1932

Abstract

Breast cancer comprises a heterogeneous group of tumor subtypes, whether defined by immunohistochemistry of key proteins, RNA expression profiles, or genetic alterations, and each of these subtypes may benefit from a distinct treatment approach. However, there can be striking heterogeneity within tumors, which may pose challenges to the development of personalized approaches to therapy. Intratumor heterogeneity can be divided into three main categories: genetic, phenotypic, and microenvironmental. Here, we review technologies to interrogate these three categories of heterogeneity in patient samples, as well as the current state of understanding of these categories in breast cancer, from cell to cell, across different regions of the same tumor mass, across treatment, and across metastasis. Efforts to characterize tumor heterogeneity longitudinally will be crucial to the development of personalized oncology for breast cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-060220-014137
2021-03-04
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/5/1/annurev-cancerbio-060220-014137.html?itemId=/content/journals/10.1146/annurev-cancerbio-060220-014137&mimeType=html&fmt=ahah

Literature Cited

  1. Ali HR, Jackson HW, Zanotelli VRT, Danenberg E, Fischer JR et al. 2020. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1:163–75
    [Google Scholar]
  2. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B et al. 2014. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann. Oncol. 25:1536–43
    [Google Scholar]
  3. Almendro V, Cheng YK, Randles A, Itzkovitz S, Marusyk A et al. 2014. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep 6:514–27
    [Google Scholar]
  4. Amir E, Miller N, Geddie W, Freedman O, Kassam F et al. 2012. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J. Clin. Oncol. 30:587–92
    [Google Scholar]
  5. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C et al. 2014. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20:436–42
    [Google Scholar]
  6. Angus L, Smid M, Wilting SM, van Riet J, Van Hoeck A et al. 2019. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat. Genet. 51:1450–58
    [Google Scholar]
  7. Balko JM, Giltnane JM, Wang K, Schwarz LJ, Young CD et al. 2014. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov 4:232–45
    [Google Scholar]
  8. Barry P, Vatsiou A, Spiteri I, Nichol D, Cresswell GD et al. 2018. The spatiotemporal evolution of lymph node spread in early breast cancer. Clin. Cancer Res. 24:4763–70
    [Google Scholar]
  9. Bartoschek M, Oskolkov N, Bocci M, Lovrot J, Larsson C et al. 2018. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9:5150
    [Google Scholar]
  10. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S et al. 2019. Genomic characterization of metastatic breast cancers. Nature 569:560–64
    [Google Scholar]
  11. Braso-Maristany F, Griguolo G, Pascual T, Pare L, Nuciforo P et al. 2020. Phenotypic changes of HER2-positive breast cancer during and after dual HER2 blockade. Nat. Commun. 11:385
    [Google Scholar]
  12. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A et al. 2015. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 5:111164–77
    [Google Scholar]
  13. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML et al. 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–90
    [Google Scholar]
  14. Carey LA, Berry DA, Cirrincione CT, Barry WT, Pitcher BN et al. 2016. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J. Clin. Oncol. 34:542–49
    [Google Scholar]
  15. Casasent AK, Schalck A, Gao R, Sei E, Long A et al. 2018. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172:205–17.e12
    [Google Scholar]
  16. Caswell-Jin JL, McNamara K, Reiter JG, Sun R, Hu Z et al. 2019. Clonal replacement and heterogeneity in breast tumors treated with neoadjuvant HER2-targeted therapy. Nat. Commun. 10:657
    [Google Scholar]
  17. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
    [Google Scholar]
  18. Coombes RC, Page K, Salari R, Hastings RK, Armstrong A et al. 2019. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin. Cancer Res. 25:4255–63
    [Google Scholar]
  19. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B et al. 2018. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33:463–79.e10
    [Google Scholar]
  20. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM et al. 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–52
