1932

Abstract

Immune checkpoint inhibitors induce significant and durable treatment responses in about 20% of all cancers, but many patients have natural resistance to current immunotherapies. The past decade of technological advances has resulted in large-scale profiling of many cancers and their tumor microenvironments, rapidly expanding our understanding of the mechanisms utilized by tumors to create immune-resistant microenvironments. In this review, we discuss key factors that create immune resistance and emerging concepts that are redefining how we view immune resistance, as well as highlight novel strategies that aim to convert immune-resistant into immune-sensitive tumors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-061421-040258
2023-04-11
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/7/1/annurev-cancerbio-061421-040258.html?itemId=/content/journals/10.1146/annurev-cancerbio-061421-040258&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmadi A, Najafi M, Farhood B, Mortezaee K. 2019. Transforming growth factor-β signaling: tumorigenesis and targeting for cancer therapy. J. Cell. Physiol. 234:812173–87
    [Google Scholar]
  2. Akatsuka Y. 2020. TCR-like CAR-T cells targeting MHC-bound minor histocompatibility antigens. Front. Immunol. 11:257
    [Google Scholar]
  3. Allegrezza MJ, Rutkowski MR, Stephen TL, Svoronos N, Tesone AJ et al. 2016. IL15 agonists overcome the immunosuppressive effects of MEK inhibitors. Cancer Res. 76:92561–72
    [Google Scholar]
  4. Alves Costa Silva C, Facchinetti F, Routy B, Derosa L 2020. New pathways in immune stimulation: targeting OX40. ESMO Open. 5:1e000573
    [Google Scholar]
  5. Amjad MT, Chidharla A, Kasi A 2022. Cancer Chemotherapy Treasure Island, FL: StatPearls
  6. Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. 2021. STING agonists as cancer therapeutics. Cancers 13:11 2695.
    [Google Scholar]
  7. Arce Vargas F, Furness AJS, Solomon I, Joshi K, Mekkaoui L et al. 2017. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46:4577–86
    [Google Scholar]
  8. Au ED, Desai AP, Koniaris LG, Zimmers TA. 2016. The MEK-inhibitor selumetinib attenuates tumor growth and reduces IL-6 expression but does not protect against muscle wasting in Lewis lung cancer cachexia. Front. Physiol. 7:682
    [Google Scholar]
  9. Bajor DL, Mick R, Riese MJ, Huang AC, Sullivan B et al. 2018. Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. OncoImmunology 7:10e1468956
    [Google Scholar]
  10. Balasubramanian A, John T, Asselin-Labat M-L. 2022. Regulation of the antigen presentation machinery in cancer and its implication for immune surveillance. Biochem. Soc. Trans. 50:2825–37
    [Google Scholar]
  11. Barker HE, Paget JTE, Khan AA, Harrington KJ. 2015. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15:7409–25
    [Google Scholar]
  12. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD et al. 2012. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:6822–35
    [Google Scholar]
  13. Becker JC, Schrama D. 2013. The dark side of cyclophosphamide: cyclophosphamide-mediated ablation of regulatory T cells. J. Investig. Dermatol. 133:61462–65
    [Google Scholar]
  14. Bejarano L, Jordāo MJC, Joyce JA. 2021. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11:4933–59
    [Google Scholar]
  15. Ben-Shmuel A, Biber G, Barda-Saad M. 2020. Unleashing natural killer cells in the tumor microenvironment—the next generation of immunotherapy?. Front. Immunol. 11:275
    [Google Scholar]
  16. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA et al. 2019. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120:6–15
    [Google Scholar]
  17. Blass E, Ott PA. 2021. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18:4215–29
    [Google Scholar]
  18. Bracci L, Schiavoni G, Sistigu A, Belardelli F. 2014. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 21:15–25
    [Google Scholar]
  19. Bronger H, Singer J, Windmüller C, Reuning U, Zech D et al. 2016. CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. Br. J. Cancer 115:5553–63
    [Google Scholar]
  20. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL et al. 2014. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26:5638–52
    [Google Scholar]
  21. Cannarile MA, Weisser M, Jacob W, Jegg A-M, Ries CH, Rüttinger D. 2017. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5:153
