1932

Abstract

Recent therapeutic advances have significantly improved the outcome for patients with multiple myeloma (MM). The backbone of successful standard therapy is the combination of Ikaros degraders, glucocorticoids, and proteasome inhibitors that interfere with the integrity of myeloma-specific superenhancers by directly or indirectly targeting enhancer-bound transcription factors and coactivators that control expression of MM dependency genes. T cell engagers and chimeric antigen receptor T cells redirect patients’ own T cells onto defined tumor antigens to kill MM cells. They have induced complete remissions even in end-stage patients. Unfortunately, responses to both conventional therapy and immunotherapy are not durable, and tumor heterogeneity, antigen loss, and lack of T cell fitness lead to therapy resistance and relapse. Novel approaches are under development to target myeloma-specific vulnerabilities, as is the design of multimodality immunological approaches, including and beyond T cells, that simultaneously recognize multiple epitopes to prevent antigen escape and tumor relapse.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-061421-014236
2024-06-12
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-061421-014236.html?itemId=/content/journals/10.1146/annurev-cancerbio-061421-014236&mimeType=html&fmt=ahah

Literature Cited

  1. Abdallah A-O, Cowan AJ, Leleu X, Touzeau C, Lipe B, et al. 2022.. Updated interim results from a phase 1 study of HPN217, a half-life extended tri-specific T cell activating construct (TriTAC®) targeting B cell maturation antigen (BCMA) for relapsed/refractory multiple myeloma (RRMM). . Blood 140:(Suppl. 1):728485
    [Crossref] [Google Scholar]
  2. Affer M, Chesi M, Chen WG, Keats JJ, Demchenko YN, et al. 2014.. Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. . Leukemia 28:(8):172535
    [Crossref] [Google Scholar]
  3. Alabanza LM, Xiong Y, Vu B, Webster B, Wu D, et al. 2022.. Armored BCMA CAR T cells eliminate multiple myeloma and are resistant to the suppressive effects of TGF-β. . Front. Immunol. 13::832645
    [Crossref] [Google Scholar]
  4. Amorim S, Stathis A, Gleeson M, Iyengar S, Magarotto V, et al. 2016.. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. . Lancet Haematol. 3:(4):e196204
    [Crossref] [Google Scholar]
  5. Andrejeva G, Capoccia BJ, Hiebsch RR, Donio MJ, Darwech IM, et al. 2021.. Novel SIRPα antibodies that induce single-agent phagocytosis of tumor cells while preserving T cells. . J. Immunol. 206:(4):71221
    [Crossref] [Google Scholar]
  6. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, et al. 1996.. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Français du Myélome. . N. Engl. J. Med. 335:(2):9197
    [Crossref] [Google Scholar]
  7. Attal M, Richardson PG, Rajkumar SV, San-Miguel J, Beksac M, et al. 2019.. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. . Lancet 394:(10214):2096107
    [Crossref] [Google Scholar]
  8. Azeem MI, Nooka AK, Shanmugasundaram U, Cheedarla N, Potdar S, et al. 2023.. Impaired SARS-CoV-2 variant neutralization and CD8+ T-cell responses following 3 doses of mRNA vaccines in myeloma: correlation with breakthrough infections. . Blood Cancer Discov. 4:(2):10617
    [Crossref] [Google Scholar]
  9. Bailur JK, McCachren SS, Doxie DB, Shrestha M, Pendleton K, et al. 2019.. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. . JCI Insight 5:(11):e127807
    [Crossref] [Google Scholar]
