1932

Abstract

Large-scale tumor molecular profiling has revealed that diverse cancer histologies are driven by common pathways with unifying biomarkers that can be exploited therapeutically. Disease-agnostic basket trials have been increasingly utilized to test biomarker-driven therapies across cancer types. These trials have led to drug approvals and improved the lives of patients while simultaneously advancing our understanding of cancer biology. This review focuses on the practicalities of implementing basket trials, with an emphasis on molecularly targeted trials. We examine the biologic subtleties of genomic biomarker and patient selection, discuss previous successes in drug development facilitated by basket trials, describe certain novel targets and drugs, and emphasize practical considerations for participant recruitment and study design. This review also highlights strategies for aiding patient access to basket trials. As basket trials become more common, steps to ensure equitable implementation of these studies will be critical for molecularly targeted drug development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-061421-012927
2024-06-12
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-061421-012927.html?itemId=/content/journals/10.1146/annurev-cancerbio-061421-012927&mimeType=html&fmt=ahah

Literature Cited

  1. Adashek JJ, Subbiah V, Westphalen CB, Naing A, Kato S, Kurzrock R. 2023.. Cancer: slaying the nine-headed Hydra. . Ann. Oncol. 34::6169
    [Crossref] [Google Scholar]
  2. Amodio V, Yaeger R, Arcella P, Cancelliere C, Lamba S, et al. 2020.. EGFR blockade reverts resistance to KRASG12C inhibition in colorectal cancer. . Cancer Discov. 10::112939
    [Crossref] [Google Scholar]
  3. André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, et al. 2020.. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. . N. Engl. J. Med. 383::220718
    [Crossref] [Google Scholar]
  4. Arora K, Tran TN, Kemel Y, Mehine M, Liu YL, et al. 2022.. Genetic ancestry correlates with somatic differences in a real-world clinical cancer sequencing cohort. . Cancer Discov. 12::255265
    [Crossref] [Google Scholar]
  5. Avila M, Meric-Bernstam F. 2019.. Next-generation sequencing for the general cancer patient. . Clin. Adv. Hematol. Oncol. 17::44754
    [Google Scholar]
  6. Beck JTT, McKean M, Gadgeel SM, Bowles DW, Haq R, et al. 2023.. A phase 1, open-label, dose escalation and dose expansion study to evaluate the safety, tolerability, pharmacokinetics, and antitumor activity of PF-07799933 (ARRY-440) as a single agent and in combination therapy in participants 16 years and older with advanced solid tumors with BRAF alterations. . J. Clin. Oncol. 41::TPS3164
    [Crossref] [Google Scholar]
  7. Bedard PL, Hyman DM, Davids MS, Siu LL. 2020.. Small molecules, big impact: 20 years of targeted therapy in oncology. . Lancet 395::107888
    [Crossref] [Google Scholar]
  8. Benayed R, Offin M, Mullaney K, Sukhadia P, Rios K, et al. 2019.. High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. . Clin. Cancer Res. 25::471222
    [Crossref] [Google Scholar]
  9. Berger MF, Mardis ER. 2018.. The emerging clinical relevance of genomics in cancer medicine. . Nat. Rev. Clin. Oncol. 15::35365
    [Crossref] [Google Scholar]
  10. Blumenthal GM, Pazdur R. 2018.. Approvals in 2017: gene therapies and site-agnostic indications. . Nat. Rev. Clin. Oncol. 15::12728
    [Crossref] [Google Scholar]
  11. Borad MJ, Schram AM, Kim RD, Kamath SD, Sahai V, et al. 2023.. Updated dose escalation results for ReFocus, a first-in-human study of highly selective FGFR2 inhibitor RLY-4008 in cholangiocarcinoma and other solid tumors. . J. Clin. Oncol. 41::4009
    [Crossref] [Google Scholar]
  12. Boyiadzis MM, Kirkwood JM, Marshall JL, Pritchard CC, Azad NS, Gulley JL. 2018.. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. . J. Immunother. Cancer 6::35
    [Crossref] [Google Scholar]
  13. Brana I, Shapiro G, Johnson ML, Yu HA, Robbrecht D, et al. 2021.. Initial results from a dose finding study of TNO155, a SHP2 inhibitor, in adults with advanced solid tumors. . J. Clin. Oncol. 39::3005
    [Crossref] [Google Scholar]
  14. Brannon AR, Jayakumaran G, Diosdado M, Patel J, Razumova A, et al. 2021.. Enhanced specificity of clinical high-sensitivity tumor mutation profiling in cell-free DNA via paired normal sequencing using MSK-ACCESS. . Nat. Commun. 12::3770
    [Crossref] [Google Scholar]
  15. Burris HA III, Ulahannan SV, Haura EB, Ou S-HI, Capasso A, et al. 2022.. The bi-steric mTORC1-selective inhibitor RMC-5552 in tumors with activation of mTOR signaling: Preclinical activity in combination with RAS(ON) inhibitors in RAS-addicted tumors, and initial clinical findings from a single agent phase 1/1b study. . J. Clin. Oncol. 40::309898
    [Crossref] [Google Scholar]
  16. Carrizosa DR, Burkard ME, Elamin YY, Desai J, Gadgeel SM, et al. 2022.. CRESTONE: initial efficacy and safety of seribantumab in solid tumors harboring NRG1 fusions. . J. Clin. Oncol. 40::3006
    [Crossref] [Google Scholar]
  17. Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue MTA, et al. 2018.. Accelerating discovery of functional mutant alleles in cancer. . Cancer Discov. 8::17483
