1932

Abstract

Myeloid cells represent a dominant cellular compartment of tumor lesions and play key roles in tumor inception, progression, metastasis, and response to treatment. Mononuclear phagocytes (MNPs), which include dendritic cells and macrophages, are unique among myeloid cells, as they not only shape both the broader composition and state of the tumor microenvironment but can also specifically instruct cancer-specific, T cell–mediated tumor cell killing, making them especially attractive targets for cancer treatment. Although MNPs remain difficult to modulate therapeutically, our understanding of MNP biology in the antitumor immune response has expanded significantly, offering hope for new possibilities in cancer immunotherapy. Here, we review the recent advances in our study of the cellular identity, molecular diversity, and spatial organization of MNPs in tumors, and we discuss the importance of tailoring therapeutic strategies to incorporate these new insights into cancer treatment design.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-061521-085949
2023-04-11
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/7/1/annurev-cancerbio-061521-085949.html?itemId=/content/journals/10.1146/annurev-cancerbio-061521-085949&mimeType=html&fmt=ahah

Literature Cited

  1. Alexandre YO, Ghilas S, Sanchez C, Le Bon A, Crozat K, Dalod M 2016. XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses. J. Exp. Med. 213:175–92
    [Google Scholar]
  2. Allen BM, Hiam KJ, Burnett CE, Venida A, DeBarge R et al. 2020. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat. Med. 26:71125–34
    [Google Scholar]
  3. Alraies Z, Rivera CA, Delgado M-G, Sanséau D, Maurin M et al. 2022. An Arp2/3-cPLA2-NFκB axis acts as a cell shape sensor to drive homeostatic migration of dendritic cells. bioRxiv . https://doi.org/10.1101/2022.08.09.503223
    [Crossref]
  4. Alshetaiwi H, Pervolarakis N, McIntyre LL, Ma D, Nguyen Q et al. 2020. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol 5:44aay6017
    [Google Scholar]
  5. Ardouin L, Luche H, Chelbi R, Carpentier S, Shawket A et al. 2016. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 45:2305–18
    [Google Scholar]
  6. Asrir A, Tardiveau C, Coudert J, Laffont R, Blanchard L et al. 2022. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell 40:3318–34.e9
    [Google Scholar]
  7. Baer JM, Zuo C, Kang L-I, de la Lastra AA, Borcherding NC et al. 2022. Pancreas resident macrophage-induced fibrosis has divergent roles in pancreas inflammatory injury and PDAC. bioRxiv . https://doi.org/10.1101/2022.02.09.479745
    [Crossref]
  8. Baratin M, Foray C, Demaria O, Habbeddine M, Pollet E et al. 2015. Homeostatic NF-κB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42:4627–39
    [Google Scholar]
  9. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD et al. 2012. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:6822–35
    [Google Scholar]
  10. Bazan-Peregrino M, Garcia-Carbonero R, Laquente B, Álvarez R, Mato-Berciano A et al. 2021. VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects. J. Immunother. Cancer 9:11e003254
    [Google Scholar]
  11. Becht E, Tolstrup D, Dutertre C-A, Morawski PA, Campbell DJ et al. 2021. High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning. Sci. Adv. 7:39eabg0505
    [Google Scholar]
  12. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. 1998. Help for cytotoxic-T-cell responses is mediated by CD40 signaling. Nature 393:6684478–80
    [Google Scholar]
  13. Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA et al. 2019. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177:3556–71.e16
    [Google Scholar]
  14. Binnewies M, Pollack JL, Rudolph J, Dash S, Abushawish M et al. 2021. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep 37:3109844
    [Google Scholar]
  15. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF et al. 2018. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24:5541–50
    [Google Scholar]
  16. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S et al. 2020. Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Rep 30:2481–96.e6
    [Google Scholar]
  17. Boettcher S, Manz MG. 2017. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol 38:5345–57
    [Google Scholar]
  18. Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M et al. 2018. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172:51022–37.e14
    [Google Scholar]