  10. Bal S, Kocoglu MH, Nadeem O, Htut M, Gregory T, et al. 2022.. Clinical activity of BMS-986393 (CC-95266), a G protein-coupled receptor class C group 5 member D (GPRC5D)-targeted chimeric antigen receptor (CAR) T cell therapy, in patients with relapsed and/or refractory (R/R) multiple myeloma (MM): first results from a phase 1, multicenter, open-label study. . Blood 140:(Suppl. 1):88385
    [Crossref] [Google Scholar]
  11. Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, et al. 2021.. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. . Lancet 398:(10297):31424
    [Crossref] [Google Scholar]
  12. Bergsagel DE, Sprague CC, Austin C, Griffith KM. 1962.. Evaluation of new chemotherapeutic agents in the treatment of multiple myeloma. IV. L-Phenylalanine mustard (NSC-8806). . Cancer Chemother. Rep. 21::8799
    [Google Scholar]
  13. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr. 2005.. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. . Blood 106:(1):296303
    [Crossref] [Google Scholar]
  14. Biederstädt A, Rezvani K. 2021.. Engineering the next generation of CAR-NK immunotherapies. . Int. J. Hematol. 114:(5):55471
    [Crossref] [Google Scholar]
  15. Chari A, Minnema MC, Berdeja JG, Oriol A, van de Donk N, et al. 2022a.. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. . N. Engl. J. Med. 387:(24):223244
    [Crossref] [Google Scholar]
  16. Chari A, Touzeau C, Schinke C, Minnema MC, Berdeja J, et al. 2022b.. Talquetamab, a G protein-coupled receptor family C group 5 member D x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): phase 1/2 results from MonumenTAL-1. . Blood 140:(Suppl. 1):38487
    [Crossref] [Google Scholar]
  17. Chari A, Vogl DT, Gavriatopoulou M, Nooka AK, Yee AJ, et al. 2019.. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. . N. Engl. J. Med. 381:(8):72738
    [Crossref] [Google Scholar]
  18. Chesi M, Mirza NN, Garbitt VM, Sharik ME, Dueck AC, et al. 2016.. IAP antagonists induce anti-tumor immunity in multiple myeloma. . Nat. Med. 22:(12):141120
    [Crossref] [Google Scholar]
  19. Cohen AD, Raje N, Fowler JA, Mezzi K, Scott EC, Dhodapkar MV. 2020.. How to train your T cells: overcoming immune dysfunction in multiple myeloma. . Clin. Cancer Res. 26:(7):154154
    [Crossref] [Google Scholar]
  20. Cortes-Selva D, Casneuf T, Vishwamitra D, Stein S, Perova T, et al. 2022.. Teclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): correlative analyses from MajesTEC-1. . Blood 140::24143
    [Crossref] [Google Scholar]
  21. Costa LJ, Kumar SK, Atrash S, Liedtke M, Kaur G, et al. 2022.. Results from the first phase 1 clinical study of the B-cell maturation antigen (BCMA) Nex T chimeric antigen receptor (CAR) T cell therapy CC-98633/BMS-986354 in patients (pts) with relapsed/refractory multiple myeloma (RRMM). . Blood 140:(Suppl. 1):136062
    [Crossref] [Google Scholar]
  22. Costa LJ, Wong SW, Bermúdez A, de la Rubia J, Mateos M-V, et al. 2019.. First clinical study of the B-cell maturation antigen (BCMA) 2+1 T cell engager (TCE) CC-93269 in patients (pts) with relapsed/refractory multiple myeloma (RRMM): interim results of a phase 1 multicenter trial. . Blood 134:(Suppl. 1):143
    [Crossref] [Google Scholar]
  23. Cowan AJ, Pont MJ, Sather BD, Turtle CJ, Till BG, et al. 2023.. γ-Secretase inhibitor in combination with BCMA chimeric antigen receptor T-cell immunotherapy for individuals with relapsed or refractory multiple myeloma: a phase 1, first-in-human trial. . Lancet Oncol. 24:(7):81122
