1932

Abstract

The principle of independent drug action proposes that responses to drug combinations result from responses to one or the other of two combining agents, but not both. Explorations of biological pathway interactions in signal transduction and immunobiology as synergy have not been connected to mathematical demonstrations of above–independent action activity, which would define pharmacologic synergy. We review independent action as the explanation for cancer drug combinations and find no evidence for pharmacologic synergy. Rather, a measure of correlation of response () when positive can explain below–independent action results, and negative correlation can explain above–independent action results. Anticorrelated responses may be a mathematical demonstration of collateral sensitivity, which can achieve above–independent action activity. Inappropriate use of biological concepts of synergy may be contributing to high failure rates for immuno-oncology clinical trials, indicating a need for more rigorous applications of independent action to the development of cancer drug combination therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-061421-020411
2023-04-11
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/7/1/annurev-cancerbio-061421-020411.html?itemId=/content/journals/10.1146/annurev-cancerbio-061421-020411&mimeType=html&fmt=ahah

Literature Cited

  1. Avery L, Wasserman S. 1992. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet. 8:312–16
    [Google Scholar]
  2. Benson JD, Chen YN, Cornell-Kennon SA, Dorsch M, Kim S et al. 2006. Validating cancer drug targets. Nature 441:451–56
    [Google Scholar]
  3. Berenbaum MC. 1989. What is synergy?. Pharmacol. Rev. 41:93–141
    [Google Scholar]
  4. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y et al. 2004. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 64:1140–45
    [Google Scholar]
  5. Bliss CI. 1935. The calculation of the dosage-mortality curve. Ann. Appl. Biol. 22:134–67
    [Google Scholar]
  6. Bliss CI. 1939. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26:585–615
    [Google Scholar]
  7. Boshuizen J, Peeper DS. 2020. Rational cancer treatment combinations: an urgent clinical need. Mol. Cell 78:1002–18
    [Google Scholar]
  8. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S et al. 2000. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther. 295:139–45
    [Google Scholar]
  9. Chen C, Liu F, Ren Y, Suttner L, Sun Z et al. 2020. Independent drug action and its statistical implications for development of combination therapies. Contemp. Clin. Trials 98:106126
    [Google Scholar]
  10. Chen C, Sun LZ, Ren Y, Rubin EH, Weinstock DM, Schmidt EV. 2022. Assessment of added activity of an antitumor agent. Contemp. Clin. Trials 123:106990
    [Google Scholar]
  11. Chen DS, Mellman I. 2013. Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10
    [Google Scholar]
  12. Chen L, Ashe S, Brady WA, Hellstrom I, Hellstrom KE et al. 1992. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71:1093–102
    [Google Scholar]
  13. Chou TC. 2010. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70:440–46
    [Google Scholar]
  14. Chou TC, Talaly P. 1977. A simple generalized equation for the analysis of multiple inhibitions of Michaelis-Menten kinetic systems. J. Biol. Chem. 252:186438–42
    [Google Scholar]
  15. Cortes J, Kantarjian H. 2005. New targeted approaches in chronic myeloid leukemia. J. Clin. Oncol. 23:6316–24
    [Google Scholar]
  16. Curran MA, Montalvo W, Yagita H, Allison JP. 2010. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. PNAS 107:4275–80
    [Google Scholar]
  17. Davis FR. 2008. Unraveling the complexities of joint toxicity of multiple chemicals at the tox lab and the FDA. Environ. Hist. 13:674–83
    [Google Scholar]
  18. de Miguel M, Calvo E 2020. Clinical challenges of immune checkpoint inhibitors. Cancer Cell 38:3326–33
    [Google Scholar]
  19. Desai J, Voskoboynik M, Markman B, Frentzas S, Foster P et al. 2020. Preliminary safety and efficacy data of BGB-A333, an anti-PD-L1 monoclonal antibody, alone and in combination with tislelizumab in patients with advanced solid tumors. Cancer Res. 80:CT253 Abstr. )
    [Google Scholar]
  20. Eggermont AM, Kroemer G, Zitvogel L. 2013. Immunotherapy and the concept of a clinical cure. Eur. J. Cancer 49:2965–67
    [Google Scholar]
  21. Falzone L, Salomone S, Libra M 2018. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol. 9:1300
    [Google Scholar]
  22. FDA (US Food Drug Admin.) 2018a. Accelerated approval Guid. Doc., FDA Silver Spring, MD: https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/accelerated-approval
