1932

Abstract

Intratumor heterogeneity (ITH) is associated with tumor progression in several clinical and experimental settings and contributes to therapeutic resistance. Its relation to cancer immunosurveillance is complex. Clonally heterogeneous tumors are associated with decreased immunosurveillance and are less responsive to immune checkpoint inhibition, but the mechanistic basis underlying these observations remains unclear. One possibility is that tumors that are under active immunosurveillance are relatively homogeneous because immunosurveillance prevents the outgrowth of immunogenic subclones. Alternatively, high ITH might directly impair immunosurveillance due to lower dosages of subclonal antigens, competition between antigens and immunodominance, the induction of detrimental T cell differentiation programs, or negative feedback loops. Here we review the evidence for these scenarios and outline hypotheses that could underlie the negative association between clonal heterogeneity and cancer immunosurveillance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-061521-101910
2023-04-11
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/7/1/annurev-cancerbio-061521-101910.html?itemId=/content/journals/10.1146/annurev-cancerbio-061521-101910&mimeType=html&fmt=ahah

Literature Cited

  1. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R et al. 2017. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7:3264–76
    [Google Scholar]
  2. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A et al. 2017. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 127:82930–40
    [Google Scholar]
  3. Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA et al. 2017. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551:7681512–16
    [Google Scholar]
  4. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L et al. 2017. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376:111015–26
    [Google Scholar]
  5. Benci JL, Johnson LR, Choa R, Xu Y, Qiu J et al. 2019. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 178:4933–48.e14
    [Google Scholar]
  6. Boldajipour B, Nelson A, Krummel MF 2016. Tumor-infiltrating lymphocytes are dynamically desensitized to antigen but are maintained by homeostatic cytokine. JCI Insight 1:20e89289
    [Google Scholar]
  7. Bortolomeazzi M, Keddar MR, Montorsi L, Acha-Sagredo A, Benedetti L et al. 2021. Immunogenomics of colorectal cancer response to checkpoint blockade: analysis of the KEYNOTE 177 trial and validation cohorts. Gastroenterology 161:1179–93
    [Google Scholar]
  8. Boulanger DSM, Eccleston RC, Phillips A, Coveney PV, Elliott T, Dalchau N. 2018. A mechanistic model for predicting cell surface presentation of competing peptides by MHC class I molecules. Front. Immunol. 9:1538
    [Google Scholar]
  9. Burger ML, Cruz AM, Crossland GE, Gaglia G, Ritch CC et al. 2021. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors. Cell 184:194996–5014.e26
    [Google Scholar]
  10. Busse D, de la Rosa M, Hobiger K, Thurley K, Flossdorf M et al. 2010. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. PNAS 107:73058–63
    [Google Scholar]
  11. Chen L, Azuma T, Yu W, Zheng X, Luo L, Chen L 2018. B7-H1 maintains the polyclonal T cell response by protecting dendritic cells from cytotoxic T lymphocyte destruction. PNAS 115:123126–31
    [Google Scholar]
  12. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K et al. 2015. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522:7556345–48
    [Google Scholar]
  13. Coussens LM, Werb Z. 2002. Inflammation and cancer. Nature 420:6917860–67
    [Google Scholar]
  14. Crowe NY, Smyth MJ, Godfrey DI. 2002. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med. 196:1119–27
    [Google Scholar]
  15. Cui J, Shin T, Kawano T, Sato H, Kondo E et al. 1997. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278:53431623–26
    [Google Scholar]
  16. Dagogo-Jack I, Shaw AT 2018. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15:281–94
    [Google Scholar]
  17. Dalessandri T, Crawford G, Hayes M, Seoane RC, Strid J. 2016. IL-13 from intraepithelial lymphocytes regulates tissue homeostasis and protects against carcinogenesis in the skin. Nat. Commun. 7:12080
    [Google Scholar]
  18. Daley D, Zambirinis CP, Seifert L, Akkad N, Mohan N et al. 2016. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation. Cell 166:61485–99.e15
    [Google Scholar]
  19. Davoli T, Uno H, Wooten EC, Elledge SJ. 2017. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355:6322eaaf8399
    [Google Scholar]