    [Google Scholar]
  21. Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L et al. 2015. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348:910–14
    [Google Scholar]
  22. Davies H, Glodzik D, Morganella S, Yates LR, Staaf J et al. 2017. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23:517–25
    [Google Scholar]
  23. Decalf J, Albert ML, Ziai J 2019. New tools for pathology: a user's review of a highly multiplexed method for in situ analysis of protein and RNA expression in tissue. J. Pathol. 247:650–61
    [Google Scholar]
  24. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL et al. 2011. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67
    [Google Scholar]
  25. Echeverria GV, Ge Z, Seth S, Zhang X, Jeter-Jones S et al. 2019. Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Sci. Transl. Med. 11:488eaav0936
    [Google Scholar]
  26. Eng CL, Lawson M, Zhu Q, Dries R, Koulena N et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568:235–39
    [Google Scholar]
  27. Eng J, Thibault G, Luoh SW, Gray JW, Chang YH, Chin K 2020. Cyclic multiplexed-immunofluorescence (cmIF), a highly multiplexed method for single-cell analysis. Methods Mol. Biol.2055521–62
    [Google Scholar]
  28. Fribbens C, Garcia Murillas I, Beaney M, Hrebien S, O'Leary B et al. 2018. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann. Oncol. 29:145–53
    [Google Scholar]
  29. Gao R, Davis A, McDonald TO, Sei E, Shi X et al. 2016. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48:1119–30
    [Google Scholar]
  30. Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S et al. 2015. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 7:302ra133
    [Google Scholar]
  31. Gawad C, Koh W, Quake SR 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:175–88
    [Google Scholar]
  32. Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A et al. 2014. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11:417–22
    [Google Scholar]
  33. Hamy AS, Pierga JY, Sabaila A, Laas E, Bonsang-Kitzis H et al. 2017. Stromal lymphocyte infiltration after neoadjuvant chemotherapy is associated with aggressive residual disease and lower disease-free survival in HER2-positive breast cancer. Ann. Oncol. 28:2233–40
    [Google Scholar]
  34. Hinohara K, Wu HJ, Vigneau S, McDonald TO, Igarashi KJ et al. 2018. KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell 34:939–53.e9
    [Google Scholar]
  35. Hoadley KA, Siegel MB, Kanchi KL, Miller CA, Ding L et al. 2016. Tumor evolution in two patients with basal-like breast cancer: a retrospective genomics study of multiple metastases. PLOS Med 13:e1002174
    [Google Scholar]
  36. Hu Z, Li Z, Ma Z, Curtis C 2020. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52:701–8
    [Google Scholar]
  37. Hutchinson KE, Yost SE, Chang CW, Johnson RM, Carr AR et al. 2020. Comprehensive profiling of poor-risk paired primary and recurrent triple-negative breast cancers reveals immune phenotype shifts. Clin. Cancer Res. 26:657–68
    [Google Scholar]
  38. Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R et al. 2020. The single-cell pathology landscape of breast cancer. Nature 578:615–20
    [Google Scholar]
  39. Janiszewska M, Liu L, Almendro V, Kuang Y, Paweletz C et al. 2015. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat. Genet. 47:1212–19
    [Google Scholar]
  40. Juric D, Castel P, Griffith M, Griffith OL, Won HH et al. 2015. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518:240–44
    [Google Scholar]
  41. Keren L, Bosse M, Marquez D, Angoshtari R, Jain S et al. 2018. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174:1373–87.e19
    [Google Scholar]
  42. Keren L, Bosse M, Thompson S, Risom T, Vijayaragavan K et al. 2019. MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5:eaax5851
    [Google Scholar]
  43. Kim C, Gao R, Sei E, Brandt R, Hartman J et al. 2018. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173:879–93.e13
    [Google Scholar]
  44. Law EK, Sieuwerts AM, LaPara K, Leonard B, Starrett GJ et al. 2016. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci. Adv. 2:e1601737
    [Google Scholar]
  45. Li Y, Chang C-W, Tran D, Denker M, Hegde P, Molinero L 2018. Prevalence of PDL1 and tumor infiltrating lymphocytes (TILs) in primary and metastatic TNBC. Cancer Res 78:4 Suppl. PD6-01 (Abstr.)