    [Crossref] [Google Scholar]
  24. Croucher DC, Devasia AJ, Abelman DD, Mahdipour-Shirayeh A, Li Z, et al. 2023.. Single-cell profiling of multiple myeloma reveals molecular response to FGFR3 inhibitor despite clinical progression. . Cold Spring Harb. Mol. Case Stud. 9:(2):a006249
    [Crossref] [Google Scholar]
  25. Dash AB, Zhang J, Shen L, Li B, Berg D, et al. 2020.. Clinical benefit of ixazomib plus lenalidomide-dexamethasone in myeloma patients with non-canonical NF-κB pathway activation. . Eur. J. Haematol. 105:(3):27485
    [Crossref] [Google Scholar]
  26. de Matos Simoes R, Shirasaki R, Downey-Kopyscinski SL, Matthews GM, Barwick BG, et al. 2023.. Genome-scale functional genomics identify genes preferentially essential for multiple myeloma cells compared to other neoplasias. . Nat. Cancer 4:(5):75473
    [Crossref] [Google Scholar]
  27. Derman BA, Nikiforow S, Im S-Y, Ikegawa S, Prabhala RH, et al. 2023.. Updated phase I study results of PHE885, a T-Charge manufactured BCMA-directed CAR-T cell therapy, for patients (pts) with R/R multiple myeloma (RRMM). . J. Clin. Oncol. 41:(16_suppl):8004
    [Crossref] [Google Scholar]
  28. Dhodapkar MV. 2023.. The immune system in multiple myeloma and precursor states: lessons and implications for immunotherapy and interception. . Am. J. Hematol. 98:(Suppl. 2):S412
    [Google Scholar]
  29. DiLillo DJ, Olson K, Mohrs K, Meagher TC, Bray K, et al. 2021.. A BCMAxCD3 bispecific T cell–engaging antibody demonstrates robust antitumor efficacy similar to that of anti-BCMA CAR T cells. . Blood Adv. 5:(5):1291304
    [Crossref] [Google Scholar]
  30. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, et al. 2006.. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. . N. Engl. J. Med. 355:(23):240817
    [Crossref] [Google Scholar]
  31. D'Souza A, Shah N, Rodriguez C, Voorhees PM, Weisel K, et al. 2022.. A phase I first-in-human study of ABBV-383, a B-cell maturation antigen × CD3 bispecific T-cell redirecting antibody, in patients with relapsed/refractory multiple myeloma. . J. Clin. Oncol. 40:(31):357686
    [Crossref] [Google Scholar]
  32. Du J, Fu W, Lu J, Qiang W, He H, et al. 2022.. Phase I open-label single-arm study of BCMA/CD19 dual-targeting FasTCAR-T Cells (GC012F) as first-line therapy for transplant-eligible newly diagnosed high-risk multiple myeloma. . Blood 140:(Suppl. 1):88990
    [Crossref] [Google Scholar]
  33. Duan D, Wang K, Wei C, Feng D, Liu Y, et al. 2021.. The BCMA-targeted fourth-generation CAR-T cells secreting IL-7 and CCL19 for therapy of refractory/recurrent multiple myeloma. . Front. Immunol. 12::609421
    [Crossref] [Google Scholar]
  34. Durie BGM, Hoering A, Abidi MH, Rajkumar SV, Epstein J, et al. 2017.. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. . Lancet 389:(10068):51927
    [Crossref] [Google Scholar]
  35. Fonseca R, Blood EA, Oken MM, Kyle RA, Dewald GW, et al. 2002.. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. . Blood 99:(10):373541
    [Crossref] [Google Scholar]
  36. Foster K, Rees E, Ainley L, Ward G, Uddin I, et al. 2022.. OAB-024: T cell differentiation in the bone marrow during disease evolution: insights from COSMOS and integrative analysis of 317,000 single-cell transcriptomes. . Clin. Lymphoma Myeloma Leuk. 22::S1415
    [Crossref] [Google Scholar]
  37. Friedrich MJ, Neri P, Kehl N, Michel J, Steiger S, et al. 2023.. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. . Cancer Cell 41:(4):71125.e6
