1932

Abstract

Dysregulated transcription factor activity is a defining feature of various cancer types. As such, targeting oncogenic transcriptional dependency has long been pursued as a potential therapeutic approach. However, transcription factors have historically been deemed as undruggable targets due to their highly disordered structures and lack of well-defined binding pockets. Nevertheless, interest in their pharmacologic inhibition and destruction has not dwindled in recent years. Here, we discuss new small-molecule-based approaches to target various transcription factors. Ligands with different mechanisms of action, such as inhibitors, molecular glue degraders, and proteolysis targeting chimeras, have recently seen success preclinically and clinically. We review how these strategies overcome the challenges presented by targeting transcription factors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062722-012209
2024-06-12
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062722-012209.html?itemId=/content/journals/10.1146/annurev-cancerbio-062722-012209&mimeType=html&fmt=ahah

Literature Cited

  1. Backus KM, Correia BE, Lum KM, Forli S, Horning BD, et al. 2016.. Proteome-wide covalent ligand discovery in native biological systems. . Nature 534:(7608):57074
    [Crossref] [Google Scholar]
  2. Baek K, Scott DC, Schulman BA. 2021.. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. . Curr. Opin. Struct. Biol. 67::1019
    [Crossref] [Google Scholar]
  3. Békés M, Langley DR, Crews CM. 2022.. PROTAC targeted protein degraders: The past is prologue. . Nat. Rev. Drug Discov. 21::181200
    [Crossref] [Google Scholar]
  4. Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H. 1990.. Sequence-specific DNA binding by the c-Myc protein. . Science 250:(494):114951
    [Crossref] [Google Scholar]
  5. Boike L, Cioffi AG, Majewski FC, Co J, Henning NJ, et al. 2021.. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. . Cell Chem. Biol. 28:(1):413.e17
    [Crossref] [Google Scholar]
  6. Boskovic ZV, Kemp MM, Freedy AM, Viswanathan VS, Pop MS, et al. 2016.. Inhibition of zinc-dependent histone deacetylases with a chemically triggered electrophile. . ACS Chem. Biol. 11:(7):184451
    [Crossref] [Google Scholar]
  7. Bradner JE, Hnisz D, Young RA. 2017.. Transcriptional addiction in cancer. . Cell 168:(4):62943
    [Crossref] [Google Scholar]
  8. Bradner JE, McPherson OM, Mazitschek R, Barnes-Seeman D, Shen JP, et al. 2006.. A robust small-molecule microarray platform for screening cell lysates. . Chem. Biol. 13:(5):493504
    [Crossref] [Google Scholar]
  9. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. 2009.. Awakening guardian angels: drugging the p53 pathway. . Nat. Rev. Cancer 9:(12):86273
    [Crossref] [Google Scholar]
  10. Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, et al. 2012.. Targeting the von Hippel–Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. . J. Am. Chem. Soc. 134:(10):446568
    [Crossref] [Google Scholar]
  11. Bushweller JH. 2019.. Targeting transcription factors in cancer—from undruggable to reality. . Nat. Rev. Cancer 19::61124
    [Crossref] [Google Scholar]
  12. Castell A, Yan Q, Fawkner K, Hydbring P, Zhang F, et al. 2018.. A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. . Sci. Rep. 8:(1):10064
    [Crossref] [Google Scholar]