  19. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL et al. 2014. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26:5638–52
    [Google Scholar]
  20. Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V et al. 2017. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 130:6753–62
    [Google Scholar]
  21. Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis e Sousa C. 2021. Dendritic cells revisited. Annu. Rev. Immunol. 39:131–66
    [Google Scholar]
  22. Campesato LF, Budhu S, Tchaicha J, Weng C-H, Gigoux M et al. 2020. Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine. Nat. Commun. 11:4011
    [Google Scholar]
  23. Cancel J-C, Crozat K, Dalod M, Mattiuz R. 2019. Are conventional type 1 dendritic cells critical for protective antitumor immunity and how?. Front. Immunol. 10:9
    [Google Scholar]
  24. Canton J, Blees H, Henry CM, Buck MD, Schulz O et al. 2021. The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nat. Immunol. 22:2140–53
    [Google Scholar]
  25. Caronni N, Piperno GM, Simoncello F, Romano O, Vodret S et al. 2021. TIM4 expression by dendritic cells mediates uptake of tumor-associated antigens and antitumor responses. Nat. Commun. 12:2237
    [Google Scholar]
  26. Casanova-Acebes M, Dalla E, Leader AM, LeBerichel J, Nikolic J et al. 2021. Tissue-resident macrophages provide a protumorigenic niche to early NSCLC cells. Nature 595:7868578–84
    [Google Scholar]
  27. Casey SC, Tong L, Li Y, Do R, Walz S et al. 2016. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352:6282227–31
    [Google Scholar]
  28. Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM et al. 2019. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35:4588–602.e10
    [Google Scholar]
  29. Cheng S, Li Z, Gao R, Xing B, Gao Y et al. 2021. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184:3792–809.e23
    [Google Scholar]
  30. Cohen M, Giladi A, Barboy O, Hamon P, Li B et al. 2022. The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat. Cancer 3:3303–17
    [Google Scholar]
  31. Colbeck EJ, Ager A, Gallimore A, Jones GW. 2017. Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease?. Front. Immunol. 8:1830
    [Google Scholar]
  32. Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI et al. 2018. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun. 9:771
    [Google Scholar]
  33. Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A et al. 2017. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21:3374–82.e4
    [Google Scholar]
  34. Dähling S, Mansilla AM, Knöpper K, Grafen A, Utzschneider DT et al. 2022. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity 55:4656–70.e8
    [Google Scholar]
  35. Danenberg E, Bardwell H, Zanotelli VRT, Provenzano E, Chin S-F et al. 2022. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. Nat. Genet. 54:5660–69
    [Google Scholar]
  36. DeNardo DG, Ruffell B. 2019. Macrophages as regulators of tumor immunity and immunotherapy. Nat. Rev. Immunol. 19:6369–82
    [Google Scholar]
  37. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C et al. 2007. Differential antigen processing by dendritic cell subsets in vivo. Science 315:5808107–11
    [Google Scholar]
  38. Duong E, Fessenden TB, Lutz E, Dinter T, Yim L et al. 2022. Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective antitumor CD8+ T cell immunity. Immunity 55:2308–23.e9
    [Google Scholar]
  39. Dutertre C-A, Becht E, Irac SE, Khalilnezhad A, Narang V et al. 2019. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity 51:3573–89.e8
    [Google Scholar]
  40. Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K et al. 2015. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162:61322–37
    [Google Scholar]
  41. Enamorado M, Iborra S, Priego E, Cueto FJ, Quintana JA et al. 2017. Enhanced antitumor immunity requires the interplay between resident and circulating memory CD8+ T cells. Nat. Commun. 8:16073
    [Google Scholar]
  42. Esparza-Baquer A, Labiano I, Sharif O, Agirre-Lizaso A, Oakley F et al. 2021. TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms. Gut 70:71345–61
    [Google Scholar]
  43. Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP et al. 2020. cDC1 prime and are licensed by CD4+ T cells to induce antitumor immunity. Nature 584:7822624–29
    [Google Scholar]
  44. Francica B, Burdette D, Clark R, Cope J, Freund D et al. 2022. Systemic small molecule TREX1 inhibitors to selectively activate STING in the TME of metastatic disease. Cancer Res 82:12 Suppl.2075 (Abstr.)