    [Crossref] [Google Scholar]
  38. Fu W-J, Jiang H, Dong B, Gao L, Liu L, et al. 2023.. Updated results of a phase I, open-label study of BCMA/CD19 dual-targeting fast CAR-T GC012F for patients with relapsed/refractory multiple myeloma (RRMM). . J. Clin. Oncol. 41:(16_suppl):8005
    [Crossref] [Google Scholar]
  39. Fuchs O. 2023.. Targeting cereblon in hematologic malignancies. . Blood Rev. 57::100994
    [Crossref] [Google Scholar]
  40. Gandhi UH, Cornell RF, Lakshman A, Gahvari ZJ, McGehee E, et al. 2019.. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. . Leukemia 33:(9):226675
    [Crossref] [Google Scholar]
  41. Garber K. 2022.. The PROTAC gold rush. . Nat. Biotechnol. 40:(1):1216
    [Crossref] [Google Scholar]
  42. Girgis S, Wang Lin SX, Pillarisetti K, Verona R, Vieyra D, et al. 2023.. Effects of teclistamab and talquetamab on soluble BCMA levels in patients with relapsed/refractory multiple myeloma. . Blood Adv. 7:(4):64448
    [Crossref] [Google Scholar]
  43. Grosicki S, Mellqvist U-H, Pruchniewski Ł, Crafoord J, Trudel S, et al. 2022.. Elranatamab in combination with daratumumab for patients (pts) with relapsed/refractory multiple myeloma (RRMM): results from the phase 3 MagnetisMM-5 study safety lead-in cohort. . Blood 140:(Suppl. 1):44078
    [Crossref] [Google Scholar]
  44. Gu M, Zhou X, Sohn JH, Zhu L, Jie Z, et al. 2021.. NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity. . Nat. Immunol. 22:(2):193204
    [Crossref] [Google Scholar]
  45. Guillerey C, Ferrari de Andrade L, Vuckovic S, Miles K, Ngiow SF, et al. 2015.. Immunosurveillance and therapy of multiple myeloma are CD226 dependent. . J. Clin. Investig. 207789. Erratum . 2015.. J. Clin Investig. 125:(5):2904
    [Google Scholar]
  46. Guillerey C, Harjunpää H, Carrié N, Kassem S, Teo T, et al. 2018.. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. . Blood 132:(16):168994
    [Crossref] [Google Scholar]
  47. Harrison SJ, Minnema MC, Lee HC, Spencer A, Kapoor P, et al. 2020.. A phase 1 first in human (FIH) study of AMG 701, an anti-B-cell maturation antigen (BCMA) half-life extended (HLE) BiTE®(bispecific T-cell engager) molecule, in relapsed/refractory (RR) multiple myeloma (MM). . Blood 136::2829
    [Crossref] [Google Scholar]
  48. Hurt EM, Wiestner A, Rosenwald A, Shaffer AL, Campo E, et al. 2004.. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. . Cancer Cell 5:(2):19199
    [Crossref] [Google Scholar]
  49. Jiang Z, Sun H, Yu J, Tian W, Song Y. 2021.. Targeting CD47 for cancer immunotherapy. . J. Hematol. Oncol. 14:(1):180
    [Crossref] [Google Scholar]
  50. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, et al. 2007.. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. . Cancer Cell 12:(2):13144
    [Crossref] [Google Scholar]
  51. Khan AM, Devarakonda S, Bumma N, Chaudhry M, Benson DM Jr. 2019.. Potential of NK cells in multiple myeloma therapy. . Expert Rev. Hematol. 12:(6):42535
    [Crossref] [Google Scholar]
  52. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, et al. 2016.. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. . Blood 128:(3):38494
    [Crossref] [Google Scholar]
  53. Kuehl WM, Bergsagel PL. 2012.. Molecular pathogenesis of multiple myeloma and its premalignant precursor. . J. Clin. Investig. 122:(10):345663
    [Crossref] [Google Scholar]
  54. Kumar SK, Harrison SJ, Cavo M, de la Rubia J, Popat R, et al. 2020.. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial. . Lancet Oncol. 21:(12):163042