    [Google Scholar]
  22. Carlino MS, Larkin J, Long GV. 2021. Immune checkpoint inhibitors in melanoma. Lancet 398:103041002–14
    [Google Scholar]
  23. Chen DS, Mellman I. 2013. Oncology meets immunology: the cancer-immunity cycle. Immunity 39:11–10
    [Google Scholar]
  24. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. 2019. Tumor-associated macrophages: an accomplice in solid tumor progression. J. Biomed. Sci. 26:78
    [Google Scholar]
  25. Cogels MM, Rouas R, Ghanem GE, Martinive P, Awada A et al. 2021. Humanized mice as a valuable pre-clinical model for cancer immunotherapy research. Front. Oncol. 11:784947
    [Google Scholar]
  26. Cornel AM, Mimpen IL, Nierkens S. 2020. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers 12:71760
    [Google Scholar]
  27. D'Angelo SP, Van Tine BA, Attia S, Blay J-Y, Strauss SJ et al. 2021. SPEARHEAD-1: a phase 2 trial of afamitresgene autoleucel (formerly ADP-A2M4) in patients with advanced synovial sarcoma or myxoid/round cell liposarcoma. J. Clin. Oncol. 39:11504–11504
    [Google Scholar]
  28. Datta M, Coussens LM, Nishikawa H, Hodi FS, Jain RK. 2019. Reprogramming the tumor microenvironment to improve immunotherapy: emerging strategies and combination therapies. Am. Soc. Clin. Oncol. Educ. Book 39:39165–74
    [Google Scholar]
  29. Demaria S, Coleman CN, Formenti SC. 2016. Radiotherapy: changing the game in immunotherapy. Trends Cancer 2:6286–94
    [Google Scholar]
  30. Dennison L, Ruggieri A, Mohan A, Leatherman J, Cruz K et al. 2021. Context-dependent immunomodulatory effects of MEK inhibition are enhanced with T-cell agonist therapy. Cancer Immunol. Res. 9:101187–1201
    [Google Scholar]
  31. Dhatchinamoorthy K, Colbert JD, Rock KL. 2021. Cancer immune evasion through loss of MHC class I antigen presentation. Front. Immunol. 12:636568
    [Google Scholar]
  32. Dong Y, Wan Z, Gao X, Yang G, Liu L 2021. Reprogramming immune cells for enhanced cancer immunotherapy: targets and strategies. Front. Immunol. 12:609762
    [Google Scholar]
  33. Duan Z, Luo Y. 2021. Targeting macrophages in cancer immunotherapy. Signal Transduct. Target. Ther. 6:127
    [Google Scholar]
  34. Duhen R, Ballesteros-Merino C, Frye AK, Tran E, Rajamanickam V et al. 2021. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat. Commun. 12:1047
    [Google Scholar]
  35. Duhen T, Duhen R, Montler R, Moses J, Moudgil T et al. 2018. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9:2724
    [Google Scholar]
  36. Dunn GP, Bruce AT, Sheehan KCF, Shankaran V, Uppaluri R et al. 2005. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6:7722–29
    [Google Scholar]
  37. Ebert PJR, Cheung J, Yang Y, McNamara E, Hong R et al. 2016. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44:3609–21
    [Google Scholar]
  38. Edeline J, Houot R, Marabelle A, Alcantara M. 2021. CAR-T cells and BiTEs in solid tumors: challenges and perspectives. J. Hematol. Oncol. 14:65
    [Google Scholar]
  39. Eng C, Kim TW, Bendell J, Argilés G, Tebbutt NC et al. 2019. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 20:6849–61
    [Google Scholar]
  40. Etxeberria I, Glez-Vaz J, Teijeira Á, Melero I. 2020. New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open 4:Suppl. 3e000733
    [Google Scholar]
  41. Galon J, Bruni D. 2019. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18:3197–218
    [Google Scholar]
  42. Geltink RIK, Kyle RL, Pearce EL 2018. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36:461–88
    [Google Scholar]
  43. Goebeler M-E, Bargou RC. 2020. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 17:7418–34
    [Google Scholar]
  44. Gogas H, Dréno B, Larkin J, Demidov L, Stroyakovskiy D et al. 2021. Cobimetinib plus atezolizumab in BRAFV600 wild-type melanoma: primary results from the randomized phase III IMspire170 study. Ann. Oncol. 32:3384–94
    [Google Scholar]
  45. Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ et al. 2018. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 8:6730–49
    [Google Scholar]
  46. Grilley-Olson JE, Curti BD, Smith DC, Goel S, Gajewski T et al. 2018. SEA-CD40, a non-fucosylated CD40 agonist: interim results from a phase 1 study in advanced solid tumors. J. Clin. Oncol. 36:3093 (Abstr.)