    [Google Scholar]
  45. Fu T, Dai L-J, Wu S-Y, Xiao Y, Ma D et al. 2021. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J. Hematol. Oncol. 14:98
    [Google Scholar]
  46. Fu X-T, Dai Z, Song K, Zhang Z-J, Zhou Z-J et al. 2015. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int. J. Oncol. 46:2587–96
    [Google Scholar]
  47. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B et al. 2006. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:57951960–64
    [Google Scholar]
  48. Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S et al. 2018. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49:61148–61.e7
    [Google Scholar]
  49. Gerena-Lewis M, Crawford J, Bonomi P, Maddox AM, Hainsworth J et al. 2009. A phase II trial of denileukin diftitox in patients with previously treated advanced non-small cell lung cancer. Am. J. Clin. Oncol. 32:3269–73
    [Google Scholar]
  50. Gerhard GM, Bill R, Messemaker M, Klein AM, Pittet MJ. 2021. Tumor-infiltrating dendritic cell states are conserved across solid human cancers. J. Exp. Med. 218:1e20200264
    [Google Scholar]
  51. Germain C, Gnjatic S, Dieu-Nosjean M-C. 2015. Tertiary lymphoid structure-associated B cells are key players in anti-tumor immunity. Front. Immunol. 6:67
    [Google Scholar]
  52. GeurtsvanKessel CH, Willart MAM, Bergen IM, van Rijt LS, Muskens F et al. 2009. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med. 206:112339–49
    [Google Scholar]
  53. Ghislat G, Cheema AS, Baudoin E, Verthuy C, Ballester PJ et al. 2021. NF-κB-dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci. Immunol. 6:61eabg3570
    [Google Scholar]
  54. Giles AJ, Reid CM, Evans JD, Murgai M, Vicioso Y et al. 2016. Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the pre-metastatic niche. Cancer Res 76:61335–47
    [Google Scholar]
  55. Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S et al. 2009. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:52000–9
    [Google Scholar]
  56. Goc J, Germain C, Vo-Bourgais TKD, Lupo A, Klein C et al. 2014. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res 74:3705–15
    [Google Scholar]
  57. Gomez-Roca CA, Italiano A, Le Tourneau C, Cassier PA, Toulmonde M et al. 2019. Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann. Oncol. 30:81381–92
    [Google Scholar]
  58. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ et al. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:61327–40
    [Google Scholar]
  59. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N et al. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14:8571–78
    [Google Scholar]
  60. Halaby MJ, Hezaveh K, Lamorte S, Ciudad MT, Kloetgen A et al. 2019. GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment. Sci. Immunol. 4:42aax8189
    [Google Scholar]
  61. Hammerich L, Marron TU, Upadhyay R, Svensson-Arvelund J, Dhainaut M et al. 2019. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 25:5814–24
    [Google Scholar]
  62. Harlin H, Kuna TV, Peterson AC, Meng Y, Gajewski TF. 2006. Tumor progression despite massive influx of activated CD8+ T cells in a patient with malignant melanoma ascites. Cancer Immunol. Immunother. 55:101185–97
    [Google Scholar]
  63. Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA et al. 2020. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37:3289–307.e9
    [Google Scholar]
  64. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H et al. 2008. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:59041097–100
    [Google Scholar]
  65. Hingorani SR, Zheng L, Bullock AJ, Seery TE, Harris WP et al. 2018. HALO 202: randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J. Clin. Oncol. 36:4359–66
    [Google Scholar]
  66. Hor JL, Whitney PG, Zaid A, Brooks AG, Heath WR, Mueller SN. 2015. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity 43:3554–65
    [Google Scholar]
  67. Horn LA, Chariou PL, Gameiro SR, Qin H, Iida M et al. 2022. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1-mediated tumor eradication. J. Clin. Investig. 132:8e155148
    [Google Scholar]
  68. Huang SC-C, Smith AM, Everts B, Colonna M, Pearce EL et al. 2016. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45:4817–30
    [Google Scholar]
  69. Huffman AP, Lin JH, Kim SI, Byrne KT, Vonderheide RH. 2020. CCL5 mediates CD40-driven CD4+ T cell tumor infiltration and immunity. JCI Insight 5:10e137263
    [Google Scholar]
  70. Hui E, Cheung J, Zhu J, Su X, Taylor MJ et al. 2017. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355:63321428–33
    [Google Scholar]
  71. Iborra S, Martínez-López M, Khouili SC, Enamorado M, Cueto FJ et al. 2016. Optimal generation of tissue-resident but not circulating memory T cells during viral infection requires crosspriming by DNGR-1+ dendritic cells. Immunity 45:4847–60