  20. DiMarco AV, Qin X, McKinney B, Garcia NMG, Alsten SCV et al. 2021. APOBEC mutagenesis inhibits breast cancer growth through induction of T cell-mediated antitumor immune responses. Cancer Immunol. Res. 10:170–86
    [Google Scholar]
  21. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. 2002. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3:11991–98
    [Google Scholar]
  22. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T. 2012. Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482:7385405–9
    [Google Scholar]
  23. Fang W, Jin H, Zhou H, Hong S, Ma Y et al. 2021. Intratumoral heterogeneity as a predictive biomarker in anti-PD-(L)1 therapies for non-small cell lung cancer. Mol. Cancer 20:37
    [Google Scholar]
  24. Fernández EA, Mahmoud YD, Veigas F, Rocha D, Miranda M et al. 2020. Unveiling the immune infiltrate modulation in cancer and response to immunotherapy by MIXTURE—an enhanced deconvolution method. Brief. Bioinform. 22:4bbaa317
    [Google Scholar]
  25. Friedman J, Moore EC, Zolkind P, Robbins Y, Clavijo PE et al. 2020. Neoadjuvant PD-1 immune checkpoint blockade reverses functional immunodominance among tumor antigen-specific T cells. Clin. Cancer Res. 26:3679–89
    [Google Scholar]
  26. Gao J, Shi LZ, Zhao H, Chen J, Xiong L et al. 2016. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167:2397–404.e9
    [Google Scholar]
  27. Gejman RS, Chang AY, Jones HF, DiKun K, Hakimi AA et al. 2018. Rejection of immunogenic tumor clones is limited by clonal fraction. eLife 7:e41090
    [Google Scholar]
  28. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W et al. 2015. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21:8938–45
    [Google Scholar]
  29. Germano G, Lamba S, Rospo G, Barault L, Magrì A et al. 2017. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552:7683116–20
    [Google Scholar]
  30. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E et al. 2001. Regulation of cutaneous malignancy by γδ T cells. Science 294:5542605–9
    [Google Scholar]
  31. Greten FR, Eckmann L, Greten TF, Park JM, Li Z-W et al. 2004. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:3285–96
    [Google Scholar]
  32. Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee J-S, Otterson GA et al. 2018. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 552:116–20
    [Google Scholar]
  33. Hemelrijck MV, Garmo H, Binda E, Hayday A, Karagiannis SN et al. 2010. Immunoglobulin E and cancer: a meta-analysis and a large Swedish cohort study. Cancer Cause Control 21:101657–67
    [Google Scholar]
  34. Holm JS, Funt SA, Borch A, Munk KK, Bjerregaard A-M et al. 2022. Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma. Nat. Commun. 13:1935
    [Google Scholar]
  35. Hoyos D, Zappasodi R, Schulze I, Sethna Z, de Andrade KC et al. 2022. Fundamental immune–oncogenicity trade-offs define driver mutation fitness. Nature 606:172–79
    [Google Scholar]
  36. Huang T, Chen X, Zhang H, Liang Y, Li L et al. 2021. Prognostic role of tumor mutational burden in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front. Oncol. 11:706652
    [Google Scholar]
  37. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK et al. 2017. Tracking the evolution of non-small-cell lung cancer. New Engl J. Med. 376:222109–21
    [Google Scholar]
  38. Jiménez-Sánchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y et al. 2017. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 170:5927–38.e20
    [Google Scholar]
  39. Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A et al. 2019. Commensal microbiota promote lung cancer development via γδ T cells. Cell 176:5998–1013
    [Google Scholar]
  40. Karn T, Jiang T, Hatzis C, Sänger N, El-Balat A et al. 2017. Association between genomic metrics and immune infiltration in triple-negative breast cancer. JAMA Oncol. 3:121707–11
    [Google Scholar]
  41. Lahoz S, Archilla I, Asensio E, Hernández-Illán E, Ferrer Q et al. 2021. Copy-number intratumor heterogeneity contributes to predict relapse in chemotherapy-naive stage II colon cancer. bioRxiv 2021.04.16.440177 . https://doi.org/10.1101/2021.04.16.440177
  42. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL et al. 2015. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373:123–34
    [Google Scholar]
  43. Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA et al. 2019. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574:7779532–37
    [Google Scholar]
  44. Li M, Zhang Z, Li L, Wang X 2020. An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles. Commun. Biol. 3:505