    [Crossref] [Google Scholar]
  18. Chen C, Li X, Yuan S, Antonijevic Z, Kalamegham R, Beckman RA. 2016.. Statistical design and considerations of a phase 3 basket trial for simultaneous investigation of multiple tumor types in one study. . Stat. Biopharm. Res. 8::24857
    [Crossref] [Google Scholar]
  19. Chenard-Poirier M, Kaiser M, Boyd K, Sriskandarajah P, Constantinidou A, et al. 2017.. Results from the biomarker-driven basket trial of RO5126766 (CH5127566), a potent RAF/MEK inhibitor, in RAS- or RAF-mutated malignancies including multiple myeloma. . J. Clin. Oncol. 35:(15 Suppl.):2506
    [Crossref] [Google Scholar]
  20. Cocco E, Schram AM, Kulick A, Misale S, Won HH, et al. 2019.. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. . Nat. Med. 25::142227
    [Crossref] [Google Scholar]
  21. Comis RL, Miller JD, Aldigé CR, Krebs L, Stoval E. 2003.. Public attitudes toward participation in cancer clinical trials. . J. Clin. Oncol. 21::83035
    [Crossref] [Google Scholar]
  22. Connolly RM, Wang V, Hyman DM, Grivas P, Mitchell E, et al. 2020.. 553P activity of trastuzumab and pertuzumab (HP) in patients with non-breast/gastroesophgeal HER2-amplified tumours: results of the NCI-MATCH trial (EAY131) subprotocol J. . Ann. Oncol. 31:(Suppl. 4):47980
    [Crossref] [Google Scholar]
  23. Cronin M, Ross JS. 2011.. Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. . Biomark. Med. 5::293305
    [Crossref] [Google Scholar]
  24. Cunanan KM, Gonen M, Shen R, Hyman DM, Riely GJ, et al. 2017.. Basket trials in oncology: a trade-off between complexity and efficiency. . J. Clin. Oncol. 35::27173
    [Crossref] [Google Scholar]
  25. De La Fuente MI, Rodon Ahnert J, Yaeger R, Tsai FY-C, Janku F, et al. 2023.. Safety and efficacy of the novel BRAF inhibitor FORE8394 in patients with advanced solid and CNS tumors: results from a phase 1/2A study. . J. Clin. Oncol. 41::3006
    [Crossref] [Google Scholar]
  26. Dentro SC, Leshchiner I, Haase K, Tarabichi M, Wintersinger J, et al. 2021.. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. . Cell 184::223954.e39
    [Crossref] [Google Scholar]
  27. Desai AV, Robinson GW, Gauvain K, Basu EM, Macy ME, et al. 2022.. Entrectinib in children and young adults with solid or primary CNS tumors harboring NTRK, ROS1, or ALK aberrations (STARTRK-NG). . Neuro Oncol. 24::177689
    [Crossref] [Google Scholar]
  28. Di C, Syafrizayanti Zhang Q, Chen Y, Wang Y, et al. 2019.. Function, clinical application, and strategies of pre-mRNA splicing in cancer. . Cell Death Differ. 26::118194
    [Crossref] [Google Scholar]
  29. Diamond EL, Durham BH, Ulaner GA, Drill E, Buthorn J, et al. 2019.. Efficacy of MEK inhibition in patients with histiocytic neoplasms. . Nature 567::52124
    [Crossref] [Google Scholar]
  30. Domchek SM, Postel-Vinay S, Im SA, Park YH, Delord JP, et al. 2020.. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. . Lancet Oncol. 21::115564
    [Crossref] [Google Scholar]
  31. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, et al. 2015.. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. . Hum. Mol. Genet. 24::212537
    [Crossref] [Google Scholar]
  32. Donoghue MTA, Schram AM, Hyman DM, Taylor BS. 2020.. Discovery through clinical sequencing in oncology. . Nat. Cancer 1::77483
    [Crossref] [Google Scholar]
  33. Drago JZ, Modi S, Chandarlapaty S. 2021.. Unlocking the potential of antibody–drug conjugates for cancer therapy. . Nat. Rev. Clin. Oncol. 18::32744
    [Crossref] [Google Scholar]
  34. Drilon A. 2019.. TRK inhibitors in TRK fusion–positive cancers. . Ann. Oncol. 30:(Suppl. 8):2330
    [Crossref] [Google Scholar]
  35. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, et al. 2018.. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. . N. Engl. J. Med. 378::73139
    [Crossref] [Google Scholar]
  36. Drilon A, Oxnard GR, Tan DSW, Loong HHF, Johnson M, et al. 2020.. Efficacy of selpercatinib in RET fusion–positive non-small-cell lung cancer. . N. Engl. J. Med. 383::81324
    [Crossref] [Google Scholar]
  37. Drilon A, Siena S, Ou S-HI, Patel M, Ahn MJ, et al. 2017.. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). . Cancer Discov. 7::4009
    [Crossref] [Google Scholar]
  38. Drilon AE, Hong DS, van Tilburg CM, Doz F, Tan DSW, et al. 2022.. Long-term efficacy and safety of larotrectinib in a pooled analysis of patients with tropomyosin receptor kinase (TRK) fusion cancer. . J. Clin. Oncol. 40::3100
    [Crossref] [Google Scholar]
  39. Duke ES, Fusco MJ, DeMoss P, Dilawari A, Pamuk GE, et al. 2022.. Highlights of FDA oncology approvals in 2022: tissue-agnostic indications, dosage optimization, and diversity in drug development. . Cancer Discov. 12::273946
    [Crossref] [Google Scholar]
  40. Dumbrava EE, Johnson ML, Tolcher AW, Shapiro G, Thompson JA, et al. 2022.. First-in-human study of PC14586, a small molecule structural corrector of Y220C mutant p53, in patients with advanced solid tumors harboring a TP53 Y220C mutation. . J. Clin. Oncol. 40::3003
    [Crossref] [Google Scholar]