  13. Chamberlain NL, Whitacre DC, Miesfeld RL. 1996.. Delineation of two distinct type 1 activation functions in the androgen receptor amino-terminal domain. . J. Biol. Chem. 271:(43):2677278
    [Crossref] [Google Scholar]
  14. Chen H, Liu H, Qing G. 2018.. Targeting oncogenic Myc as a strategy for cancer treatment. . Signal Transduct. Target. Ther. 3::5
    [Crossref] [Google Scholar]
  15. Chen Y, Zhou Q, Hankey W, Fang X, Yuan F. 2022.. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. . Cell Death Dis. 13::632
    [Crossref] [Google Scholar]
  16. Chène P. 2003.. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. . Nat. Rev. Cancer 3::1029
    [Crossref] [Google Scholar]
  17. Choi SH, Mahankali M, Lee SJ, Hull M, Petrassi HM, et al. 2017.. Targeted disruption of Myc-Max oncoprotein complex by a small molecule. . ACS Chem. Biol. 12:(11):271519
    [Crossref] [Google Scholar]
  18. Cui H, Carlson AS, Schleiff MA, Divakaran A, Johnson JA, et al. 2021.. 4-Methyl-1,2,3-triazoles as N-acetyl-lysine mimics afford potent BET bromodomain inhibitors with improved selectivity. . J. Med. Chem. 64:(14):10497511
    [Crossref] [Google Scholar]
  19. Dai C, Heemers H, Sharifi N. 2017.. Androgen signaling in prostate cancer. . Cold Spring Harb. Perspect. Med. 7:(9):a030452
    [Crossref] [Google Scholar]
  20. Dalal K, Morin H, Ban F, Shepherd A, Fernandez M, et al. 2018.. Small molecule-induced degradation of the full length and V7 truncated variant forms of human androgen receptor. . Eur. J. Med. Chem. 157::116473
    [Crossref] [Google Scholar]
  21. Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. 2006.. The c-Myc target gene network. . Semin. Cancer Biol. 16:(4):25364
    [Crossref] [Google Scholar]
  22. Darnell JE. 2002.. Transcription factors as targets for cancer therapy. . Nat. Rev. Cancer 2:(10):74049
    [Crossref] [Google Scholar]
  23. Davey RA, Grossmann M. 2016.. Androgen receptor structure, function and biology: from bench to bedside. . Clin. Biochem. Rev. 37:(1):315
    [Google Scholar]
  24. Dehm SM, Tindall DJ. 2006.. Molecular regulation of androgen action in prostate cancer. . J. Cell. Biochem. 99:(2):33344
    [Crossref] [Google Scholar]
  25. Demma MJ, Mapelli C, Sun A, Bodea S, Ruprecht B, et al. 2019.. Omomyc reveals new mechanisms to inhibit the MYC oncogene. . Mol. Cell. Biol. 39:(22):e00248-19
    [Crossref] [Google Scholar]
  26. Eferl R, Wagner EF. 2003.. AP-1: a double-edged sword in tumorigenesis. . Nat. Rev. Cancer 3:(11):85968
    [Crossref] [Google Scholar]
  27. Efstathiou E, Titus M, Wen S, Hoang A, Karlou M, et al. 2015.. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. . Eur. Urol. 67:(1):5360
    [Crossref] [Google Scholar]
  28. Erba HP, Becker PS, Shami PJ, Grunwald MR, Flesher DL, et al. 2019.. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. . Blood Adv. 3:(13):193949
    [Crossref] [Google Scholar]
  29. Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, et al. 2020.. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. . Nature 578:(7794):30610
    [Crossref] [Google Scholar]
  30. Flanagan JJ, Qian Y, Gough SM, Andreoli M, Bookbinder M, et al. 2019.. ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer. . Cancer Res. 79:(4_Suppl.):P504-18
    [Google Scholar]
  31. Forte N, Dovala D, Hesse MJ, McKenna JM, Tallarico JA, et al. 2023.. Targeted protein degradation through E2 recruitment. . ACS Chem. Biol. 18:(4):897904