    [Google Scholar]
  72. Infante JR, Korn RL, Rosen LS, LoRusso P, Dychter SS et al. 2018. Phase 1 trials of PEGylated recombinant human hyaluronidase PH20 in patients with advanced solid tumours. Br. J. Cancer 118:2153–61
    [Google Scholar]
  73. Jacquelot N, Tellier J, Nutt SL, Belz GT. 2021. Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. OncoImmunology 10:11900508
    [Google Scholar]
  74. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV et al. 2014. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371:262488–98
    [Google Scholar]
  75. Joshi NS, Akama-Garren EH, Lu Y, Lee D-Y, Chang GP et al. 2015. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43:3579–90
    [Google Scholar]
  76. Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R et al. 2017. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355:63321423–27
    [Google Scholar]
  77. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L et al. 2005. VEGFR1-positive haematopoietic bone marrow progenitors initiate the premetastatic niche. Nature 438:7069820–27
    [Google Scholar]
  78. Katzenelenbogen Y, Sheban F, Yalin A, Yofe I, Svetlichnyy D et al. 2020. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182:4872–85.e19
    [Google Scholar]
  79. Keerthivasan S, Şenbabaoğlu Y, Martinez-Martin N, Husain B, Verschueren E et al. 2021. Homeostatic functions of monocytes and interstitial lung macrophages are regulated via collagen domain-binding receptor LAIR1. Immunity 54:71511–26.e8
    [Google Scholar]
  80. Kenkel JA, Tseng WW, Davidson MG, Tolentino LL, Choi O et al. 2017. An immunosuppressive dendritic cell subset accumulates at secondary sites and promotes metastasis in pancreatic cancer. Cancer Res 77:154158–70
    [Google Scholar]
  81. Klichinsky M, Ruella M, Shestova O, Lu XM, Best A et al. 2020. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38:8947–53
    [Google Scholar]
  82. Koyama S, Akbay EA, Li YY, Aref AR, Skoulidis F et al. 2016. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res 76:5999–1008
    [Google Scholar]
  83. Krishnamurty AT, Shyer JA, Thai M, Gandham V, Buechler MB et al. 2022. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumor immunity. Nature 611:148–54
    [Google Scholar]
  84. Laoui D, Keirsse J, Morias Y, Van Overmeire E, Geeraerts X et al. 2016. The tumor microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumor immunity. Nat. Commun. 7:13720
    [Google Scholar]
  85. Lavin Y, Merad M. 2013. Macrophages: gatekeepers of tissue integrity. Cancer Immunol Res 1:4201–9
    [Google Scholar]
  86. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:61312–26
    [Google Scholar]
  87. Leader AM, Grout JA, Maier BB, Nabet BY, Park MD et al. 2021. Single-cell analysis of human nonsmall cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39:121594–609.e12
    [Google Scholar]
  88. Lemke G, Rothlin CV. 2008. Immunobiology of the TAM receptors. Nat. Rev. Immunol. 8:5327–36
    [Google Scholar]
  89. Li H, Liu Z, Liu L, Zhang H, Han C et al. 2022b. AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells. Cell Rep. Med. 3:3100554
    [Google Scholar]
  90. Li J, Byrne KT, Yan F, Yamazoe T, Chen Z et al. 2018. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 49:1178–93.e7
    [Google Scholar]
  91. Li Y-Y, Peng Z, Sun S, Guo K, Kong D et al. 2022a. ENPP1 inhibitor ZX-8177 enhances antitumor activity of conventional therapies by modulating tumor microenvironment. Cancer Res 82:12 Suppl.5486 (Abstr.)
    [Google Scholar]
  92. Li Z, Cai X, Cai C-L, Wang J, Zhang W et al. 2011. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118:174509–18
    [Google Scholar]
  93. Lin EY, Li J-F, Gnatovskiy L, Deng Y, Zhu L et al. 2006. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:2311238–46
    [Google Scholar]
  94. Liu T-T, Kim S, Desai P, Kim D-H, Huang X et al. 2022. Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature 607:7917142–48
    [Google Scholar]
  95. Liu X, Sato N, Shimosato Y, Wang T-W, Denda T et al. 2022. CHIP-associated mutant ASXL1 in blood cells promotes solid tumor progression. Cancer Sci 113:41182–94
    [Google Scholar]
  96. Lohyer P-L, Hamon P, Laviron M, Meghraoui-Kheddar , Goncalves Eet al 2018. Macrophages of distinct origins contribute to tumor development in the lung. J. Exp. Med 215:102536–53
    [Google Scholar]
  97. Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C et al. 2019. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol 20:81083–97
    [Google Scholar]
  98. Luheshi N, Hewitt S, Garcon F, Burke S, Watkins A et al. 2019. MEDI1191, a novel IL-12 mRNA therapy for intratumoral injection to promote TH1 transformation of the patient tumor microenvironment. Cancer Res 79:13 Suppl.5017 (Abstr.)