  41. Eckstein OS, Allen CE, Williams PM, Roy-Chowdhuri S, Patton DR, et al. 2022.. Phase II study of selumetinib in children and young adults with tumors harboring activating mitogen-activated protein kinase pathway genetic alterations: arm E of the NCI-COG pediatric MATCH trial. . J. Clin. Oncol. 40::223545
    [Crossref] [Google Scholar]
  42. Eifert C, Powers RS. 2012.. From cancer genomes to oncogenic drivers, tumour dependencies and therapeutic targets. . Nat. Rev. Cancer 12::57278
    [Crossref] [Google Scholar]
  43. EMA (Eur. Med. Agency). 2021.. Guideline on the clinical evaluation of anticancer medicinal products. EMA, Amsterdam:. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-evaluation-anticancer-medicinal-products-man-revision-6_en.pdf
    [Google Scholar]
  44. Esdaille AR, Ibilibor C, Holmes A 2nd, Palmer NR, Murphy AB. 2022.. Access and representation: a narrative review of the disparities in access to clinical trials and precision oncology in Black men with prostate cancer. . Urology 163::9098
    [Crossref] [Google Scholar]
  45. Fakih MG, Kopetz S, Kuboki Y, Kim TW, Munster PN, et al. 2022.. Sotorasib for previously treated colorectal cancers with KRASG12C mutation (CodeBreaK100): a prespecified analysis of a single-arm, phase 2 trial. . Lancet Oncol. 23::11524
    [Crossref] [Google Scholar]
  46. Farago AF, Azzoli CG. 2017.. Beyond ALK and ROS1: RET, NTRK, EGFR and BRAF gene rearrangements in non-small-cell lung cancer. . Transl. Lung Cancer Res. 6::55059
    [Crossref] [Google Scholar]
  47. FDA (US Food Drug Adm.). 2021.. FDA recognition of public human genetic variant databases. Fact Sheet, FDA, Washington, DC:. https://www.fda.gov/medical-devices/precision-medicine/fda-recognition-public-human-genetic-variant-databases
    [Google Scholar]
  48. FDA (US Food Drug Adm.). 2022.. FDA takes important steps to increase racial and ethnic diversity in clinical trials. Press Release, FDA, Washington, DC:. https://www.fda.gov/news-events/press-announcements/fda-takes-important-steps-increase-racial-and-ethnic-diversity-clinical-trials
    [Google Scholar]
  49. Federici G, Soddu S. 2020.. Variants of uncertain significance in the era of high-throughput genome sequencing: a lesson from breast and ovary cancers. . J. Exp. Clin. Cancer Res. 39::46
    [Crossref] [Google Scholar]
  50. Feit NZ, Goldman DA, Smith E, Deighan J, Iasonos A, et al. 2019.. Use, safety, and efficacy of single-patient use of the US Food and Drug Administration Expanded Access Program. . JAMA Oncol. 5::57072
    [Crossref] [Google Scholar]
  51. Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J. 2014.. Saturation editing of genomic regions by multiplex homology-directed repair. . Nature 513::12023
    [Crossref] [Google Scholar]
  52. Flanagan SE, Patch AM, Ellard S. 2010.. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. . Genet. Test Mol. Biomark. 14::53337
    [Crossref] [Google Scholar]
  53. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, et al. 2009.. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. . N. Engl. J. Med. 361::12334
    [Crossref] [Google Scholar]
  54. Fontana E, Valeri N. 2019.. Class(y) dissection of BRAF heterogeneity: beyond non-V600. . Clin. Cancer Res. 25::689698
    [Crossref] [Google Scholar]
  55. Friedman CF, Hainsworth JD, Kurzrock R, Spigel DR, Burris HA III, et al. 2022.. Atezolizumab treatment of tumors with high tumor mutational burden from MyPathway, a multicenter, open-label, phase IIa multiple basket study. . Cancer Discov. 12::65469
    [Crossref] [Google Scholar]
  56. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, et al. 2019.. Immunotherapy in colorectal cancer: rationale, challenges and potential. . Nat. Rev. Gastroenterol. Hepatol. 16::36175
    [Crossref] [Google Scholar]
  57. Gasperini M, Starita L, Shendure J. 2016.. The power of multiplexed functional analysis of genetic variants. . Nat. Protoc. 11::178287
    [Crossref] [Google Scholar]
  58. Gershenson DM, Miller A, Brady WE, Paul J, Carty K, et al. 2022.. Trametinib versus standard of care in patients with recurrent low-grade serous ovarian cancer (GOG 281/LOGS): an international, randomised, open-label, multicentre, phase 2/3 trial. . Lancet 399::54153
    [Crossref] [Google Scholar]
  59. Goldberg KB, Blumenthal GM, McKee AE, Pazdur R. 2018.. The FDA Oncology Center of Excellence and precision medicine. . Exp. Biol. Med. 243::30812
    [Crossref] [Google Scholar]
  60. Gouda MA, Nelson BE, Buschhorn L, Wahida A, Subbiah V. 2023.. Tumor-agnostic precision medicine from the AACR GENIE database: clinical implications. . Clin. Cancer Res. 29::275360
    [Crossref] [Google Scholar]
  61. Gouda MA, Subbiah V. 2023.. Expanding the benefit: dabrafenib/trametinib as tissue-agnostic therapy for BRAF V600E–positive adult and pediatric solid tumors. . Am. Soc. Clin. Oncol. Educ. Book 43::e404770
    [Crossref] [Google Scholar]
  62. Hainsworth JD, Meric-Bernstam F, Swanton C, Hurwitz H, Spigel DR, et al. 2018.. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. . J. Clin. Oncol. 36::53642
    [Crossref] [Google Scholar]
  63. Harada G, Yang SR, Cocco E, Drilon A. 2023.. Rare molecular subtypes of lung cancer. . Nat. Rev. Clin. Oncol. 20::22949
    [Crossref] [Google Scholar]