    [Crossref] [Google Scholar]
  32. Funnell APW, Crossley M. 2012.. Homo- and heterodimerization in transcriptional regulation. . In Protein Dimerization and Oligomerization in Biology, ed. JM Matthews , pp. 10521. New York:: Springer
    [Google Scholar]
  33. Gabay M, Li Y, Felsher DW. 2014.. MYC activation is a hallmark of cancer initiation and maintenance. . Cold Spring Harb. Perspect. Med. 4:(6):a014241
    [Crossref] [Google Scholar]
  34. Gao X, Burris HA III, Vuky J, Dreicer R, Sartor AO, et al. 2022.. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC). . J. Clin. Oncol. 40:(6_suppl):17
    [Crossref] [Google Scholar]
  35. Gavory G, Ghandi M, d'Alessandro AC, Bonenfant B, Cabanski M, et al. 2023.. Development of MRT-2359, an orally bioavailable GSPT1 molecular glue degrader, for the treatment of lung cancers with MYC-induced translational addiction. . Cancer Res. 83:(7_Suppl.):3449
    [Crossref] [Google Scholar]
  36. Gavory G, Ghandi M, d'Alessandro AC, Bonenfant B, Chicas A, et al. 2022.. Identification of MRT-2359, a potent, selective and orally bioavailable GSPT1-directed molecular glue degrader (MGD) for the treatment of cancers with Myc-induced translational addiction. . Cancer Res. 82::3929
    [Crossref] [Google Scholar]
  37. Gilan O, Rioja I, Knezevic K, Bell MJ, Yeung MM, et al. 2020.. Selective targeting of BD1 and BD2 of the BET proteins in cancer and immuno-inflammation. . Science 368:(6489):38794
    [Crossref] [Google Scholar]
  38. Gluck WL, Gounder MM, Frank R, Eskens F, Blay JY, et al. 2020.. Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced P53 wild-type solid tumors or multiple myeloma. . Investig. New Drugs 38:(3):83143
    [Crossref] [Google Scholar]
  39. Gonzalez TL, Hancock M, Sun S, Gersch CL, Larios JM, et al. 2020.. Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer. . Breast Cancer Res. Treat. 180:(3):61122
    [Crossref] [Google Scholar]
  40. Gourisankar S, Krokhotin A, Ji W, Liu X, Chang CY, et al. 2023.. Rewiring cancer drivers to activate apoptosis. . Nature 620::41725
    [Crossref] [Google Scholar]
  41. Gryder BE, Pomella S, Sayers C, Wu XS, Song Y, et al. 2019a.. Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. . Nat. Genet. 51:(12):171422
    [Crossref] [Google Scholar]
  42. Gryder BE, Wachtel M, Chang K, El Demerdash O, Aboreden NG, et al. 2020.. Miswired enhancer logic drives a cancer of the muscle lineage. . iScience 23:(5):101103
    [Crossref] [Google Scholar]
  43. Gryder BE, Wu L, Woldemichael GM, Pomella S, Quinn TR, et al. 2019b.. Chemical genomics reveals histone deacetylases are required for core regulatory transcription. . Nat. Commun. 10:(1):3004
    [Crossref] [Google Scholar]
  44. Gryder BE, Yohe ME, Chou H-C, Zhang X, Marques J, et al. 2017.. PAX3-FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. . Cancer Discov. 7:(8):88499
    [Crossref] [Google Scholar]
  45. Hamilton EP, Schott AF, Nanda R, Lu H, Keung CF, et al. 2022.. ARV-471, an estrogen receptor (ER) PROTAC degrader, combined with palbociclib in advanced ER+/human epidermal growth factor receptor 2-negative (HER2-) breast cancer: phase 1b cohort (part C) of a phase 1/2 study. . J. Clin. Oncol. 40:(16_suppl):TPS1120
    [Crossref] [Google Scholar]
  46. Han X, Wei W, Sun Y. 2022.. PROTAC degraders with ligands recruiting MDM2 E3 ubiquitin ligase: an updated perspective. . Acta Mater. Med. 1:(2):24459