    [Crossref] [Google Scholar]
  55. Kurtulus S, Madi A, Escobar G, Klapholz M, Nyman J, et al. 2019.. Checkpoint blockade immunotherapy induces dynamic changes in PD-1CD8+ tumor-infiltrating T cells. . Immunity 50:(1):18194.e6
    [Crossref] [Google Scholar]
  56. Lacy MQ, Hayman SR, Gertz MA, Dispenzieri A, Buadi F, et al. 2009.. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. . J. Clin. Oncol. 27:(30):500814
    [Crossref] [Google Scholar]
  57. Lam N, Trinklein ND, Buelow B, Patterson GH, Ojha N, Kochenderfer JN. 2020.. Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains. . Nat. Commun. 11:(1):283
    [Crossref] [Google Scholar]
  58. Le Calvez B, Le Bris Y, Herbreteau G, Jamet B, Bossard C, et al. 2020.. RAS mutation leading to acquired resistance to dabrafenib and trametinib therapy in a multiple myeloma patient harboring BRAF mutation. . eJHaem 1:(1):31822
    [Crossref] [Google Scholar]
  59. Ledergor G, Weiner A, Zada M, Wang SY, Cohen YC, et al. 2018.. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. . Nat. Med. 24:(12):186776
    [Crossref] [Google Scholar]
  60. Lee H, Ahn S, Maity R, Leblay N, Ziccheddu B, et al. 2023.. Mechanisms of antigen escape from BCMA- or GPRC5D-targeted immunotherapies in multiple myeloma. . Nat. Med. 29::2295306
    [Crossref] [Google Scholar]
  61. Lesokhin AM, Richter J, Trudel S, Cohen AD, Spencer A, et al. 2022.. Enduring responses after 1-year, fixed-duration cevostamab therapy in patients with relapsed/refractory multiple myeloma: early experience from a phase I study. . Blood 140:(Suppl. 1):441517
    [Crossref] [Google Scholar]
  62. Lesokhin AM, Tomasson MH, Arnulf B, Bahlis NJ, Miles Prince H, et al. 2023.. Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. . Nat. Med. 29:(3):225967
    [Crossref] [Google Scholar]
  63. Lin Y, Martin TG, Usmani SZ, Berdeja JG, Jakubowiak AJ, et al. 2023.. CARTITUDE-1 final results: phase 1b/2 study of ciltacabtagene autoleucel in heavily pretreated patients with relapsed/refractory multiple myeloma. . J. Clin. Oncol. 41:(16_suppl):8009
    [Crossref] [Google Scholar]
  64. Liu R, Gao Q, Foltz SM, Fowles JS, Yao L, et al. 2021.. Co-evolution of tumor and immune cells during progression of multiple myeloma. . Nat. Commun. 12:(1):2559
    [Crossref] [Google Scholar]
  65. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, et al. 2015.. Targeting CD38 with daratumumab monotherapy in multiple myeloma. . N. Engl. J. Med. 373:(13):120719
    [Crossref] [Google Scholar]
  66. Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, et al. 2015.. Elotuzumab therapy for relapsed or refractory multiple myeloma. . N. Engl. J. Med. 373:(7):62131
    [Crossref] [Google Scholar]
  67. Lonial S, Lee HC, Badros A, Trudel S, Nooka AK, et al. 2020.. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. . Lancet Oncol. 21:(2):20721
    [Crossref] [Google Scholar]
  68. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, et al. 2013.. Selective inhibition of tumor oncogenes by disruption of super-enhancers. . Cell 153:(2):32034
    [Crossref] [Google Scholar]
  69. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, et al. 2014.. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. . Science 343:(6168):3059
    [Crossref] [Google Scholar]
  70. Mailankody S, Devlin SM, Landa J, Nath K, Diamonte C, et al. 2022.. GPRC5D-targeted CAR T cells for myeloma. . N. Engl. J. Med. 387:(13):1196206