  64. Haslam A, Olivier T, Tuia J, Prasad V. 2023.. A systematic review of basket and umbrella trials in oncology: the importance of tissue of origin and molecular target. . Eur. J. Cancer 178::22733
    [Crossref] [Google Scholar]
  65. Heitzer E, Haque IS, Roberts CES, Speicher MR. 2019.. Current and future perspectives of liquid biopsies in genomics-driven oncology. . Nat. Rev. Genet. 20::7188
    [Crossref] [Google Scholar]
  66. Hofmann MH, Gerlach D, Misale S, Petronczki M, Kraut N. 2022.. Expanding the reach of precision oncology by drugging all KRAS mutants. . Cancer Discov. 12::92437
    [Crossref] [Google Scholar]
  67. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, et al. 2020.. KRASG12C inhibition with sotorasib in advanced solid tumors. . N. Engl. J. Med. 383::120717
    [Crossref] [Google Scholar]
  68. Hyman DM, Piha-Paul SA, Won H, Rodon J, Saura C, et al. 2018.. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. . Nature 554::18994
    [Crossref] [Google Scholar]
  69. Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, et al. 2015.. Vemurafenib in multiple nonmelanoma cancers with BRAFV600 mutations. . N. Engl. J. Med. 373::72636
    [Crossref] [Google Scholar]
  70. Hyman DM, Smyth LM, Donoghue MTA, Westin SN, Bedard PL, et al. 2017a.. AKT inhibition in solid tumors with AKT1 mutations. . J. Clin. Oncol. 35::225159
    [Crossref] [Google Scholar]
  71. Hyman DM, Taylor BS, Baselga J. 2017b.. Implementing genome-driven oncology. . Cell 168::58499
    [Crossref] [Google Scholar]
  72. Iyer G, Deming DA, Demeure MJ, Federman N, McKean M, et al. 2023.. Phase 2, multicenter, open-label basket trial of nab-sirolimus for patients with malignant solid tumors harboring pathogenic inactivating alterations in TSC1 or TSC2 genes (PRECISION I). . J. Clin. Oncol. 41::TPS3168
    [Crossref] [Google Scholar]
  73. Jensen K, Konnick EQ, Schweizer MT, Sokolova AO, Grivas P, et al. 2021.. Association of clonal hematopoiesis in DNA repair genes with prostate cancer plasma cell–free DNA testing interference. . JAMA Oncol. 7::10710
    [Crossref] [Google Scholar]
  74. Jhaveri K, Chang MT, Juric D, Saura C, Gambardella V, et al. 2021.. Phase I basket study of taselisib, an isoform-selective PI3K inhibitor, in patients with PIK3CA-mutant cancers. . Clin. Cancer Res. 27::44759
    [Crossref] [Google Scholar]
  75. Jonsson P, Bandlamudi C, Cheng ML, Srinivasan P, Chavan SS, et al. 2019.. Tumour lineage shapes BRCA-mediated phenotypes. . Nature 571::57679
    [Crossref] [Google Scholar]
  76. Kaizer AM, Koopmeiners JS, Kane MJ, Roychoudhury S, Hong DS, Hobbs BP. 2019.. Basket designs: statistical considerations for oncology trials. . JCO Precis. Oncol. 3:. https://doi.org/10.1200/PO.19.00194
    [Google Scholar]
  77. Kaluziak ST, Iafrate AJ, Karlovich CA, Williams PM, Sklar J, et al. 2023.. Discovery of gene fusions in driver-negative NCI-MATCH screening samples. . J. Clin. Oncol. 41::311212
    [Crossref] [Google Scholar]
  78. Karlovich CA, Williams PM. 2019.. Clinical applications of next-generation sequencing in precision oncology. . Cancer J. 25::26471
    [Crossref] [Google Scholar]
  79. Keller L, Belloum Y, Wikman H, Pantel K. 2021.. Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond. . Br. J. Cancer 124::34558
    [Crossref] [Google Scholar]
  80. Kemp SB, Cheng N, Markosyan N, Sor R, Kim IK, et al. 2023.. Efficacy of a small-molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. . Cancer Discov. 13::298311
    [Crossref] [Google Scholar]
  81. Kerr ID, Cox HC, Moyes K, Evans B, Burdett BC, et al. 2017.. Assessment of in silico protein sequence analysis in the clinical classification of variants in cancer risk genes. . J. Community Genet. 8::8795
    [Crossref] [Google Scholar]
  82. Kim D, Herdeis L, Rudolph D, Zhao Y, Böttcher J, et al. 2023.. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. . Nature 619::16066
    [Crossref] [Google Scholar]
  83. Klein H, Mazor T, Siegel E, Trukhanov P, Ovalle A, et al. 2022.. MatchMiner: an open-source platform for cancer precision medicine. . npj Precis. Oncol. 6::69
    [Crossref] [Google Scholar]
  84. Klute KA, Rothe M, Garrett-Mayer E, Mangat PK, Nazemzadeh R, et al. 2022.. Cobimetinib plus vemurafenib in patients with colorectal cancer with BRAF mutations: results from the Targeted Agent and Profiling Utilization Registry (TAPUR) study. . JCO Precis. Oncol. 6::e2200191
    [Crossref] [Google Scholar]
  85. Köhnke T, Majeti R. 2021.. Clonal hematopoiesis: from mechanisms to clinical intervention. . Cancer Discov. 11::298797
    [Crossref] [Google Scholar]
  86. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, et al. 2019.. Encorafenib, binimetinib, and cetuximab in BRAF V600E–mutated colorectal cancer. . N. Engl. J. Med. 381::163243
    [Crossref] [Google Scholar]
  87. Krebs MG, Delord JP, Jeffry Evans TR, De Jonge M, Kim SW, et al. 2023.. Olaparib and durvalumab in patients with relapsed small cell lung cancer (MEDIOLA): an open-label, multicenter, phase 1/2, basket study. . Lung Cancer 180::107216
    [Crossref] [Google Scholar]
  88. Krzakowski MJ, Lu S, Cousin S, Smit EF, Springfeld C, et al. 2022.. Updated analysis of the efficacy and safety of entrectinib in patients (pts) with locally advanced/metastatic NTRK fusion–positive (NTRK-fp) solid tumors. . J. Clin. Oncol. 40:(16 Suppl.):3099