  23. FDA (US Food Drug Admin.) 2018b. Clinical trial endpoints for the approval of cancer drugs and biologics Guid. Doc., FDA Silver Spring, MD: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-trial-endpoints-approval-cancer-drugs-and-biologics
  24. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA et al. 2010. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363:809–19
    [Google Scholar]
  25. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C et al. 2012. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367:107–14
    [Google Scholar]
  26. Frei E 3rd, Freireich EJ, Gehan E, Pinkel D, Holland JF et al. 1961. Studies of sequential and combination antimetabolite therapy in acute leukemia: 6-mercaptopurine and methotrexate. Blood 18:431–54
    [Google Scholar]
  27. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E et al. 2018. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378:2078–92
    [Google Scholar]
  28. Gravis G, Billon E, Baldini C, Massard C, Hilgers W et al. 2018. Unexpected response to cisplatin rechallenge after immune checkpoint inhibitors in patients with metastatic urothelial carcinoma refractory to platinum regimen. Eur. J. Cancer 104:236–38
    [Google Scholar]
  29. Greco WR, Bravo G, Parsons JC. 1995. The search for synergy: a critical review from a response surface perspective. Pharmacol. Rev. 47:331–85
    [Google Scholar]
  30. Hall MD, Handley MD, Gottesman MM. 2009. Is resistance useless? Multidrug resistance and collateral sensitivity. Trends Pharmacol. Sci. 30:546–56
    [Google Scholar]
  31. Hunter T. 2007. Treatment for chronic myelogenous leukemia: the long road to imatinib. J. Clin. Investig. 117:2036–43
    [Google Scholar]
  32. Hutchison DJ. 1963. Cross resistance and collateral sensitivity studies in cancer chemotherapy. Adv. Cancer. Res. 7:235–50
    [Google Scholar]
  33. Jensen PB, Holm B, Sorensen M, Christensen IJ, Sehested M. 1997. In vitro cross-resistance and collateral sensitivity in seven resistant small-cell lung cancer cell lines: preclinical identification of suitable drug partners to taxotere, taxol, topotecan and gemcitabin. Br. J. Cancer 75:869–77
    [Google Scholar]
  34. Kacew AJ, Harris EJ, Lorch JH, Schoenfeld JD, Margalit DN et al. 2020. Chemotherapy after immune checkpoint blockade in patients with recurrent, metastatic squamous cell carcinoma of the head and neck. Oral Oncol. 105:104676
    [Google Scholar]
  35. Kaufmann SH. 2008. Paul Ehrlich: founder of chemotherapy. Nat. Rev. Drug Discov. 7:373
    [Google Scholar]
  36. Keytruda® [package insert] 2020. Keytruda (pembrolizumab) injection, for intravenous use Merck Sharp & Dohme LLC, Merck & Co., Inc. Rahway, NJ, USA:
  37. Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G et al. 2014. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371:1867–76
    [Google Scholar]
  38. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL et al. 2015. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373:23–34
    [Google Scholar]
  39. Lee CH, Shah AY, Rasco D, Rao A, Taylor MH et al. 2021. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (study 111/KEYNOTE-146): a phase 1b/2 study. Lancet Oncol. 22:946–58
    [Google Scholar]
  40. Levine AJ, Hu W, Feng Z, Gil G. 2007. Reconstructing signal transduction pathways. Ann. N.Y. Acad. Sci. 1115:32–50
    [Google Scholar]
  41. Loewe S. 1927. Die Mischarznei. Klin. Wochenschr. 6:1077–85
    [Google Scholar]
  42. Loewe S, Muischnek H. 1926. Über Kombinationswirkungen. Naunyn-Schmiedebergs Arch. . exp. Pathol. Pharmakol. 114:313–26
    [Google Scholar]
  43. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F et al. 2015. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386:444–51
    [Google Scholar]
  44. Kelvin Lord 1889. Electrical units of measurement. Popular Lectures and Addresses, Vol. 1 Constitution of Matter73–136. London: Macmillan
    [Google Scholar]
  45. Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC et al. 2019. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393:1819–30
    [Google Scholar]
  46. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. 1999. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–51
    [Google Scholar]
  47. Oncol. Cent. Excell 2021. Project Confirm Web Resour., Oncol. Cent. Excell., US Food Drug Admin. Silver Spring, MD:
  48. O'Neil J, Benita Y, Feldman I, Chenard M, Roberts B et al. 2016. An unbiased oncology compound screen to identify novel combination strategies. Mol. Cancer Ther. 15:1155–62
    [Google Scholar]
  49. O'Riordan E, Bennett MW, Daly L, Power DG. 2021. The implication of BRAF mutation in advanced colorectal cancer. Ir. J. Med. Sci. 191:2467–74
    [Google Scholar]
  50. Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. 2014. Immune modulation in cancer with antibodies. Annu. Rev. Med. 65:185–202
    [Google Scholar]