    [Crossref] [Google Scholar]
  71. Mailankody S, Diamonte C, Fitzgerald L, Kane P, Wang X, et al. 2021a.. Phase I first-in-class trial of MCARH109, a G protein coupled receptor class C group 5 member D (GPRC5D) targeted CAR T cell therapy in patients with relapsed or refractory multiple myeloma. . Blood 138:(Suppl. 1):827
    [Crossref] [Google Scholar]
  72. Mailankody S, Liedtke M, Sidana S, Matous JV, Chhabra S, et al. 2021b.. Universal updated phase 1 data validates the feasibility of allogeneic anti-BCMA ALLO-715 therapy for relapsed/refractory multiple myeloma. . Blood 138::651
    [Crossref] [Google Scholar]
  73. Martin T, Usmani SZ, Berdeja JG, Agha M, Cohen AD, et al. 2023.. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. . J. Clin. Oncol. 41:(6):126574
    [Crossref] [Google Scholar]
  74. Mateos M-V, Blacklock H, Schjesvold F, Oriol A, Simpson D, et al. 2019.. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial. . Lancet Haematol. 6:(9):e45969
    [Crossref] [Google Scholar]
  75. Mathur R, Zhang Z, He J, Galetto R, Gouble A, et al. 2017.. Universal SLAMF7-specific CAR T-cells as treatment for multiple myeloma. . Blood 130:(Suppl. 1):502
    [Google Scholar]
  76. Maura F, Bolli N, Angelopoulos N, Dawson KJ, Leongamornlert D, et al. 2019.. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. . Nat. Commun. 10:(1):3835
    [Crossref] [Google Scholar]
  77. Meermeier EW, Welsh SJ, Sharik ME, Du MT, Garbitt VM, et al. 2021.. Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy. . Blood Cancer Discov. 2:(4):35469
    [Crossref] [Google Scholar]
  78. Minnie SA, Kuns RD, Gartlan KH, Zhang P, Wilkinson AN, et al. 2018.. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. . Blood 132:(16):167588
    [Crossref] [Google Scholar]
  79. Moreau P, Garfall AL, van de Donk N, Nahi H, San-Miguel JF, et al. 2022.. Teclistamab in relapsed or refractory multiple myeloma. . N. Engl. J. Med. 387:(6):495505
    [Crossref] [Google Scholar]
  80. Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, et al. 2016.. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. . N. Engl. J. Med. 374:(17):162134
    [Crossref] [Google Scholar]
  81. Munshi N, Martin T, Usmani SZ, Berdeja J, Jakubowiak A, Agha ME, et al. 2023.. CARTITUDE-1 final results: phase 1b/2 study of ciltacabtagene autoleucel in heavily pretreated patients with relapsed/refractory multiple myeloma. . HemaSphere 7:(S3):e6102468
    [Crossref] [Google Scholar]
  82. Munshi NC, Anderson LD Jr., Shah N, Madduri D, Berdeja J, et al. 2021.. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. . N. Engl. J. Med. 384:(8):70516
    [Crossref] [Google Scholar]
  83. Neelapu SS, Munoz J, Locke FL, Miklos DB, Brown R, et al. 2020.. First-in-human data of ALLO-501 and ALLO-647 in relapsed/refractory large B-cell or follicular lymphoma (R/R LBCL/FL): ALPHA study. . J. Clin. Oncol. 38:(15_suppl):8002
    [Crossref] [Google Scholar]
  84. Neri P, Barwick B, Jung D, Patton J, Maity R, et al. 2024.. ETV4-dependent transcriptional plasticity maintains MYC expression and results in IMiD resistance in multiple myeloma. . Blood Cancer Discov. 5:(1):5673
    [Crossref] [Google Scholar]
  85. Nicosia L, Brooks N, Amaral F, Sinclair O, Pegg NA, et al. 2022.. Potent pre-clinical and early phase clinical activity of EP300/CBP bromodomain inhibitor CCS1477 in multiple myeloma. . Blood 140:(Suppl. 1):85253
    [Crossref] [Google Scholar]