    [Crossref] [Google Scholar]
  89. Lai GGY, Lim TH, Lim J, Liew PJR, Kwang XL, et al. 2019.. Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor–mutant non-small-cell lung cancer. . J. Clin. Oncol. 37::87684
    [Crossref] [Google Scholar]
  90. Lara PN Jr., Paterniti DA, Chiechi C, Turrell C, Morain C, et al. 2005.. Evaluation of factors affecting awareness of and willingness to participate in cancer clinical trials. . J. Clin. Oncol. 23::928289
    [Crossref] [Google Scholar]
  91. Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, et al. 2019.. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. . J. Clin. Oncol. 37::28695
    [Crossref] [Google Scholar]
  92. Lavacchi D, Roviello G, D'Angelo A. 2020.. Tumor-agnostic treatment for cancer: when how is better than where. . Clin. Drug Investig. 40::51927
    [Crossref] [Google Scholar]
  93. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, et al. 2017.. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. . Science 357::40913
    [Crossref] [Google Scholar]
  94. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, et al. 2015.. PD-1 blockade in tumors with mismatch-repair deficiency. . N. Engl. J. Med. 372::250920
    [Crossref] [Google Scholar]
  95. Lee JB, Jung M, Beom SH, Kim GM, Kim HR, et al. 2021.. Phase 2 study of TAS-117, an allosteric akt inhibitor in advanced solid tumors harboring phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene homolog gene mutations. . Investig. New Drugs 39::136674
    [Crossref] [Google Scholar]
  96. Lemery S, Keegan P, Pazdur R. 2017.. First FDA approval agnostic of cancer site—when a biomarker defines the indication. . N. Engl. J. Med. 377::140912
    [Crossref] [Google Scholar]
  97. Li BT, Daly B, Gospodarowicz M, Bertagnolli MM, Brawley OW, et al. 2022a.. Reimagining patient-centric cancer clinical trials: a multi-stakeholder international coalition. . Nat. Med. 28::62026
    [Crossref] [Google Scholar]
  98. Li BT, Shen R, Buonocore D, Olah ZT, Ni A, et al. 2018.. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. . J. Clin. Oncol. 36::253237
    [Crossref] [Google Scholar]
  99. Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, et al. 2022b.. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. . N. Engl. J. Med. 386::24151
    [Crossref] [Google Scholar]
  100. Li MM, Cottrell CE, Pullambhatla M, Roy S, Temple-Smolkin RL, et al. 2023.. Assessments of somatic variant classification using the Association for Molecular Pathology/American Society of Clinical Oncology/College of American Pathologists guidelines: a report from the Association for Molecular Pathology. . J. Mol. Diagn. 25::6986
    [Crossref] [Google Scholar]
  101. Lim B, Lin Y, Navin N. 2020.. Advancing cancer research and medicine with single-cell genomics. . Cancer Cell 37::45670
    [Crossref] [Google Scholar]
  102. Lito P, Solomon M, Li L-S, Hansen R, Rosen N. 2016.. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. . Science 351::6048
    [Crossref] [Google Scholar]
  103. Liu LY, Bhandari V, Salcedo A, Espiritu SMG, Morris QD, et al. 2020.. Quantifying the influence of mutation detection on tumour subclonal reconstruction. . Nat. Commun. 11::6247
    [Crossref] [Google Scholar]
  104. Liu YL, Maio A, Kemel Y, Salo-Mullen EE, Sheehan M, et al. 2022.. Disparities in cancer genetics care by race/ethnicity among pan-cancer patients with pathogenic germline variants. . Cancer 128::387079
    [Crossref] [Google Scholar]
  105. Lynam EB, Leaw J, Wiener MB. 2012.. A patient focused solution for enrolling clinical trials in rare and selective cancer indications: a landscape of haystacks and needles. . Drug Inf. J. 46::47278
    [Crossref] [Google Scholar]
  106. Mangat PK, Halabi S, Bruinooge SS, Garrett-Mayer E, Alva A, et al. 2018.. Rationale and design of the Targeted Agent and Profiling Utilization Registry (TAPUR) study. . JCO Precis. Oncol. https://doi.org/10.1200/PO.18.00122
    [Google Scholar]
  107. Mansfield AS, Wei Z, Mehra R, Shaw AT, Lieu CH, et al. 2022.. Crizotinib in patients with tumors harboring ALK or ROS1 rearrangements in the NCI-MATCH trial. . NPJ Precis. Oncol. 6::13
    [Crossref] [Google Scholar]
  108. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, et al. 2020a.. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. . Lancet Oncol. 21::135365
    [Crossref] [Google Scholar]
  109. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, et al. 2020b.. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 Study. . J. Clin. Oncol. 38::110
    [Crossref] [Google Scholar]
  110. McCarthy AM, Bristol M, Domchek SM, Groeneveld PW, Kim Y, et al. 2016.. Health care segregation, physician recommendation, and racial disparities in BRCA1/2 testing among women with breast cancer. . J. Clin. Oncol. 34::261018
    [Crossref] [Google Scholar]
  111. Meric-Bernstam F, Bahleda R, Hierro C, Sanson M, Bridgewater J, et al. 2022.. Futibatinib, an irreversible FGFR1–4 inhibitor, in patients with advanced solid tumors harboring FGF/FGFR aberrations: a phase I dose-expansion study. . Cancer Discov. 12::40215
    [Crossref] [Google Scholar]