    [Google Scholar]
  47. Haanen JBAG. 2017. Converting cold into hot tumors by combining immunotherapies. Cell 170:61055–56
    [Google Scholar]
  48. Hamarsheh S, Groß O, Brummer T, Zeiser R. 2020. Immune modulatory effects of oncogenic KRAS in cancer. Nat. Commun. 11:5439
    [Google Scholar]
  49. Hao Q, Vadgama JV, Wang P. 2020. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun. Signal. 18:82
    [Google Scholar]
  50. Haslam A, Prasad V. 2019. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2:5e192535
    [Google Scholar]
  51. Heintzman DR, Fisher EL, Rathmell JC. 2022. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell. Mol. Immunol. 19:3316–26
    [Google Scholar]
  52. Ho WJ, Jaffee EM, Zheng L. 2020. The tumour microenvironment in pancreatic cancer—clinical challenges and opportunities. Nat. Rev. Clin. Oncol. 17:9527–40
    [Google Scholar]
  53. Hong M, Clubb JD, Chen YY. 2020. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38:4473–88
    [Google Scholar]
  54. Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D et al. 2022. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40:6656–73.e7
    [Google Scholar]
  55. Hwang MS, Miller MS, Thirawatananond P, Douglass J, Wright KM et al. 2021. Structural engineering of chimeric antigen receptors targeting HLA-restricted neoantigens. Nat. Commun. 12:5271
    [Google Scholar]
  56. Jagodinsky JC, Harari PM, Morris ZS. 2020. The promise of combining radiation therapy with immunotherapy. Int. J. Radiat. Oncol. Biol. Phys. 108:6–16
    [Google Scholar]
  57. Jang G-Y, Lee JW, Kim YS, Lee SE, Han HD et al. 2020. Interactions between tumor-derived proteins and Toll-like receptors. Exp. Mol. Med. 52:121926–35
    [Google Scholar]
  58. Janopaul-Naylor JR, Shen Y, Qian DC, Buchwald ZS. 2021. The abscopal effect: a review of pre-clinical and clinical advances. Int. J. Mol. Sci. 22:2011061
    [Google Scholar]
  59. Jiang M, Chen P, Wang L, Li W, Chen B et al. 2020. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol. 13:81
    [Google Scholar]
  60. Johnson P, Challis R, Chowdhury F, Gao Y, Harvey M et al. 2015. Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research UK phase I study. Clin. Cancer Res. 21:61321–28
    [Google Scholar]
  61. Jou J, Harrington KJ, Zocca M-B, Ehrnrooth E, Cohen EEW 2021. The changing landscape of therapeutic cancer vaccines—novel platforms and neoantigen identification. Clin. Cancer Res. 27:3689–703
    [Google Scholar]
  62. Kalinin RS, Ukrainskaya VM, Chumakov SP, Moysenovich AM, Tereshchuk VM et al. 2021. Engineered removal of PD-1 from the surface of CD19 CAR-T cells results in increased activation and diminished survival. Front. Mol. Biosci. 8:745286
    [Google Scholar]
  63. Katoh H. 2022. Targeted delivery and reprogramming of myeloid-derived suppressor cells (MDSCs) in cancer. Systemic Drug Delivery Strategies MM Amiji, LS Milane 409–35. San Diego, CA: Elsevier
    [Google Scholar]
  64. Kim B-G, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. 2021. Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol. 14:55
    [Google Scholar]
  65. Kim E, Sahai V, Abel E, Griffith K, Greenson J, Takebe N 2014. Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin. Clin. Cancer Res. 20:235937–45
    [Google Scholar]
  66. Kim K, Kim HS, Kim JY, Jung H, Sun J-M et al. 2020. Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nat. Commun. 11:951
    [Google Scholar]
  67. Kinker GS, Vitiello GAF, Ferreira WAS, Chaves AS, Cordeiro de Lima VC, da Silva Medina T. 2021. B cell orchestration of anti-tumor immune responses: a matter of cell localization and communication. Front. Cell Dev. Biol. 9:678127
    [Google Scholar]
  68. Kohli K, Pillarisetty VG, Kim TS. 2022. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 29:10–21
    [Google Scholar]
  69. Li A, Yi M, Qin S, Chu Q, Luo S, Wu K. 2019. Prospects for combining immune checkpoint blockade with PARP inhibition. J. Hematol. Oncol. 12:98
    [Google Scholar]
  70. Li C, Jiang P, Wei S, Xu X, Wang J. 2020. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer 19:116
    [Google Scholar]
  71. Li C, Xu X, Wei S, Jiang P, Xue L et al. 2021. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J. Immunother. Cancer 9:1e001341
    [Google Scholar]