    [Google Scholar]
  47. Han X, Zhao L, Xiang W, Qin C, Miao B, et al. 2019.. Discovery of highly potent and efficient PROTAC degraders of androgen receptor (AR) by employing weak binding affinity VHL E3 ligase ligands. . J. Med. Chem. 62:(24):1121831
    [Crossref] [Google Scholar]
  48. Han X, Zhao L, Xiang W, Qin C, Miao B, et al. 2021.. Strategies toward discovery of potent and orally bioavailable proteolysis targeting chimera degraders of androgen receptor for the treatment of prostate cancer. . J. Med. Chem. 64:(17):1283154
    [Crossref] [Google Scholar]
  49. Hanan EJ, Liang J, Wang X, Blake RA, Blaquiere N, Staben ST. 2020.. Monomeric targeted protein degraders. . J. Med. Chem. 63:(20):1133061
    [Crossref] [Google Scholar]
  50. Hart JR, Garner AL, Yu J, Ito Y, Sun M, et al. 2014.. Inhibitor of MYC identified in a Kröhnke pyridine library. . PNAS 111:(34):1255661
    [Crossref] [Google Scholar]
  51. He M, Cao C, Ni Z, Liu Y, Song P, et al. 2022.. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). . Signal Transduct. Target. Ther. 7::181
    [Crossref] [Google Scholar]
  52. He S, Ma J, Fang Y, Liu Y, Wu S, et al. 2021.. Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. . Acta Pharm. Sin. B 11:(6):161728
    [Crossref] [Google Scholar]
  53. Henley MJ, Koehler AN. 2021.. Advances in targeting ‘undruggable’ transcription factors with small molecules. . Nat. Rev. Drug Discov. 20:(9):66988
    [Crossref] [Google Scholar]
  54. Hörnberg E, Ylitalo EB, Crnalic S, Antti H, Stattin P, et al. 2011.. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. . PLOS ONE 6:(4):e19059
    [Crossref] [Google Scholar]
  55. Hua H, Zhang H, Kong Q, Jiang Y. 2018.. Mechanisms for estrogen receptor expression in human cancer. . Exp. Hematol. Oncol. 7::24
    [Crossref] [Google Scholar]
  56. Huang Y, Liu Z. 2009.. Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: a critical assessment of the “fly-casting” mechanism. . J. Mol. Biol. 393:(5):114359
    [Crossref] [Google Scholar]
  57. Isobe Y, Okumura M, McGregor LM, Brittain SM, Jones MD, et al. 2020.. Manumycin polyketides act as molecular glues between UBR7 and P53. . Nat. Chem. Biol. 16:(11):118998
    [Crossref] [Google Scholar]
  58. Jeong K-C, Kim K-T, Seo H-H, Shin S-P, Ahn K-O, et al. 2014.. Intravesical instillation of c-MYC inhibitor KSI-3716 suppresses orthotopic bladder tumor growth. . J. Urol. 191:(2):51018
    [Crossref] [Google Scholar]
  59. Jones SN, Roe AE, Donehower LA, Bradley A. 1995.. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. . Nature 378:(6553):2068
    [Crossref] [Google Scholar]
  60. Kaelin WG Jr. 2008.. The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. . Nat. Rev. Cancer 8:(11):86573
    [Crossref] [Google Scholar]
  61. Kallio HML, Hieta R, Latonen L, Brofeldt A, Annala M, et al. 2018.. Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases. . Br. J. Cancer 119:(3):34756
    [Crossref] [Google Scholar]
  62. Kannt A, Đikić I. 2021.. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. . Cell Chem. Biol. 28:(7):101431
    [Crossref] [Google Scholar]
  63. King EA, Cho Y, Hsu NS, Dovala D, McKenna JM, et al. 2023.. Chemoproteomics-enabled discovery of a covalent molecular glue degrader targeting NF-κB. . Cell Chem. Biol. 30:(4):394402.e9
    [Crossref] [Google Scholar]