  112. Meric-Bernstam F, Beeram M, Mayordomo JI, Hanna DL, Ajani JA, et al. 2018.. Single agent activity of ZW25, a HER2-targeted bispecific antibody, in heavily pretreated HER2-expressing cancers. . J. Clin. Oncol. 36::2500
    [Crossref] [Google Scholar]
  113. Meric-Bernstam F, Hainsworth J, Bose R, Burris HA III, Friedman CF, et al. 2021.. MyPathway HER2 basket study: pertuzumab (P) + trastuzumab (H) treatment of a large, tissue-agnostic cohort of patients with HER2-positive advanced solid tumors. . J. Clin. Oncol. 39::3004
    [Crossref] [Google Scholar]
  114. Meric-Bernstam F, Hurwitz H, Raghav KPS, McWilliams RR, Fakih M, et al. 2019.. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. . Lancet Oncol. 20::51830
    [Crossref] [Google Scholar]
  115. Meric-Bernstam F, Makker V, Oaknin A, Oh D-Y, Banerjee SN, et al. 2023.. Efficacy and safety of trastuzumab deruxtecan (T-DXd) in patients (pts) with HER2-expressing solid tumors: DESTINY-PanTumor02 (DP-02) interim results. . J. Clin. Oncol. 41::LBA3000
    [Crossref] [Google Scholar]
  116. Mohd Noor A, Sarker D, Vizor S, McLennan B, Hunter S, et al. 2013.. Effect of patient socioeconomic status on access to early-phase cancer trials. . J. Clin. Oncol. 31::22430
    [Crossref] [Google Scholar]
  117. Moore DC, Guinigundo AS. 2023.. The role of biomarkers in guiding clinical decision-making in oncology. . J. Adv. Pract. Oncol. 14::1537
    [Crossref] [Google Scholar]
  118. Morganti S, Tarantino P, Ferraro E, D'Amico P, Viale G, et al. 2019.. Complexity of genome sequencing and reporting: next generation sequencing (NGS) technologies and implementation of precision medicine in real life. . Crit. Rev. Oncol. Hematol. 133::17182
    [Crossref] [Google Scholar]
  119. Murciano-Goroff YR, Drilon A, Stadler ZK. 2021.. The NCI-MATCH: a national, collaborative precision oncology trial for diverse tumor histologies. . Cancer Cell 39::2224
    [Crossref] [Google Scholar]
  120. Murciano-Goroff YR, Schram AM, Rosen EY, Won H, Gong Y, et al. 2022.. Reversion mutations in germline BRCA1/2-mutant tumors reveal a BRCA-mediated phenotype in non-canonical histologies. . Nat. Commun. 13::7182
    [Crossref] [Google Scholar]
  121. Murciano-Goroff YR, Taylor BS, Hyman DM, Schram AM. 2020a.. Toward a more precise future for oncology. . Cancer Cell 37::43142
    [Crossref] [Google Scholar]
  122. Murciano-Goroff YR, Warner AB, Wolchok JD. 2020b.. The future of cancer immunotherapy: microenvironment-targeting combinations. . Cell Res. 30::50719
    [Crossref] [Google Scholar]
  123. Murthy VH, Krumholz HM, Gross CP. 2004.. Participation in cancer clinical trials: race-, sex-, and age-based disparities. . JAMA 291::272026
    [Crossref] [Google Scholar]
  124. Nagasaka M, Ou S-HI. 2022.. NRG1 and NRG2 fusion positive solid tumor malignancies: a paradigm of ligand-fusion oncogenesis. . Trends Cancer 8::24258
    [Crossref] [Google Scholar]
  125. Oleary S, Shulman M, Ritt K, Degele M, Protomastro E, et al. 2021.. The TIME Trial Network to facilitate rapid clinical trial activation, patient screening, and enrollment in molecularly targeted trials. . J. Clin. Oncol. 39::156363
    [Crossref] [Google Scholar]
  126. Ou S-HI, Jänne PA, Leal TA, Rybkin II, Sabari JK, et al. 2022.. First-in-human phase I/Ib dose-finding study of adagrasib (MRTX849) in patients with advanced KRASG12C solid tumors (KRYSTAL-1). . J. Clin. Oncol. 40::253038
    [Crossref] [Google Scholar]
  127. Patel SP, Othus M, Chae YK, Giles FJ, Hansel DE, et al. 2020.. A phase II basket trial of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART SWOG 1609) in patients with nonpancreatic neuroendocrine tumors. . Clin. Cancer Res. 26::229096
    [Crossref] [Google Scholar]
  128. Perez CA, Henry JT, Varkaris A, Subbiah V, Spira AI, et al. 2022.. First-in-human global multi-center study of RLY-2608, a pan-mutant and isoform-selective PI3Kα inhibitor, as a single agent in patients with advanced solid tumors and in combination with fulvestrant in patients with advanced breast cancer. . J. Clin. Oncol. 40::TPS1124
    [Crossref] [Google Scholar]
  129. Polak TB, Cucchi DGJ, Schelhaas J, Ahmed SS, Khoshnaw N, et al. 2023.. Results from expanded access programs: a review of academic literature. . Drugs 83::795805
    [Crossref] [Google Scholar]
  130. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, et al. 2012.. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. . Nature 483::1003
    [Crossref] [Google Scholar]
  131. Ptashkin RN, Mandelker DL, Coombs CC, Bolton K, Yelskaya Z, et al. 2018.. Prevalence of clonal hematopoiesis mutations in tumor-only clinical genomic profiling of solid tumors. . JAMA Oncol. 4::158993
    [Crossref] [Google Scholar]
  132. Rodon J, Damian S, Furqan M, Garcia-Donas J, Imai H, et al. 2023.. Clinical and translational findings of pemigatinib in previously treated solid tumors with activating FGFR1–3 alterations in the FIGHT-207 study. . Cancer Res. 83::CT016 ( abstr. )
    [Crossref] [Google Scholar]
  133. Rosen E, Drilon A, Chakravarty D. 2022.. Precision oncology: 2022 in review. . Cancer Discov. 12::274753
    [Crossref] [Google Scholar]