  72. Li F, Li C, Cai X, Xie Z, Zhou L et al. 2021. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: a systematic review and meta-analysis. eClinicalMedicine 41:101134
    [Google Scholar]
  73. Lim E, Jhaveri KL, Perez-Fidalgo JA, Bellet M, Boni V et al. 2020. A phase Ib study to evaluate the oral selective estrogen receptor degrader GDC-9545 alone or combined with palbociclib in metastatic ER-positive HER2-negative breast cancer. J. Clin. Oncol. 38:1023
    [Google Scholar]
  74. Lin C-C. 2021. Clinical development of colony-stimulating factor 1 receptor (CSF1R) inhibitors. J. Immunother. Precision Oncol. 4:2105–14
    [Google Scholar]
  75. Lizardo DY, Kuang C, Hao S, Yu J, Huang Y, Zhang L. 2020. Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: from bench to bedside. Biochim. Biophys. Acta Rev. Cancer 1874:2188447
    [Google Scholar]
  76. Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C et al. 2016. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res. 22:61499–509
    [Google Scholar]
  77. Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV et al. 2021. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res. Ther. 12:81
    [Google Scholar]
  78. McGranahan N, Swanton C. 2019. Neoantigen quality, not quantity. Sci. Transl. Med. 11:506eaax7918
    [Google Scholar]
  79. Melief CJM, van Hall T, Arens R, Ossendorp F, van der Burg SH. 2015. Therapeutic cancer vaccines. J. Clin. Investig. 125:93401–12
    [Google Scholar]
  80. Mitch L. 2018. Mutation burden predicts anti-PD-1 response. Cancer Discov. 8:3258
    [Google Scholar]
  81. Moreno Ayala MA, Li Z, DuPage M. 2019. Treg programming and therapeutic reprogramming in cancer. Immunology 157:3198–209
    [Google Scholar]
  82. Mugarza E, van Maldegem F, Boumelha J, Moore C, Rana S et al. 2022. Therapeutic KRASG12C inhibition drives effective interferon-mediated antitumor immunity in immunogenic lung cancers. Sci. Adv. 8:29eabm8780
    [Google Scholar]
  83. Munn LL, Jain RK. 2019. Vascular regulation of antitumor immunity. Science 365:6453544–45
    [Google Scholar]
  84. Nishikawa H, Koyama S. 2021. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies. J. Immunother. Cancer 9:7e002591
    [Google Scholar]
  85. Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ et al. 2016. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17:5651–62
    [Google Scholar]
  86. Onda M, Kobayashi K, Pastan I. 2019. Depletion of regulatory T cells in tumors with an anti-CD25 immunotoxin induces CD8 T cell-mediated systemic antitumor immunity. PNAS 116:104575–82
    [Google Scholar]
  87. Oni A, Cogdill A, Dang P, Udayakumar D, Njauw C, Sloss C. 2010. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70:5213–19
    [Google Scholar]
  88. Ott PA, Hu-Lieskovan S, Chmielowski B, Govindan R, Naing A et al. 2020. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 183:2347–62.e24
    [Google Scholar]
  89. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C et al. 2015. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 28:6831–33
    [Google Scholar]
  90. Paston SJ, Brentville VA, Symonds P, Durrant LG. 2021. Cancer vaccines, adjuvants, and delivery systems. Front. Immunol. 12:627932
    [Google Scholar]
  91. Patel U, Abernathy J, Savani BN, Oluwole O, Sengsayadeth S, Dholaria B. 2022. CAR T cell therapy in solid tumors: a review of current clinical trials. eJHaem 3:S124–31
    [Google Scholar]
  92. Patidar A, Selvaraj S, Sarode A, Chauhan P, Chattopadhyay D, Saha B. 2018. DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine 104:114–23
    [Google Scholar]
  93. Paz-Ares L, Kim TM, Vicente D, Felip E, Lee DH et al. 2020. Bintrafusp Alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in second-line treatment of patients with NSCLC: results from an expansion cohort of a phase 1 trial. J. Thorac. Oncol. 15:71210–22
    [Google Scholar]
  94. Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C et al. 2016. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 44:2343–54
    [Google Scholar]
  95. Pienta KJ, Machiels J-P, Schrijvers D, Alekseev B, Shkolnik M et al. 2013. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Investig. New Drugs 31:3760–68
    [Google Scholar]
  96. Pittet MJ, Michielin O, Migliorini D. 2022. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19:402–21