  64. Koehler AN. 2010.. A complex task? Direct modulation of transcription factors with small molecules. . Curr. Opin. Chem. Biol. 14:(3):33140
    [Crossref] [Google Scholar]
  65. Kramer LT, Zhang X. 2022.. Expanding the landscape of E3 ligases for targeted protein degradation. . Curr. Res. Chem. Biol. 2::100020
    [Crossref] [Google Scholar]
  66. Laccetti AL, Chatta GS, Iannotti N, Kyriakopoulos C, Villaluna K, et al. 2023.. Phase 1/2 study of EPI-7386 in combination with enzalutamide (enz) compared with enz alone in subjects with metastatic castration-resistant prostate cancer (mCRPC). . J. Clin. Oncol. 41:(6_suppl):179
    [Crossref] [Google Scholar]
  67. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, et al. 2018.. The human transcription factors. . Cell 172:(4):65065
    [Crossref] [Google Scholar]
  68. Le Moigne R, Banuelos CA, Mawji NR, Tam T, Wang J, et al. 2020.. IND candidate EPI-7386 as an N-terminal domain androgen receptor inhibitor in development for the treatment of prostate cancer. . J. Clin. Oncol. 38:(6_suppl):142
    [Crossref] [Google Scholar]
  69. Lee TI, Young RA. 2000.. Transcription of eukaryotic protein-coding genes. . Annu. Rev. Genet. 34::77137
    [Crossref] [Google Scholar]
  70. Lee TI, Young RA. 2013.. Transcriptional regulation and its misregulation in disease. . Cell 152:(6):123751
    [Crossref] [Google Scholar]
  71. Li X, Song Y. 2020.. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. . J. Hematol. Oncol. 13:(1):50
    [Crossref] [Google Scholar]
  72. Li Y, Yang J, Aguilar A, McEachern D, Przybranowski S, et al. 2019.. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. . J. Med. Chem. 62:(2):44866
    [Crossref] [Google Scholar]
  73. Lier S, Sellmer A, Orben F, Heinzlmeir S, Krauß L, et al. 2022.. A novel cereblon E3 ligase modulator with antitumor activity in gastrointestinal cancer. . Bioorg. Chem. 119::105505
    [Crossref] [Google Scholar]
  74. Lim S, Khoo R, Peh KM, Teo J, Chang SC, et al. 2020.. bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA). . PNAS 117:(11):5791800
    [Crossref] [Google Scholar]
  75. Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, et al. 2012.. Transcriptional amplification in tumor cells with elevated c-Myc. . Cell 151:(1):5667
    [Crossref] [Google Scholar]
  76. Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. 2006.. Intrinsic disorder in transcription factors. . Biochemistry 45:(22):687388
    [Crossref] [Google Scholar]
  77. Liu Y, Lin B, Larsen MB, Alfaras I, Kennerdell JR, et al. 2023a.. Identification of a molecular degrader targeting the AR-V7 splice variant. . Cancer Res. 83:(7_Suppl.):1620
    [Crossref] [Google Scholar]
  78. Liu Y, Yang J, Wang T, Luo M, Chen Y, et al. 2023b.. Expanding PROTACtable genome universe of E3 ligases. . Nat. Commun. 14::6509
    [Crossref] [Google Scholar]
  79. Liu Y, Yu C, Shao Z, Xia X, Hu T, et al. 2021.. Selective degradation of AR-V7 to overcome castration resistance of prostate cancer. . Cell Death Dis. 12:(10):857
    [Crossref] [Google Scholar]
  80. Llombart V, Mansour MR. 2022.. Therapeutic targeting of “undruggable” MYC. . EBioMedicine 75::103756
    [Crossref] [Google Scholar]
  81. Look AT. 1997.. Oncogenic transcription factors in the human acute leukemias. . Science 278:(5340):105964
    [Crossref] [Google Scholar]
  82. Lopez-Bergami P, Lau E, Ronai Z. 2010.. Emerging roles of ATF2 and the dynamic AP1 network in cancer. . Nat. Rev. Cancer 10:(1):6576