    [Google Scholar]
  99. Ma R-Y, Zhang H, Li X-F, Zhang C-B, Selli C et al. 2020. Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth. J. Exp. Med. 217:11e20191820
    [Google Scholar]
  100. MacNabb BW, Tumuluru S, Chen X, Godfrey J, Kasal DN et al. 2022. Dendritic cells can prime antitumor CD8+ T cell responses through major histocompatibility complex cross-dressing. Immunity 55:6982–97.e8
    [Google Scholar]
  101. Magen A, Hamon P, Fiaschi N, Troncoso L, Humblin E et al. 2022. Intratumoral mregDC and CXCL13 T helper niches enable local differentiation of CD8 T cells following PD-1 blockade. bioRxiv . https://doi.org/10.1101/2022.06.22.497216
    [Crossref]
  102. Maier B, Leader AM, Chen ST, Tung N, Chang C et al. 2020. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580:7802257–62
    [Google Scholar]
  103. Markosyan N, Li J, Sun YH, Richman LP, Lin JH et al. 2019. Tumor cell-intrinsic EPHA2 suppresses antitumor immunity by regulating PTGS2 (COX-2). J. Clin. Investig. 129:93594–609
    [Google Scholar]
  104. Martinet L, Filleron T, Le Guellec S, Rochaix P, Garrido I, Girard J-P 2013. High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin β-producing dendritic cells in human breast cancer. J. Immunol. 191:42001–8
    [Google Scholar]
  105. Martinet L, Le Guellec S, Filleron T, Lamant L, Meyer N et al. 2012. High endothelial venules (HEVs) in human melanoma lesions: Major gateways for tumor-infiltrating lymphocytes. OncoImmunology 1:6829–39
    [Google Scholar]
  106. Mattiuz R, Brousse C, Ambrosini M, Cancel J-C, Bessou G et al. 2021. Type 1 conventional dendritic cells and interferons are required for spontaneous CD4+ and CD8+ T-cell protective responses to breast cancer. Clin. Transl. Immunol. 10:7e1305
    [Google Scholar]
  107. Mattiuz R, Wohn C, Ghilas S, Ambrosini M, Alexandre YO et al. 2018. Novel Cre-expressing mouse strains permitting to selectively track and edit type 1 conventional dendritic cells facilitate disentangling their complexity in vivo. Front. Immunol. 9:2805
    [Google Scholar]
  108. Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A et al. 2011. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:4512–26
    [Google Scholar]
  109. McLane LM, Abdel-Hakeem MS, Wherry EJ. 2019. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37:457–95
    [Google Scholar]
  110. Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604
    [Google Scholar]
  111. Miller JC, Brown BD, Shay T, Gautier EL, Jojic V et al. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13:9888–99
    [Google Scholar]
  112. Molgora M, Esaulova E, Vermi W, Hou J, Chen Y et al. 2020. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182:4886–900.e17
    [Google Scholar]
  113. Montalbán Del Barrio I, Penski C, Schlahsa L, Stein RG, Diessner J et al. 2016. Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages—a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J. Immunother. Cancer 4:49
    [Google Scholar]
  114. Moussion C, Girard J-P. 2011. Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 479:7374542–46
    [Google Scholar]
  115. Mulder K, Patel AA, Kong WT, Piot C, Halitzki E et al. 2021. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54:81883–900.e5
    [Google Scholar]
  116. Nakayama M. 2014. Antigen presentation by MHC-dressed cells. Front. Immunol. 5:672
    [Google Scholar]
  117. Nguyen YTM, Fujisawa M, Nguyen TB, Suehara Y, Sakamoto T et al. 2021. Tet2 deficiency in immune cells exacerbates tumor progression by increasing angiogenesis in a lung cancer model. Cancer Sci 112:124931–43
    [Google Scholar]
  118. Niu F, Yu Y, Li Z, Ren Y, Li Z et al. 2022. Arginase: an emerging and promising therapeutic target for cancer treatment. Biomed. Pharmacother. 149:112840
    [Google Scholar]
  119. O'Sullivan BJ, Thomas R 2002. CD40 ligation conditions dendritic cell antigen-presenting function through sustained activation of NF-κB. J. Immunol. 168:115491–98
    [Google Scholar]
  120. Paavola KJ, Roda JM, Lin VY, Chen P, O'Hollaren KP et al. 2021. The fibronectin-ILT3 interaction functions as a stromal checkpoint that suppresses myeloid cells. Cancer Immunol. Res. 9:111283–97
    [Google Scholar]
  121. Pan W, Zhu S, Qu K, Meeth K, Cheng J et al. 2017. The DNA methylcytosine dioxygenase Tet2 sustains immunosuppressive function of tumor-infiltrating myeloid cells to promote melanoma progression. Immunity 47:2284–97.e5
