et al. 2008. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Investig. 118:3930–42 [Google Scholar]
  86. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q. et al. 2009. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–14 [Google Scholar]
  87. Stroobants S, Verschakelen J, Vansteenkiste J. 2003. Value of FDG-PET in the management of non-small cell lung cancer. Eur. J. Radiol. 45:49–59 [Google Scholar]
  88. Sullivan LB, Chandel NS. 2014. Mitochondrial reactive oxygen species and cancer. Cancer Metab 2:17 [Google Scholar]
  89. Tachibana I, Nishimura Y, Shibata T, Kanamori S, Nakamatsu K. et al. 2013. A prospective clinical trial of tumor hypoxia imaging with 18F-fluoromisonidazole positron emission tomography and computed tomography (F-MISO PET/CT) before and during radiation therapy. J. Radiat. Res. 54:1078–84 [Google Scholar]
  90. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O. et al. 2015. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17:1556–68 [Google Scholar]
  91. Tognarelli JM, Dawood M, Shariff MI, Grover VP, Crossey MM. et al. 2015. Magnetic resonance spectroscopy: principles and techniques: lessons for clinicians. J. Clin. Exp. Hepatol. 5:320–28 [Google Scholar]
  92. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE. et al. 2002. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30:406–10 [Google Scholar]
  93. Trim PJ, Snel MF. 2016. Small molecule MALDI MS imaging: current technologies and future challenges. Methods 104:127–41 [Google Scholar]
  94. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P. et al. 2015. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med. 7:274ra17 [Google Scholar]
  95. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. 1993. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J. Clin. Oncol. 11:2101–11 [Google Scholar]
  96. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S. et al. 2013. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340:622–26 [Google Scholar]
  97. Warburg O. 1956. On the origin of cancer cells. Science 123:309–14 [Google Scholar]
  98. Warburg O, Wind F, Negelein E. 1927. The metabolism of tumors in the body. J. Gen. Physiol. 8:519–30 [Google Scholar]
  99. Ward PS, Thompson CB. 2012. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308 [Google Scholar]
  100. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY. et al. 2008. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. PNAS 105:18782–87 [Google Scholar]
  101. Xiao M, Yang H, Xu W, Ma S, Lin H. et al. 2012. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–38 [Google Scholar]
  102. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. 1995. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J. Nucl. Med. 36:1301–6 [Google Scholar]
  103. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA. et al. 2009. IDH1 and. IDH2 mutations in gliomas. N. Engl. J. Med 360:765–73 [Google Scholar]
  104. Yao CH, Fowle-Grider R, Mahieu NG, Liu GY, Chen YJ. et al. 2016. Exogenous fatty acids are the preferred source of membrane lipids in proliferating fibroblasts. Cell Chem. Biol. 23:483–93 [Google Scholar]
  105. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC. et al. 2012. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–70 [Google Scholar]
  106. Young JD. 2014. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30:1333–35 [Google Scholar]
  107. Young RM, Ackerman D, Quinn ZL, Mancuso A, Gruber M. et al. 2013. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev 27:1115–31 [Google Scholar]
  108. Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV. et al. 2012. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15:157–70 [Google Scholar]
  109. Zhao H, Yang L, Baddour J, Achreja A, Bernard V. et al. 2016. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5:e10250 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error