    [Crossref] [Google Scholar]
  83. Lopez-Girona A, Mendy D, Ito T, Miller K, Gandhi AK, et al. 2012.. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. . Leukemia 26:(11):232635
    [Crossref] [Google Scholar]
  84. Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, et al. 2013.. Selective inhibition of tumor oncogenes by disruption of super-enhancers. . Cell 153:(2):32034
    [Crossref] [Google Scholar]
  85. Lu J, McEachern D, Li S, Ellis MJ, Wang S. 2016.. Reactivation of p53 by MDM2 inhibitor MI-77301 for the treatment of endocrine-resistant breast cancer. . Mol. Cancer Ther. 15:(12):288793
    [Crossref] [Google Scholar]
  86. Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. 2021.. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. . Mol. Cancer 20:(1):3
    [Crossref] [Google Scholar]
  87. Mark KG, Kolla S, Aguirre JD, Garshott DM, Schmitt S, et al. 2023.. Orphan quality control shapes network dynamics and gene expression. . Cell 186:(16):346075.e23
    [Crossref] [Google Scholar]
  88. Maynadier M, Nirdé P, Ramirez J-M, Cathiard AM, Platet N, et al. 2008.. Role of estrogens and their receptors in adhesion and invasiveness of breast cancer cells. . In Hormonal Carcinogenesis V, ed. JJ Li, SA Li, S Mohla, H Rochefort, T Maudelonde , pp. 48591. New York:: Springer
    [Google Scholar]
  89. McEwan IJ. 2012.. Intrinsic disorder in the androgen receptor: identification, characterisation and drugability. . Mol. Biosyst. 8:(1):8290
    [Crossref] [Google Scholar]
  90. McLachlan T, Matthews WC, Jackson ER, Staudt DE, Douglas AM, et al. 2022.. B-cell lymphoma 6 (BCL6): from master regulator of humoral immunity to oncogenic driver in pediatric cancers. . Mol. Cancer Res. 20:(12):171123
    [Crossref] [Google Scholar]
  91. Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW. 2020.. ARe we there yet? Understanding androgen receptor signaling in breast cancer. . NPJ Breast Cancer 6::47
    [Crossref] [Google Scholar]
  92. Mimeault M, Batra SK. 2013.. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. . J. Cell. Mol. Med. 17::3054
    [Crossref] [Google Scholar]
  93. Nair SK, Burley SK. 2003.. X-ray structures of Myc-Max and Mad-Max recognizing DNA: molecular bases of regulation by proto-oncogenic transcription factors. . Cell 112:(2):193205
    [Crossref] [Google Scholar]
  94. Neklesa T, Snyder LB, Willard RR, Vitale N, Pizzano J, et al. 2019.. ARV-110: an oral androgen receptor PROTAC degrader for prostate cancer. . J. Clin. Oncol. 37:(7_suppl):259
    [Crossref] [Google Scholar]
  95. Ozaki T, Nakagawara A. 2011.. Role of p53 in cell death and human cancers. . Cancers 3:(1):9941013
    [Crossref] [Google Scholar]
  96. Pachynski RK, Iannotti N, Laccetti AL, Carthon BC, Chi KN, et al. 2023.. Oral EPI-7386 in patients with metastatic castration-resistant prostate cancer. . J. Clin. Oncol. 41:(6_suppl):177
    [Crossref] [Google Scholar]
  97. Perri F, Pisconti S, Della Vittoria Scarpati G. 2016.. P53 mutations and cancer: a tight linkage. . Ann. Transl. Med. 4:(24):522
    [Crossref] [Google Scholar]
  98. Petrylak DP, Gao X, Vogelzang NJ, Garfield MH, Taylor I, et al. 2020.. First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI). . J. Clin. Oncol. 38:(15_suppl):3500
    [Crossref] [Google Scholar]