    [Google Scholar]
  122. Park JE, Dutta B, Tse SW, Gupta N, Tan CF et al. 2019. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene 38:265158–73
    [Google Scholar]
  123. Paz-Ares L, Kim TM, Vicente D, Felip E, Lee DH et al. 2020. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in second-line treatment of patients with NSCLC: results from an expansion cohort of a phase 1 trial. J. Thorac. Oncol. 15:71210–22
    [Google Scholar]
  124. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. 2012. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21:6836–47
    [Google Scholar]
  125. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L et al. 2013. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19:101264–72
    [Google Scholar]
  126. Qian B-Z, Li J, Zhang H, Kitamura T, Zhang J et al. 2011. CCL2 recruits inflammatory monocytes to facilitate breast-tumor metastasis. Nature 475:7355222–25
    [Google Scholar]
  127. Ravi J, Elbaz M, Wani NA, Nasser MW, Ganju RK. 2016. Cannabinoid receptor-2 agonist inhibits macrophage induced EMT in nonsmall cell lung cancer by downregulation of EGFR pathway. Mol. Carcinog. 55:122063–76
    [Google Scholar]
  128. Reiss KA, Yuan Y, Ueno NT, Johnson ML, Gill S et al. 2022. A phase 1, first-in-human (FIH) study of the anti-HER2 CAR macrophage CT-0508 in subjects with HER2 overexpressing solid tumors. J. Clin. Oncol. 40:16 Suppl.2533 (Abstr.)
    [Google Scholar]
  129. Ridge JP, Di Rosa F, Matzinger P. 1998. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:6684474–78
    [Google Scholar]
  130. Rios-Doria J, Favata M, Lasky K, Feldman P, Lo Y et al. 2020. A potent and selective dual inhibitor of AXL and MERTK possesses both immunomodulatory and tumor-targeted activity. Front. Oncol. 10:598477
    [Google Scholar]
  131. Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE et al. 2016. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30:2324–36
    [Google Scholar]
  132. Sadik A, Somarribas Patterson LF, Öztürk S, Mohapatra SR, Panitz V et al. 2020. IL4I1 is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell 182:51252–70.e34
    [Google Scholar]
  133. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M et al. 2020. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20:3174–86
    [Google Scholar]
  134. Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R et al. 2016. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44:4924–38
    [Google Scholar]
  135. Sánchez-Paulete AR, Cueto FJ, Martínez-López M, Labiano S, Morales-Kastresana A et al. 2016. Cancer immunotherapy with immunomodulatory anti-CD137 and anti–PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov 6:171–79
    [Google Scholar]
  136. Sánchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL et al. 2017. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann. Oncol. 28:xii44–55
    [Google Scholar]
  137. Sangaletti S, Di Carlo E, Gariboldi S, Miotti S, Cappetti B et al. 2008. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 68:219050–59
    [Google Scholar]
  138. Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. 2019. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19:6307–25
    [Google Scholar]
  139. Schenkel JM, Herbst RH, Canner D, Li A, Hillman M et al. 2021. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. Immunity 54:102338–53.e6
    [Google Scholar]
  140. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. 1998. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:6684480–83
    [Google Scholar]
  141. Schultze JL, Mass E, Schlitzer A. 2019. Emerging principles in myelopoiesis at homeostasis and during infection and inflammation. Immunity 50:2288–301
    [Google Scholar]
  142. Severson EA, Riedlinger GM, Connelly CF, Vergilio J-A, Goldfinger M et al. 2018. Detection of clonal hematopoiesis of indeterminate potential in clinical sequencing of solid tumor specimens. Blood 131:222501–5
    [Google Scholar]
  143. Sharma MD, Pacholczyk R, Shi H, Berrong ZJ, Zakharia Y et al. 2021. Inhibition of the BTK-IDO-mTOR axis promotes differentiation of monocyte-lineage dendritic cells and enhances antitumor T cell immunity. Immunity 54:102354–71.e8
    [Google Scholar]
  144. Sherman MH, Beatty GL. 2022. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu. Rev. Pathol. 18:123–48