  134. Salama AKS, Li S, Macrae ER, Park JI, Mitchell EP, et al. 2020.. Dabrafenib and trametinib in patients with tumors with BRAFV600E mutations: results of the NCI-MATCH trial subprotocol H. . J. Clin. Oncol. 38::3895904
    [Crossref] [Google Scholar]
  135. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, et al. 2019.. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. . Nat. Genet. 51::2026
    [Crossref] [Google Scholar]
  136. Scepura B, Chan M, Kim T, Boehmer J, Goldberg KB, Pazdur R. 2021.. Oncology expanded access and FDA's Project Facilitate. . Oncologist 26::e188082
    [Crossref] [Google Scholar]
  137. Schram AM, Chang MT, Jonsson P, Drilon A. 2017.. Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. . Nat. Rev. Clin. Oncol. 14::73548
    [Crossref] [Google Scholar]
  138. Schram AM, Colombo N, Arrowsmith E, Narayan V, Yonemori K, et al. 2023a.. Avelumab plus talazoparib in patients with BRCA1/2- or ATM-altered advanced solid tumors: results from JAVELIN BRCA/ATM, an open-label, multicenter, phase 2b, tumor-agnostic trial. . JAMA Oncol. 9::2939
    [Crossref] [Google Scholar]
  139. Schram AM, Goto K, Kim D-W, Martin-Romano P, Ou S-HI, et al. 2022.. Efficacy and safety of zenocutuzumab, a HER2 × HER3 bispecific antibody, across advanced NRG1 fusion (NRG1+) cancers. . J. Clin. Oncol. 40::105
    [Crossref] [Google Scholar]
  140. Schram AM, Subbiah V, Sullivan RJ, Cosman R, Liu J, et al. 2023b.. A first-in-human, phase 1a/1b, open-label, dose-escalation and expansion study to investigate the safety, pharmacokinetics, and antitumor activity of the RAF dimer inhibitor BGB-3245 in patients with advanced or refractory tumors. . Cancer Res. 83::CT031 ( abstr. )
    [Crossref] [Google Scholar]
  141. Serrano MJ, Garrido-Navas MC, Diaz Mochon JJ, Cristofanilli M, Gil-Bazo I, et al. 2020.. Precision prevention and cancer interception: the new challenges of liquid biopsy. . Cancer Discov. 10::163544
    [Crossref] [Google Scholar]
  142. Sharrocks K, Spicer J, Camidge DR, Papa S. 2014.. The impact of socioeconomic status on access to cancer clinical trials. . Br. J. Cancer 111::168487
    [Crossref] [Google Scholar]
  143. Shrestha Bhattarai T, Shamu T, Gorelick AN, Chang MT, Chakravarty D, et al. 2022.. AKT mutant allele–specific activation dictates pharmacologic sensitivities. . Nat. Commun. 13::2111
    [Crossref] [Google Scholar]
  144. Simon R, Roychowdhury S. 2013.. Implementing personalized cancer genomics in clinical trials. . Nat. Rev. Drug Discov. 12::35869
    [Crossref] [Google Scholar]
  145. Siozopoulou V, Smits E, De Winne K, Marcq E, Pauwels P. 2021.. NTRK fusions in sarcomas: diagnostic challenges and clinical aspects. . Diagnostics 11::478
    [Crossref] [Google Scholar]
  146. Sivakumar S, Jin DX, Rathod R, Ross J, Cantley LC, et al. 2023.. Genetic heterogeneity and tissue-specific patterns of tumors with multiple PIK3CA mutations. . Clin. Cancer Res. 29::112536
    [Crossref] [Google Scholar]
  147. Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, et al. 2021.. Sotorasib for lung cancers with KRAS p.G12C mutation. . N. Engl. J. Med. 384::237181
    [Crossref] [Google Scholar]
  148. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, et al. 2022a.. Dabrafenib plus trametinib in patients with BRAF V600E–mutant anaplastic thyroid cancer: updated analysis from the phase II ROAR basket study. . Ann. Oncol. 33::40615
    [Crossref] [Google Scholar]
  149. Subbiah V, Kreitman RJ, Wainberg ZA, Gazzah A, Lassen U, et al. 2023a.. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: the phase 2 ROAR trial. . Nat. Med. 29::110312
    [Crossref] [Google Scholar]
  150. Subbiah V, Lassen U, Élez E, Italiano A, Curigliano G, et al. 2020.. Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. . Lancet Oncol. 21::123443
    [Crossref] [Google Scholar]
  151. Subbiah V, Sahai V, Maglic D, Bruderek K, Toure BB, et al. 2023b.. RLY-4008, the first highly selective FGFR2 inhibitor with activity across FGFR2 alterations and resistance mutations. . Cancer Discov. 13::201231
    [Crossref] [Google Scholar]
  152. Subbiah V, Wolf J, Konda B, Kang H, Spira A, et al. 2022b.. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion–positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial. . Lancet Oncol. 23::126173
    [Crossref] [Google Scholar]
  153. Sullivan RJ, Hollebecque A, Flaherty KT, Shapiro GI, Rodon Ahnert J, et al. 2020.. A phase I study of LY3009120, a pan-RAF inhibitor, in patients with advanced or metastatic cancer. . Mol. Cancer Ther. 19::46067
    [Crossref] [Google Scholar]
  154. Sullivan RJ, Infante JR, Janku F, Wong DJL, Sosman JA, et al. 2018.. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. . Cancer Discov. 8::18495
    [Crossref] [Google Scholar]
  155. Syn NL, Yong WP, Goh BC, Lee SC. 2016.. Evolving landscape of tumor molecular profiling for personalized cancer therapy: a comprehensive review. . Expert Opin. Drug Metab. Toxicol. 12::91122
    [Crossref] [Google Scholar]
  156. Tanaka H, Watanabe T. 2020.. Mechanisms underlying recurrent genomic amplification in human cancers. . Trends Cancer 6::46277
    [Crossref] [Google Scholar]
  157. Tao JJ, Eubank MH, Schram AM, Cangemi N, Pamer E, et al. 2019.. Real-world outcomes of an automated physician support system for genome-driven oncology. . JCO Precis. Oncol. 3::PO.19.000066