  99. Petrylak DP, Stewart TF, Gao X, Berghorn E, Lu H, et al. 2023.. A phase 2 expansion study of ARV-766, a PROTAC androgen receptor (AR) degrader, in metastatic castration-resistant prostate cancer (mCRPC). . J. Clin. Oncol. 41:(6_suppl):TPS290
    [Crossref] [Google Scholar]
  100. Pettersson M, Crews CM. 2019.. PROteolysis TArgeting Chimeras (PROTACs)—past, present and future. . Drug Discov. Today Technol. 31::1527
    [Crossref] [Google Scholar]
  101. Pop MS, Stransky N, Garvie CW, Theurillat JP, Hartman EC, et al. 2014.. A small molecule that binds and inhibits the ETV1 transcription factor oncoprotein. . Mol. Cancer Ther. 13:(6):1492502
    [Crossref] [Google Scholar]
  102. Raina K, Eastman KJ, Yu X, Forbes CD, Jones KM, et al. 2023.. An oral androgen receptor RIPTAC for prostate cancer. . J. Clin. Oncol. 41:(6_suppl):184
    [Crossref] [Google Scholar]
  103. Ramsay RG, Gonda TJ. 2008.. MYB function in normal and cancer cells. . Nat. Rev. Cancer 8:(7):52334
    [Crossref] [Google Scholar]
  104. Rana K, Davey RA, Zajac JD. 2014.. Human androgen deficiency: insights gained from androgen receptor knockout mouse models. . Asian J. Androl. 16:(2):16977
    [Crossref] [Google Scholar]
  105. Rana S, Natarajan A. 2021.. Small molecule induced polymerization of BCL6 facilitates SIAH1 mediated degradation. . Signal Transduct. Target. Ther. 6::142
    [Crossref] [Google Scholar]
  106. Rew Y, Sun D. 2014.. Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. . J. Med. Chem. 57:(15):633241
    [Crossref] [Google Scholar]
  107. Richters A, Doyle SK, Freeman DB, Lee C, Leifer BS, et al. 2021.. Modulating androgen receptor-driven transcription in prostate cancer with selective CDK9 inhibitors. . Cell Chem. Biol. 28:(2):13447.e14
    [Crossref] [Google Scholar]
  108. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. 2001.. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. . PNAS 98:(15):855459
    [Crossref] [Google Scholar]
  109. Sakkiah S, Kusko R, Pan B, Guo W, Ge W, et al. 2018.. Structural changes due to antagonist binding in ligand binding pocket of androgen receptor elucidated through molecular dynamics simulations. . Front. Pharmacol. 9::492
    [Crossref] [Google Scholar]
  110. Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, et al. 2018.. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. . Commun. Biol. 1::100
    [Crossref] [Google Scholar]
  111. Samarasinghe KTG, Jaime-Figueroa S, Burgess M, Nalawansha DA, Dai K, et al. 2021.. Targeted degradation of transcription factors by TRAFTACs: transcription factor targeting chimeras. . Cell Chem. Biol. 28:(5):64861.e5
    [Crossref] [Google Scholar]
  112. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, et al. 2012.. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. . Cancer Cell 22:(2):20921
    [Crossref] [Google Scholar]
  113. Schapira M, Calabrese MF, Bullock AN, Crews CM. 2019.. Targeted protein degradation: expanding the toolbox. . Nat. Rev. Drug Discov. 18:(12):94963
    [Crossref] [Google Scholar]
  114. Schreiber SL. 2021.. The rise of molecular glues. . Cell 184:(1):39
    [Crossref] [Google Scholar]
  115. Schuijers J, Manteiga JC, Weintraub AS, Day DS, Zamudio AV, et al. 2018.. Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. . Cell Rep. 23:(2):34960
    [Crossref] [Google Scholar]
  116. Shang S, Hua F, Hu Z-W. 2017.. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. . Oncotarget 8:(20):3397289
    [Crossref] [Google Scholar]