  51. Paigen K. 1962. The prediction of growth-inhibitory drug combinations showing enhanced differential toxicity and collateral sensitivity. Cancer Res. 22:1290–96
    [Google Scholar]
  52. Palmer AC, Izar B, Hwangbo H, Sorger PK. 2022. Predictable clinical benefits without evidence of synergy in trials of combination therapies with immune-checkpoint inhibitors. Clin. Cancer Res. 28:368–77
    [Google Scholar]
  53. Palmer AC, Sorger PK. 2017. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 171:1678–91.e13
    [Google Scholar]
  54. Park SE, Lee SH, Ahn JS, Ahn MJ, Park K, Sun JM 2018. Increased response rates to salvage chemotherapy administered after PD-1/PD-L1 inhibitors in patients with non-small cell lung cancer. J. Thorac. Oncol. 13:106–11
    [Google Scholar]
  55. Perego P, Romanelli S, Carenini N, Magnani I, Leone R et al. 1998. Ovarian cancer cisplatin-resistant cell lines: multiple changes including collateral sensitivity to Taxol. Ann. Oncol. 9:423–30
    [Google Scholar]
  56. Pestana RC, Becnel M, Rubin ML, Torman DK, Crespo J et al. 2020. Response rates and survival to systemic therapy after immune checkpoint inhibitor failure in recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol. 101:104523
    [Google Scholar]
  57. Plana D, Palmer AC, Sorger PK. 2022. Independent drug action in combination therapy: implications for precision oncology. Cancer Discov. 12:606–24
    [Google Scholar]
  58. Pomeroy AE, Schmidt EV, Sorger PK, Palmer AC. 2022. Drug independence and the curability of cancer by combination chemotherapy. Trends Cancer 8:915–29
    [Google Scholar]
  59. Powles T, Park SH, Voog E, Caserta C, Valderrama BP et al. 2020. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. New Engl. J. Med. 383:1218–30
    [Google Scholar]
  60. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R et al. 2012. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–3
    [Google Scholar]
  61. Rodriguez-Abreu D, Powell SF, Hochmair M, Gadgeel SM, Esteban E et al. 2020. Final analysis of KEYNOTE-189: pemetrexed-platinum chemotherapy (chemo) with or without pembrolizumab (pembro) in patients (pts) with previously untreated metastatic nonsquamous non-small cell lung cancer (NSCLC). J. Clin. Oncol. 38:9582–82
    [Google Scholar]
  62. Rutman RJ. 1964. Experimental chemotherapy studies. V. The collateral sensitivity to alkylating agents of several antimetabolite-resistant ascites tumors in mice. Cancer Res. 24:634–38
    [Google Scholar]
  63. Saleh K, Daste A, Martin N, Pons-Tostivint E, Auperin A et al. 2019. Response to salvage chemotherapy after progression on immune checkpoint inhibitors in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Eur. J. Cancer 121:123–29
    [Google Scholar]
  64. Schmidt EV, Chisamore MJ, Chaney MF, Maradeo ME, Anderson J et al. 2020. Assessment of clinical activity of PD-1 checkpoint inhibitor combination therapies reported in clinical trials. JAMA Netw. Open 3:e1920833
    [Google Scholar]
  65. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE et al. 2001. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–11
    [Google Scholar]
  66. Shilts R. 1988. And the Band Played On New York: St. Martin's
  67. Solit DB, Rosen N. 2014. Towards a unified model of RAF inhibitor resistance. Cancer Discov. 4:27–30
    [Google Scholar]
  68. Sun LZ, Wu C, Li X, Chen C, Schmidt EV. 2021. Independent action models and prediction of combination treatment effects for response rate, duration of response and tumor size change in oncology drug development. Contemp. Clin. Trials 106:106434
    [Google Scholar]
  69. Szybalski W, Bryson V. 1952. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 64:489–99
    [Google Scholar]
  70. Tang J, Wennerberg K, Aittokallio T. 2015. What is synergy? The Saariselkä agreement revisited. Front. Pharmacol. 6:181
    [Google Scholar]
  71. Tsai J, Lee JT, Wang W, Zhang J, Cho H et al. 2008. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. PNAS 105:3041–46
    [Google Scholar]
  72. Veldstra H. 1956. Synergism and potentiation with special reference to the combination of structural analogues. Pharmacol. Rev. 8:339–87
    [Google Scholar]
  73. Voss MH, Azad AA, Hansen AR, Gray JE, Welsh SJ et al. 2019. 1269P—results from a randomised phase I/II trial evaluating the safety and antitumour activity of anti-PD-1 (MEDI0680)/anti-PD-L1 (durvalumab) versus anti-PD-1 (nivolumab) alone in metastatic clear cell renal cell carcinoma (ccRCC). Ann. Oncol. 30:v516
    [Google Scholar]
  74. Weber JS, Gibney G, Sullivan RJ, Sosman JA, Slingluff CL Jr. et al. 2016. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncol. 17:943–55
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-061421-020411
Loading
/content/journals/10.1146/annurev-cancerbio-061421-020411
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error