    [Google Scholar]
  158. Tao JJ, Schram AM, Hyman DM. 2018.. Basket studies: redefining clinical trials in the era of genome-driven oncology. . Annu. Rev. Med. 69::31931
    [Crossref] [Google Scholar]
  159. Tateo V, Marchese PV, Mollica V, Massari F, Kurzrock R, Adashek JJ. 2023.. Agnostic approvals in oncology: getting the right drug to the right patient with the right genomics. . Pharmaceuticals 16::614
    [Crossref] [Google Scholar]
  160. Tejeda HA, Green SB, Trimble EL, Ford L, High JL, et al. 1996.. Representation of African-Americans, Hispanics, and whites in National Cancer Institute cancer treatment trials. . J. Natl. Cancer Inst. 88::81216
    [Crossref] [Google Scholar]
  161. Torkamani A, Schork NJ. 2008.. Prediction of cancer driver mutations in protein kinases. . Cancer Res. 68::167582
    [Crossref] [Google Scholar]
  162. Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. 2020.. Review of precision cancer medicine: evolution of the treatment paradigm. . Cancer Treat. Rev. 86::102019
    [Crossref] [Google Scholar]
  163. Uehara Y, Koyama T, Katsuya Y, Sato J, Yamamoto N. 2023.. Impact of patient travel time on disparities in precision oncology clinical trials. . J. Clin. Oncol. 41::311313
    [Crossref] [Google Scholar]
  164. Unger JM, Moseley AB, Cheung CK, Osarogiagbon RU, Symington B, et al. 2021.. Persistent disparity: socioeconomic deprivation and cancer outcomes in patients treated in clinical trials. . J. Clin. Oncol. 39::133948
    [Crossref] [Google Scholar]
  165. Unni AM, Lockwood WW, Zejnullahu K, Lee-Lin SQ, Varmus H. 2015.. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. . eLife 4::e06907
    [Crossref] [Google Scholar]
  166. US Dep. Health Hum. Serv., FDA (US Food Drug Adm.), OCE (Oncol. Cent. Excel.), CDER (Cent. Drug Eval. Res.), CBER (Cent. Biol. Eval. Res.). 2022.. Tissue agnostic drug development in oncology: guidance for industry. Draft Guid., FDA, Washington, DC:. https://www.fda.gov/media/162346/download
    [Google Scholar]
  167. Vasan N, Baselga J, Hyman DM. 2019.. A view on drug resistance in cancer. . Nature 575::299309
    [Crossref] [Google Scholar]
  168. Wagner AH, Walsh B, Mayfield G, Tamborero D, Sonkin D, et al. 2020.. A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer. . Nat. Genet. 52::44857
    [Crossref] [Google Scholar]
  169. Wahida A, Buschhorn L, Fröhling S, Jost PJ, Schneeweiss A, et al. 2023.. The coming decade in precision oncology: six riddles. . Nat. Rev. Cancer 23::4354
    [Crossref] [Google Scholar]
  170. Wang TS, Lee C, Severson P, Pelham RJ, Williams R, Miller NLG. 2023.. Exarafenib (KIN-2787) is a potent, selective pan-RAF inhibitor with activity in preclinical models of BRAF class II/III mutant and NRAS mutant melanoma. . Cancer Res. 83::4927 ( abstr. )
    [Crossref] [Google Scholar]
  171. Wen PY, Stein A, van den Bent M, De Greve J, Wick A, et al. 2022.. Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. . Lancet Oncol. 23::5364
    [Crossref] [Google Scholar]
  172. West HJ. 2017.. Novel precision medicine trial designs: umbrellas and baskets. . JAMA Oncol. 3::42323
    [Crossref] [Google Scholar]
  173. Wiener MB, Newman HM, Spradley EA. 2007.. Revolutionizing oncology patient enrollment in clinical trials: just-in-time approach. . J. Clin. Oncol. 25::657777
    [Crossref] [Google Scholar]
  174. Wirth LJ, Sherman E, Robinson B, Solomon B, Kang H, et al. 2020.. Efficacy of selpercatinib in RET-altered thyroid cancers. . N. Engl. J. Med. 383::82535
    [Crossref] [Google Scholar]
  175. Wisinski KB, Flamand Y, Wilson MA, Luke JJ, Tawbi HA, et al. 2023.. Trametinib in patients with NF1-, GNAQ-, or GNA11-mutant tumors: results from the NCI-MATCH ECOG-ACRIN trial (EAY131) subprotocols S1 and S2. . JCO Precis. Oncol. 7::e2200421
    [Crossref] [Google Scholar]
  176. Yaeger R, Weiss J, Pelster MS, Spira AI, Barve M, et al. 2023.. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C. . N. Engl. J. Med. 388::4454
    [Crossref] [Google Scholar]
  177. Yao Z, Gao Y, Su W, Yaeger R, Tao J, et al. 2019.. RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. . Nat. Med. 25::28491
    [Crossref] [Google Scholar]
  178. Yao Z, Torres NM, Tao A, Gao Y, Luo L, et al. 2015.. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. . Cancer Cell 28::37083
    [Crossref] [Google Scholar]
  179. Yao Z, Yaeger R, Rodrik-Outmezguine VS, Tao A, Torres NM, et al. 2017.. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. . Nature 548::23438
    [Crossref] [Google Scholar]
  180. Yap TA, Tan DSP, Terbuch A, Caldwell R, Guo C, et al. 2021.. First-in-human trial of the oral ataxia telangiectasia and RAD3-related (ATR) inhibitor BAY 1895344 in patients with advanced solid tumors. . Cancer Discov. 11::8091
    [Crossref] [Google Scholar]
  181. Zhou H, Liu F, Wu C, Rubin EH, Giranda VL, Chen C. 2019.. Optimal two-stage designs for exploratory basket trials. . Contemp. Clin. Trials 85::105807
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-061421-012927
Loading
/content/journals/10.1146/annurev-cancerbio-061421-012927
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error