  86. Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr., Lee KP, Boise LH. 2006.. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. . Blood 107:(12):490716
    [Crossref] [Google Scholar]
  87. Offner F, Decaux O, Hulin C, Anguille S, Michallet AS, et al. 2023.. S194: teclistamab (TEC) + nirogacestat (NIRO) in relapsed/refractory multiple myeloma (RRMM): the phase 1b MAJESTEC-2 study. . HemaSphere 7::e1257964
    [Crossref] [Google Scholar]
  88. Olson CM, Jiang B, Erb MA, Liang Y, Doctor ZM, et al. 2018.. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. . Nat. Chem. Biol. 14:(2):16370
    [Crossref] [Google Scholar]
  89. Palombella VJ, Conner EM, Fuseler JW, Destree A, Davis JM, et al. 1998.. Role of the proteasome and NF-κB in streptococcal cell wall-induced polyarthritis. . PNAS 95:(26):1567176
    [Crossref] [Google Scholar]
  90. Pihlgren M, Hall O, Carretero L, Estoppey C, Drake A, et al. 2022.. ISB 2001, a first-in-class trispecific BCMA and CD38 T cell engager designed to overcome mechanisms of escape from treatments for multiple myeloma by targeting two antigens. . Blood 140:(Suppl. 1):85859
    [Crossref] [Google Scholar]
  91. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, et al. 2003.. A phase 2 study of bortezomib in relapsed, refractory myeloma. . N. Engl. J. Med. 348:(26):260917
    [Crossref] [Google Scholar]
  92. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, et al. 2005.. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. . N. Engl. J. Med. 352:(24):248798
    [Crossref] [Google Scholar]
  93. Rodríguez Otero P, Joseph NS, Kumar SK, Lee HC, Leleu X, et al. 2022.. Trial in progress: REGN5458, a BCMAxCD3 bispecific antibody, in a phase Ib multi-cohort study of combination regimens for patients with relapsed/refractory multiple myeloma. . Blood 140:(Suppl. 1):444446
    [Crossref] [Google Scholar]
  94. Rodriguez-Otero P, Ailawadhi S, Arnulf B, Patel K, Cavo M, et al. 2023.. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. . N. Engl. J. Med. 388:(11):100214
    [Crossref] [Google Scholar]
  95. Rodríguez-Otero P, D'Souza A, Reece DE, van de Donk NW, Chari A, et al. 2022.. A novel, immunotherapy-based approach for the treatment of relapsed/refractory multiple myeloma (RRMM): updated phase 1b results for daratumumab in combination with teclistamab (a BCMA × CD3 bispecific antibody). . J. Clin. Oncol. 40:(16_suppl):8032
    [Crossref] [Google Scholar]
  96. Roehle K, Qiang L, Ventre KS, Heid D, Ali LR, et al. 2021.. cIAP1/2 antagonism eliminates MHC class I-negative tumors through T cell-dependent reprogramming of mononuclear phagocytes. . Sci. Transl. Med. 13:(594):eabf5058
    [Crossref] [Google Scholar]
  97. San-Miguel J, Dhakal B, Yong K, Spencer A, Anguille S, et al. 2023.. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. . N. Engl. J. Med. 389:(4):33547
    [Crossref] [Google Scholar]
  98. San-Miguel JF, Hungria VT, Yoon SS, Beksac M, Dimopoulos MA, et al. 2014.. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. . Lancet Oncol. 15:(11):1195206
    [Crossref] [Google Scholar]
  99. Seckinger A, Delgado JA, Moser S, Moreno L, Neuber B, et al. 2017.. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. . Cancer Cell 31:(3):396410
    [Crossref] [Google Scholar]
  100. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, et al. 1999.. Antitumor activity of thalidomide in refractory multiple myeloma. . N. Engl. J. Med. 341:(21):156571
    [Crossref] [Google Scholar]