    [Google Scholar]
  145. Sica A, Guarneri V, Gennari A. 2019. Myelopoiesis, metabolism and therapy: a crucial crossroads in cancer progression. Cell Stress Chaperones 3:9284–94
    [Google Scholar]
  146. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D et al. 2017. Systemic immunity is required for effective cancer immunotherapy. Cell 168:3487–502.e15
    [Google Scholar]
  147. Spranger S, Bao R, Gajewski TF 2015. Melanoma-intrinsic β-catenin signaling prevents antitumor immunity. Nature 523:7559231–35
    [Google Scholar]
  148. Spranger S, Dai D, Horton B, Gajewski TF. 2017. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31:5711–23.e4
    [Google Scholar]
  149. Su S, Liu Q, Chen J, Chen J, Chen F et al. 2014. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25:5605–20
    [Google Scholar]
  150. Tang K, Wu Y-H, Song Y, Yu B 2021. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol. 14:68
    [Google Scholar]
  151. Tap WD, Singh AS, Anthony SP, Sterba M, Zhang C et al. 2022. Results from phase I extension study assessing pexidartinib treatment in six cohorts with solid tumors including TGCT, and abnormal CSF1 transcripts in TGCT. Clin. Cancer Res. 28:2298–307
    [Google Scholar]
  152. Theisen DJ, Davidson JT 4th, Briseño CG, Gargaro M, Lauron EJ et al. 2018. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362:6415694–99
    [Google Scholar]
  153. Tirado-Gonzalez I, Descot A, Soetopo D, Nevmerzhitskaya A, Schäffer A et al. 2021. AXL inhibition in macrophages stimulates host-versus-leukemia immunity and eradicates naïve and treatment-resistant leukemia. Cancer Discov 11:112924–43
    [Google Scholar]
  154. Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H et al. 2013. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. PNAS 110:2711103–8
    [Google Scholar]
  155. Tussiwand R, Lee W-L, Murphy TL, Mashayekhi M, KC W et al. 2012. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490:7421502–7
    [Google Scholar]
  156. Van den Eynde BJ, van Baren N, Baurain J-F 2020. Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma?. Annu. Rev. Cancer Biol. 4:241–56
    [Google Scholar]
  157. Wakim LM, Bevan MJ. 2011. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature 471:7340629–32
    [Google Scholar]
  158. Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A et al. 2018. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab 28:3463–75.e4
    [Google Scholar]
  159. Wang Q, Bergholz JS, Ding L, Lin Z, Kabraji SK et al. 2022. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat. Commun. 13:3022
    [Google Scholar]
  160. Willingham SB, Volkmer JP, Gentles AJ, Weissman IL. 2012. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. PNAS 109:176662–67
    [Google Scholar]
  161. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–42
    [Google Scholar]
  162. Wu R, Ohara RA, Jo S, Liu T-T, Ferris ST et al. 2022. Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat. Immunol. 23:1536–50
    [Google Scholar]
  163. Xu MM, Pu Y, Han D, Shi Y, Cao X et al. 2017. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity 47:2363–73.e5
    [Google Scholar]
  164. Yang K, Li Y, Lian G, Lin H, Shang C et al. 2018. KRAS promotes tumor metastasis and chemoresistance by repressing RKIP via the MAPK-ERK pathway in pancreatic cancer. Int. J. Cancer 142:112323–34
    [Google Scholar]
  165. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC et al. 2012. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:3656–70
    [Google Scholar]
  166. Zelenay S, Keller AM, Whitney PG, Schraml BU, Deddouche S et al. 2012. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Investig. 122:51615–27
    [Google Scholar]
  167. Zhang J, Huang D, Saw PE, Song E. 2022. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol 43:7523–45
    [Google Scholar]
  168. Zhu Y, Herndon JM, Sojka DK, Kim K-W, Knolhoff BL et al. 2017. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47:2323–38.e6
    [Google Scholar]
  169. Zilionis R, Engblom C, Pfirschke C, Savova V, Zemmour D et al. 2019. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50:51317–34.e10
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-061521-085949
Loading
/content/journals/10.1146/annurev-cancerbio-061521-085949
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error