    [Google Scholar]
  46. Loi S, Drubay D, Adams S, Pruneri G, Francis PA et al. 2019. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J. Clin. Oncol. 37:559–69
    [Google Scholar]
  47. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L 2014. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11:360–61
    [Google Scholar]
  48. Lundberg E, Borner GHH. 2019. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20:285–302
    [Google Scholar]
  49. Magbanua MJ, Wolf DM, Yau C, Davis SE, Crothers J et al. 2015. Serial expression analysis of breast tumors during neoadjuvant chemotherapy reveals changes in cell cycle and immune pathways associated with recurrence and response. Breast Cancer Res 17:73
    [Google Scholar]
  50. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ et al. 2011. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J. Clin. Oncol. 29:1949–55
    [Google Scholar]
  51. Mariotto AB, Etzioni R, Hurlbert M, Penberthy L, Mayer M 2017. Estimation of the number of women living with metastatic breast cancer in the United States. Cancer Epidemiol. Biomark. Prev. 26:809–15
    [Google Scholar]
  52. Martelotto LG, Baslan T, Kendall J, Geyer FC, Burke KA et al. 2017. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat. Med. 23:376–85
    [Google Scholar]
  53. Merritt CR, Ong GT, Church SE, Barker K, Danaher P et al. 2020. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38:586–99
    [Google Scholar]
  54. Miller CA, Gindin Y, Lu C, Griffith OL, Griffith M et al. 2016. Aromatase inhibition remodels the clonal architecture of estrogen-receptor-positive breast cancers. Nat. Commun. 7:12498
    [Google Scholar]
  55. Moffitt JR, Hao J, Bambah-Mukku D, Lu T, Dulac C, Zhuang X 2016. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. PNAS 113:14456–61
    [Google Scholar]
  56. Navin N, Kendall J, Troge J, Andrews P, Rodgers L et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94
    [Google Scholar]
  57. Ng CKY, Bidard FC, Piscuoglio S, Geyer FC, Lim RS et al. 2017. Genetic heterogeneity in therapy-naive synchronous primary breast cancers and their metastases. Clin. Cancer Res. 23:4402–15
    [Google Scholar]
  58. Niikura N, Liu J, Hayashi N, Mittendorf EA, Gong Y et al. 2012. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J. Clin. Oncol. 30:593–99
    [Google Scholar]
  59. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D et al. 2016. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534:47–54
    [Google Scholar]
  60. Nuciforo P, Pascual T, Cortes J, Llombart-Cussac A, Fasani R et al. 2018. A predictive model of pathologic response based on tumor cellularity and tumor-infiltrating lymphocytes (CelTIL) in HER2-positive breast cancer treated with chemo-free dual HER2 blockade. Ann. Oncol. 29:170–77
    [Google Scholar]
  61. O'Leary B, Hrebien S, Morden JP, Beaney M, Fribbens C et al. 2018. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat. Commun. 9:896
    [Google Scholar]
  62. Paik S, Shak S, Tang G, Kim C, Baker J et al. 2004. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351:2817–26
    [Google Scholar]
  63. Pantelidou C, Sonzogni O, De Oliveria Taveira M, Mehta AK, Kothari A et al. 2019. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov 9:722–37
    [Google Scholar]
  64. Patten DK, Corleone G, Gyorffy B, Perone Y, Slaven N et al. 2018. Enhancer mapping uncovers phenotypic heterogeneity and evolution in patients with luminal breast cancer. Nat. Med. 24:1469–80
    [Google Scholar]
  65. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS et al. 2000. Molecular portraits of human breast tumours. Nature 406:747–52
    [Google Scholar]
  66. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS et al. 2018. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34:427–38.e6
    [Google Scholar]
  67. Reiter JG, Makohon-Moore AP, Gerold JM, Heyde A, Attiyeh MA et al. 2018. Minimal functional driver gene heterogeneity among untreated metastases. Science 361:1033–37
    [Google Scholar]
  68. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E et al. 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:1463–67
    [Google Scholar]
  69. Rothe F, Silva MJ, Venet D, Campbell C, Bradburry I et al. 2019. Circulating tumor DNA in HER2-amplified breast cancer: a translational research substudy of the NeoALTTO phase III trial. Clin. Cancer Res. 25:3581–88
    [Google Scholar]
  70. Rueda OM, Sammut SJ, Seoane JA, Chin SF, Caswell-Jin JL et al. 2019. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups. Nature 567:399–404
    [Google Scholar]
  71. Russnes HG, Lingjaerde OC, Borresen-Dale AL, Caldas C 2017. Breast cancer molecular stratification: from intrinsic subtypes to integrative clusters. Am. J. Pathol. 187:2152–62
    [Google Scholar]
  72. Savas P, Teo ZL, Lefevre C, Flensburg C, Caramia F et al. 2016. The subclonal architecture of metastatic breast cancer: results from a prospective community-based rapid autopsy program “CASCADE. .” PLOS Med 13:e1002204