    [Google Scholar]
  45. Lin Z, Meng X, Wen J, Corral JM, Andreev D et al. 2020. Intratumor heterogeneity correlates with reduced immune activity and worse survival in melanoma patients. Front. Oncol. 10:596493
    [Google Scholar]
  46. Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C et al. 2021. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184:3596–614.e14
    [Google Scholar]
  47. Łuksza M, Sethna ZM, Rojas LA, Lihm J, Bravi B et al. 2022. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature 606:389–95
    [Google Scholar]
  48. Lussier DM, Alspach E, Ward JP, Miceli AP, Runci D et al. 2021. Radiation-induced neoantigens broaden the immunotherapeutic window of cancers with low mutational loads. PNAS 118:24e2102611118
    [Google Scholar]
  49. Madhusudan S, Foster M, Muthuramalingam SR, Braybrooke JP, Wilner S et al. 2004. A phase II study of etanercept (Enbrel), a tumor necrosis factor α inhibitor in patients with metastatic breast cancer. Clin. Cancer Res. 10:196528–34
    [Google Scholar]
  50. Madhusudan S, Muthuramalingam SR, Braybrooke JP, Wilner S, Kaur K et al. 2005. Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. J. Clin. Oncol. 23:255950–59
    [Google Scholar]
  51. Maire CL, Mohme M, Bockmayr M, Fita KD, Riecken K et al. 2020. Glioma escape signature and clonal development under immune pressure. J. Clin. Investig. 130:105257–71
    [Google Scholar]
  52. Marty R, Kaabinejadian S, Rossell D, Slifker MJ, van de Haar J et al. 2017. MHC-I genotype restricts the oncogenic mutational landscape. Cell 171:61272–83.e15
    [Google Scholar]
  53. Marusyk A, Janiszewska M, Polyak K. 2020. Intratumor heterogeneity: the Rosetta Stone of therapy resistance. Cancer Cell 37:4471–84
    [Google Scholar]
  54. Masoodi T, Siraj AK, Siraj S, Azam S, Qadri Z et al. 2019. Evolution and impact of subclonal mutations in papillary thyroid cancer. Am. J. Hum. Genet. 105:5959–73
    [Google Scholar]
  55. McDonald K-A, Kawaguchi T, Qi Q, Peng X, Asaoka M et al. 2019. Tumor heterogeneity correlates with less immune response and worse survival in breast cancer patients. Ann. Surg. Oncol. 26:72191–99
    [Google Scholar]
  56. McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M et al. 2021. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol. 32:5661–72
    [Google Scholar]
  57. McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R et al. 2016. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:62801463–69
    [Google Scholar]
  58. McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK et al. 2017. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171:61259–71
    [Google Scholar]
  59. McGranahan N, Swanton C. 2017. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:4613–28
    [Google Scholar]
  60. Memarnejadian A, Meilleur CE, Shaler CR, Khazaie K, Bennink JR et al. 2017. PD-1 blockade promotes epitope spreading in anticancer CD8+ T cell responses by preventing fratricidal death of subdominant clones to relieve immunodomination. J. Immunol. 199:93348–59
    [Google Scholar]
  61. Miao D, Margolis CA, Vokes NI, Liu D, Taylor-Weiner A et al. 2018. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat. Genet. 50:1271–81
    [Google Scholar]
  62. Mikulak J, Oriolo F, Bruni E, Roberto A, Colombo FS et al. 2019. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight 4:248900–20
    [Google Scholar]
  63. Milo I, Bedora-Faure M, Garcia Z, Thibaut R, Périé L et al. 2018. The immune system profoundly restricts intratumor genetic heterogeneity. Sci. Immunol. 3:29eaat1435
    [Google Scholar]
  64. Montfort A, Filleron T, Virazels M, Dufau C, Milhès J et al. 2021. Combining nivolumab and ipilimumab with infliximab or certolizumab in patients with advanced melanoma: first results of a phase Ib clinical trial. Clin. Cancer Res. 27:41037–47
    [Google Scholar]
  65. Moore RJ, Owens DM, Stamp G, Arnott C, Burke F et al. 1999. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nat. Med. 5:7828–31
    [Google Scholar]
  66. Morris LGT, Riaz N, Desrichard A, Senbabaoglu Y, Hakimi AA et al. 2016. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget 7:910051–63
    [Google Scholar]
  67. Mroz EA, Tward AD, Tward AM, Hammon RJ, Ren Y, Rocco JW. 2015. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from The Cancer Genome Atlas. PLOS Med. 12:2e1001786
    [Google Scholar]
  68. Noorbakhsh J, Kim H, Namburi S, Chuang JH. 2018. Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power. Sci. Rep. 8:11445
    [Google Scholar]