    [Google Scholar]
  97. Rafiq S, Hackett CS, Brentjens RJ. 2020. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17:3147–67
    [Google Scholar]
  98. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. 1996. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl. Cancer Inst. 88:2100–108
    [Google Scholar]
  99. Revenko A, Carnevalli LS, Sinclair C, Johnson B, Peter A et al. 2022. Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer. J. Immunother. Cancer 10:4e003892
    [Google Scholar]
  100. Roudko V, Cimen Bozkus C, Greenbaum B, Lucas A, Samstein R, Bhardwaj N 2021. Lynch syndrome and MSI-H cancers: from mechanisms to “off-the-shelf” cancer vaccines. Front. Immunol. 12:757804
    [Google Scholar]
  101. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M et al. 2020. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20:127–86
    [Google Scholar]
  102. Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. 2020. Regulatory T cells and human disease. Annu. Rev. Immunol. 38:541–66
    [Google Scholar]
  103. Sarode P, Zheng X, Giotopoulou GA, Weigert A, Kuenne C et al. 2020. Reprogramming of tumor-associated macrophages by targeting β-catenin/FOSL2/ARID5A signaling: a potential treatment of lung cancer. Sci. Adv. 6:23eaaz6105
    [Google Scholar]
  104. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. 2021. Therapeutic cancer vaccines. Nat. Rev. Cancer 21:6360–78
    [Google Scholar]
  105. Schmidt A, Oberle N, Krammer PH. 2012. Molecular mechanisms of Treg-mediated T cell suppression. Front. Immunol. 3:51
    [Google Scholar]
  106. Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA 2020. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 10:121808–25
    [Google Scholar]
  107. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. 2017. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:4707–23
    [Google Scholar]
  108. Shevchenko I, Karakhanova S, Soltek S, Link J, Bayry J et al. 2013. Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int. J. Cancer 133:198–107
    [Google Scholar]
  109. Spranger S, Dai D, Horton B, Gajewski TF. 2017. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31:5711–23.e4
    [Google Scholar]
  110. Srikrishna G, Freeze HH. 2009. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 11:7615–28
    [Google Scholar]
  111. Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D et al. 2021. Inhibition of Hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin. Cancer Res. 27:72023–37
    [Google Scholar]
  112. Strauss J, Gatti-Mays ME, Cho BC, Hill A, Salas S et al. 2020. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus-associated malignancies. J. Immunother. Cancer 8:2e001395
    [Google Scholar]
  113. Subbiah V, Baik C, Kirkwood JM. 2020. Clinical development of BRAF plus MEK inhibitor combinations. Trends Cancer 6:9797–810
    [Google Scholar]
  114. Subklewe M. 2021. BiTEs better than CAR T cells. Blood Adv 5:2607–12
    [Google Scholar]
  115. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y. 2006. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 203:71651–56
    [Google Scholar]
  116. Takamatsu K, Tanaka N, Hakozaki K, Takahashi R, Teranishi Y et al. 2021. Profiling the inhibitory receptors LAG-3, TIM-3, and TIGIT in renal cell carcinoma reveals malignancy. Nat. Commun. 12:5547
    [Google Scholar]
  117. Tan AC, Bagley SJ, Wen PY, Lim M, Platten M et al. 2021. Systematic review of combinations of targeted or immunotherapy in advanced solid tumors. J. Immunother. Cancer 9:7e002459
    [Google Scholar]
  118. Tang M, Diao J, Cattral MS. 2017. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cell. Mol. Life Sci. 74:5761–76
    [Google Scholar]
  119. Tap WD, Gelderblom H, Palmerini E, Desai J, Bauer S et al. 2019. Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial. Lancet 394:10197478–87
    [Google Scholar]
  120. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I et al. 2010. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:4482–91
    [Google Scholar]
  121. Thorn M, Guha P, Cunetta M, Espat NJ, Miller G et al. 2016. Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther. 23:6188–98
    [Google Scholar]