  101. Sperling AS, Derman BA, Nikiforow S, Im S-Y, Ikegawa S, et al. 2023.. Updated phase I study results of PHE885, a T-Charge manufactured BCMA-directed CAR-T cell therapy, for patients (pts) with R/R multiple myeloma (RRMM). . J. Clin. Oncol. 41:(16_suppl):8004
    [Crossref] [Google Scholar]
  102. Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Spicka I, et al. 2015.. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. . N. Engl. J. Med. 372:(2):14252
    [Crossref] [Google Scholar]
  103. Tirier SM, Mallm JP, Steiger S, Poos AM, Awwad MHS, et al. 2021.. Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single-cell transcriptomics. . Nat. Commun. 12:(1):6960
    [Crossref] [Google Scholar]
  104. Uhlenhaut NH, Barish GD, Yu RT, Downes M, Karunasiri M, et al. 2013.. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. . Mol. Cell 49:(1):15871
    [Crossref] [Google Scholar]
  105. Usmani SZ, Schjesvold F, Oriol A, Karlin L, Cavo M, et al. 2019.. Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): a randomised, open-label, phase 3 trial. . Lancet Haematol. 6:(9):e44858
    [Crossref] [Google Scholar]
  106. Vannam R, Sayilgan J, Ojeda S, Karakyriakou B, Hu E, et al. 2021.. Targeted degradation of the enhancer lysine acetyltransferases CBP and p300. . Cell Chem. Biol. 28:(4):50314.e12
    [Crossref] [Google Scholar]
  107. Voorhees PM, Kaufman JL, Laubach J, Sborov DW, Reeves B, et al. 2020.. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial. . Blood 136:(8):93645
    [Crossref] [Google Scholar]
  108. Wang X, Walter M, Urak R, Weng L, Huynh C, et al. 2018.. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma. . Clin. Cancer Res. 24:(1):10619
    [Crossref] [Google Scholar]
  109. Weber DM, Chen C, Niesvizky R, Wang M, Belch A, et al. 2007.. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. . N. Engl. J. Med. 357:(21):213342
    [Crossref] [Google Scholar]
  110. Welsh SJ, Barwick BG, Meermeier EW, Riggs DL, Shi C-X, et al. 2024.. Transcriptional heterogeneity overcomes super-enhancers disrupting drug combinations in multiple myeloma. . Blood Cancer Discov. 5:(1):3455
    [Crossref] [Google Scholar]
  111. Works M, Soni N, Hauskins C, Sierra C, Baturevych A, et al. 2019.. Anti-B-cell maturation antigen chimeric antigen receptor T cell function against multiple myeloma is enhanced in the presence of lenalidomide. . Mol. Cancer Ther. 18:(12):224657
    [Crossref] [Google Scholar]
  112. Zavidij O, Haradhvala NJ, Mouhieddine TH, Sklavenitis-Pistofidis R, Cai S, et al. 2020.. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. . Nat. Cancer 1:(5):493506
    [Crossref] [Google Scholar]
  113. Zhang L, Zha X. 2023.. Recent advances in nuclear receptor-binding SET domain 2 (NSD2) inhibitors: an update and perspectives. . Eur. J. Med. Chem. 250::115232
    [Crossref] [Google Scholar]
  114. Zhang Y, Guan XY, Jiang P. 2020.. Cytokine and chemokine signals of T-cell exclusion in tumors. . Front. Immunol. 11::594609
    [Crossref] [Google Scholar]
  115. Zonder JA, Richter J, Bumma N, Brayer J, Hoffman JE, et al. 2022.. S189: Early, deep, and durable responses, and low rates of CRS with REGN5458, a BCMAxCD3 bispecific antibody, in a phase 1/2 first-in-human study in patients with relapsed/refractory multiple myeloma. . HemaSphere 6::9091
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-061421-014236
Loading
/content/journals/10.1146/annurev-cancerbio-061421-014236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error