    [Google Scholar]
  73. Schiavon G, Hrebien S, Garcia-Murillas I, Cutts RJ, Pearson A et al. 2015. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl. Med. 7:313ra182
    [Google Scholar]
  74. Schrijver W, Suijkerbuijk KPM, van Gils CH, van der Wall E, Moelans CB, van Diest PJ 2018. Receptor conversion in distant breast cancer metastases: a systematic review and meta-analysis. J. Natl. Cancer Inst. 110:568–80
    [Google Scholar]
  75. Schulz D, Zanotelli VRT, Fischer JR, Schapiro D, Engler S et al. 2018. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst 6:25–36.e5
    [Google Scholar]
  76. Seoane JA, Kirkland JG, Caswell-Jin JL, Crabtree GR, Curtis C 2019. Chromatin regulators mediate anthracycline sensitivity in breast cancer. Nat. Med. 25:1721–27
    [Google Scholar]
  77. Shah SP, Roth A, Goya R, Oloumi A, Ha G et al. 2012. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:396–99
    [Google Scholar]
  78. Siegel RL, Miller KD, Jemal A 2020. Cancer statistics, 2020. CA Cancer J. Clin. 70:7–30
    [Google Scholar]
  79. Staaf J, Glodzik D, Bosch A, Vallon-Christersson J, Reutersward C et al. 2019. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 25:1526–33
    [Google Scholar]
  80. Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82
    [Google Scholar]
  81. Szekely B, Bossuyt V, Li X, Wali VB, Patwardhan GA et al. 2018. Immunological differences between primary and metastatic breast cancer. Ann. Oncol. 29:2232–39
    [Google Scholar]
  82. Telli ML, Hellyer J, Audeh W, Jensen KC, Bose S et al. 2018. Homologous recombination deficiency (HRD) status predicts response to standard neoadjuvant chemotherapy in patients with triple-negative or BRCA1/2 mutation-associated breast cancer. Breast Cancer Res. Treat. 168:625–30
    [Google Scholar]
  83. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB et al. 2016. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin. Cancer Res. 22:3764–73
    [Google Scholar]
  84. Toy W, Shen Y, Won H, Green B, Sakr RA et al. 2013. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45:1439–45
    [Google Scholar]
  85. Tsujikawa T, Kumar S, Borkar RN, Azimi V, Thibault G et al. 2017. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep 19:203–17
    [Google Scholar]
  86. Ullah I, Karthik GM, Alkodsi A, Kjallquist U, Stalhammar G et al. 2018. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J. Clin. Investig. 128:1355–70
    [Google Scholar]
  87. Urruticoechea A, Smith IE, Dowsett M 2005. Proliferation marker Ki-67 in early breast cancer. J. Clin. Oncol. 23:7212–20
    [Google Scholar]
  88. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA et al. 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–36
    [Google Scholar]
  89. Van Poznak C, Somerfield MR, Bast RC, Cristofanilli M, Goetz MP et al. 2015. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 33:2695–704
    [Google Scholar]
  90. Varadan V, Gilmore H, Miskimen KL, Tuck D, Parsai S et al. 2016. Immune signatures following single dose trastuzumab predict pathologic response to preoperative trastuzumab and chemotherapy in HER2-positive early breast cancer. Clin. Cancer Res. 22:3249–59
    [Google Scholar]
  91. Vickovic S, Eraslan G, Salmen F, Klughammer J, Stenbeck L et al. 2019. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16:987–90
    [Google Scholar]
  92. Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver KK et al. 2019. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat. Med. 25:920–28
    [Google Scholar]
  93. Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C et al. 2019. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177:1330–45.e18
    [Google Scholar]
  94. Waks AG, Stover DG, Guerriero JL, Dillon D, Barry WT et al. 2019. The immune microenvironment in hormone receptor-positive breast cancer before and after preoperative chemotherapy. Clin. Cancer Res. 25:4644–55
    [Google Scholar]
  95. Wang F, Flanagan J, Su N, Wang LC, Bui S et al. 2012. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14:22–29
    [Google Scholar]
  96. Wang Y, Waters J, Leung ML, Unruh A, Roh W et al. 2014. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–60
    [Google Scholar]
  97. Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G et al. 2015. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21:751–59
    [Google Scholar]
  98. Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S et al. 2017. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32:169–84.e7
    [Google Scholar]
  99. Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G 2008a. The anticancer immune response: indispensable for therapeutic success. ? J. Clin. Investig. 118:1991–2001
    [Google Scholar]
  100. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G 2008b. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8:59–73
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-060220-014137
Loading
/content/journals/10.1146/annurev-cancerbio-060220-014137
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error