  122. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD et al. 2018. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation—a target for novel cancer therapy. Cancer Treat. Rev. 63:40–47
    [Google Scholar]
  123. Tsimberidou A-M, Van Morris K, Vo HH, Eck S, Lin Y-F et al. 2021. T-cell receptor-based therapy: an innovative therapeutic approach for solid tumors. J. Hematol. Oncol. 14:102
    [Google Scholar]
  124. Türeci Ö, Vormehr M, Diken M, Kreiter S, Huber C, Sahin U. 2016. Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin. Cancer Res. 22:81885–96
    [Google Scholar]
  125. van der Veeken J, Glasner A, Zhong Y, Hu W, Wang Z-M et al. 2020. The transcription factor Foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity 53:5971–84.e5
    [Google Scholar]
  126. Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS et al. 2015. TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75:112232–42
    [Google Scholar]
  127. Vareki M. 2018. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J. Immunother. Cancer 6:157
    [Google Scholar]
  128. Veglia F, Sanseviero E, Gabrilovich DI. 2021. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21:8485–98
    [Google Scholar]
  129. Vella LJ, Pasam A, Dimopoulos N, Andrews M, Knights A et al. 2014. MEK inhibition, alone or in combination with BRAF inhibition, affects multiple functions of isolated normal human lymphocytes and dendritic cells. Cancer Immunol. Res. 2:4351–60
    [Google Scholar]
  130. Vonderheide RH. 2007. Prospect of targeting the CD40 pathway for cancer therapy. Clin. Cancer Res. 13:41083–88
    [Google Scholar]
  131. Vonderheide RH. 2020. CD40 agonist antibodies in cancer immunotherapy. Annu. Rev. Med. 71:47–58
    [Google Scholar]
  132. Waldman AD, Fritz JM, Lenardo MJ. 2020. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20:651–68
    [Google Scholar]
  133. Wang C, Li J, Zhang Q, Wu J, Xiao Y et al. 2021. The landscape of immune checkpoint inhibitor therapy in advanced lung cancer. BMC Cancer 21:968
    [Google Scholar]
  134. Wang S, He Z, Wang X, Li H, Liu X-S. 2019. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. eLife 8:e49020
    [Google Scholar]
  135. Wang S, Zhang Y. 2020. HMGB1 in inflammation and cancer. J. Hematol. Oncol. 13:116
    [Google Scholar]
  136. Ward JP, Gubin MM, Schreiber RD. 2016. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv. Immunol. 130:25–74
    [Google Scholar]
  137. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D 2020. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20:7–24
    [Google Scholar]
  138. Wennhold K, Thelen M, Lehmann J, Schran S, Preugszat E et al. 2021. CD86+ antigen-presenting B cells are increased in cancer, localize in tertiary lymphoid structures, and induce specific T-cell responses. Cancer Immunol. Res. 9:91098–108
    [Google Scholar]
  139. Wilson KR, Villadangos JA, Mintern JD. 2021. Dendritic cell Flt3—regulation, roles and repercussions for immunotherapy. Immunol. Cell Biol. 99:9962–71
    [Google Scholar]
  140. Xia A, Zhang Y, Xu J, Yin T, Lu X-J. 2019. T cell dysfunction in cancer immunity and immunotherapy. Front. Immunol. 10:1719
    [Google Scholar]
  141. Xu M, Wang Y, Xia R, Wei Y, Wei X. 2021. Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell Prolif. 54:10e13115
    [Google Scholar]
  142. Yuki K, Cheng N, Nakano M, Kuo CJ. 2020. Organoid models of tumor immunology. Trends Immunol. 41:8652–64
    [Google Scholar]
  143. Zemek RM, Chin WL, Nowak AK, Millward MJ, Lake RA, Lesterhuis WJ. 2020. Sensitizing the tumor microenvironment to immune checkpoint therapy. Front. Immunol. 11:223
    [Google Scholar]
  144. Zhao P, Zhu D, Zhang Z, Han B, Gao D et al. 2017. Gemcitabine treatment enhanced the anti-tumor effect of cytokine induced killer cells by depletion of CD4+CD25bri regulatory T cells. Immunol. Lett. 181:36–44
    [Google Scholar]
  145. Zhong S, Jeong J-H, Chen Z, Chen Z, Luo J-L 2020. Targeting tumor microenvironment by small-molecule inhibitors. Transl. Oncol. 13:157–69
    [Google Scholar]
  146. Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X. 2019. STING: a master regulator in the cancer-immunity cycle. Mol. Cancer 18:152
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-061421-040258
Loading
/content/journals/10.1146/annurev-cancerbio-061421-040258
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error