  69. Oshi M, Kawaguchi T, Yan L, Peng X, Qi Q et al. 2021. Immune cytolytic activity is associated with reduced intra-tumoral genetic heterogeneity and with better clinical outcomes in triple negative breast cancer. Am. J. Cancer Res. 11:73628–44
    [Google Scholar]
  70. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S et al. 2004. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431:7007461–66
    [Google Scholar]
  71. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y et al. 2014. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:7528558–62
    [Google Scholar]
  72. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T et al. 2016. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375:1823–33
    [Google Scholar]
  73. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ et al. 2017. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171:4934–49.e16
    [Google Scholar]
  74. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. 2015. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:1–248–61
    [Google Scholar]
  75. Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA et al. 2019. Neoantigen-directed immune escape in lung cancer evolution. Nature 567:7749479–85
    [Google Scholar]
  76. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH et al. 2018. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379:222108–21
    [Google Scholar]
  77. Schreiber H, Wu TH, Nachman J, Kast WM. 2002. Immunodominance and tumor escape. Semin. Cancer Biol. 12:125–31
    [Google Scholar]
  78. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE et al. 2001. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:68321107–11
    [Google Scholar]
  79. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D et al. 2018. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378:242288–301
    [Google Scholar]
  80. Turnbull EL, Wong M, Wang S, Wei X, Jones NA et al. 2009. Kinetics of expansion of epitope-specific T cell responses during primary HIV-1 infection. J. Immunol. 182:117131–45
    [Google Scholar]
  81. Vendramin R, Litchfield K, Swanton C. 2021. Cancer evolution: Darwin and beyond. EMBO J. 40:18e108389
    [Google Scholar]
  82. Verdegaal EME, de Miranda NFCC, Visser M, Harryvan T, van Buuren MM et al. 2016. Neoantigen landscape dynamics during human melanoma–T cell interactions. Nature 536:91–95
    [Google Scholar]
  83. Westcott PMK, Muyas F, Smith O, Hauck H, Sacks NJ et al. 2021a. Mismatch repair deficiency is not sufficient to increase tumor immunogenicity. bioRxiv 2021.08.24.457572 . https://doi.org/10.1101/2021.08.24.457572
  84. Westcott PMK, Sacks NJ, Schenkel JM, Ely ZA, Smith O et al. 2021b. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer. Nat. Cancer 2:1071–85
    [Google Scholar]
  85. Williams JB, Li S, Higgs EF, Cabanov A, Wang X et al. 2020. Tumor heterogeneity and clonal cooperation influence the immune selection of IFN-γ-signaling mutant cancer cells. Nat. Commun. 11:602
    [Google Scholar]
  86. Williams MA, Tyznik AJ, Bevan MJ. 2006. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441:7095890–93
    [Google Scholar]
  87. Wolf Y, Bartok O, Patkar S, Eli GB, Cohen S et al. 2019. UVB-induced tumor heterogeneity diminishes immune response in melanoma. Cell 179:1219–35.e21
    [Google Scholar]
  88. Wu Y, Biswas D, Usaite I, Angelova M, Boeing S et al. 2022. A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. Nat. Cancer 3:696–709
    [Google Scholar]
  89. Wu Y, Kyle-Cezar F, Woolf RT, Naceur-Lombardelli C, Owen J et al. 2019. An innate-like Vδ1+ γδ T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci. Transl. Med. 11:513aax9364
    [Google Scholar]
  90. Yewdell JW. 2006. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 25:4533–43
    [Google Scholar]
  91. Yizhak K, Aguet F, Kim J, Hess JM, Kübler K et al. 2019. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364:6444eaaw0726–11
    [Google Scholar]
  92. Yoshida K, Gowers KHC, Lee-Six H, Chandrasekharan DP, Coorens T et al. 2020. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578:266–72
    [Google Scholar]
  93. Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT et al. 2018. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173:71755–69.e22
    [Google Scholar]
  94. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X et al. 2014. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346:6206256–59
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-061521-101910
Loading
/content/journals/10.1146/annurev-cancerbio-061521-101910
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error