  117. Shao J, Yan Y, Ding D, Wang D, He Y, et al. 2021.. Destruction of DNA-binding proteins by programmable oligonucleotide PROTAC (O'PROTAC): effective targeting of LEF1 and ERG. . Adv. Sci. 8:(20):e2102555
    [Crossref] [Google Scholar]
  118. Słabicki M, Yoon H, Koeppel J, Nitsch L, Roy Burman SS, et al. 2020.. Small-molecule-induced polymerization triggers degradation of BCL6. . Nature 588:(7836):16468
    [Crossref] [Google Scholar]
  119. Snyder LB, Flanagan JJ, Qian Y, Gough SM, Andreoli M, et al. 2021.. The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer. . Cancer Res. 81:(13_Suppl.):44
    [Crossref] [Google Scholar]
  120. Spradlin JN, Zhang E, Nomura DK. 2021.. Reimagining druggability using chemoproteomic platforms. . Acc. Chem. Res. 54:(7):180113
    [Crossref] [Google Scholar]
  121. Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS. 2016.. E2 enzymes: more than just middle men. . Cell Res. 26:(4):42340
    [Crossref] [Google Scholar]
  122. Struntz NB, Chen A, Deutzmann A, Wilson RM, Stefan E, et al. 2019.. Stabilization of the Max homodimer with a small molecule attenuates Myc-driven transcription. . Cell Chem. Biol. 26:(5):71123.e14
    [Crossref] [Google Scholar]
  123. Sun X, Gao H, Yang Y, He M, Wu Y, et al. 2019.. PROTACs: great opportunities for academia and industry. . Signal Transduct. Target. Ther. 4::64
    [Crossref] [Google Scholar]
  124. Taherbhoy AM, Daniels DL. 2023.. Harnessing UBR5 for targeted protein degradation of key transcriptional regulators. . Trends Pharmacol. Sci. 44:(11):75861
    [Crossref] [Google Scholar]
  125. Thiyagarajan T, Ponnusamy S, Hwang DJ, He Y, Asemota S, et al. 2023.. Inhibiting androgen receptor splice variants with cysteine selective irreversible covalent inhibitors to treat prostate cancer. . PNAS 120:(1):e2211832120
    [Crossref] [Google Scholar]
  126. Thomas E, Thankan RS, Purushottamachar P, Huang W, Kane MA, et al. 2022.. Novel AR/AR-V7 and Mnk1/2 degrader, VNPP433-3β: molecular mechanisms of action and efficacy in AR-overexpressing castration resistant prostate cancer in vitro and in vivo models. . Cells 11:(17):2699
    [Crossref] [Google Scholar]
  127. Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. 2019.. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. . Int. J. Mol. Sci. 20:(24):6140
    [Crossref] [Google Scholar]
  128. Tolomeo M, Cascio A. 2021.. The multifaced role of STAT3 in cancer and its implication for anticancer therapy. . Int. J. Mol. Sci. 22:(2):603
    [Crossref] [Google Scholar]
  129. Toriki ES, Papatzimas JW, Nishikawa K, Dovala D, Frank AO, et al. 2023.. Rational chemical design of molecular glue degraders. . ACS Cent. Sci. 9:(5):91526
    [Crossref] [Google Scholar]
  130. Vegas AJ, Fuller JH, Koehler AN. 2008.. Small-molecule microarrays as tools in ligand discovery. . Chem. Soc. Rev. 37:(7):138594
    [Crossref] [Google Scholar]
  131. Voss TC, Hager GL. 2014.. Dynamic regulation of transcriptional states by chromatin and transcription factors. . Nat. Rev. Genet. 15:(2):6981
    [Crossref] [Google Scholar]
  132. Wang B, Liu J, Tandon I, Wu S, Teng P, et al. 2021.. Development of MDM2 degraders based on ligands derived from Ugi reactions: lessons and discoveries. . Eur. J. Med. Chem. 219::113425
    [Crossref] [Google Scholar]
  133. Wang B, Wu S, Liu J, Yang K, Xie H, Tang W. 2019.. Development of selective small molecule MDM2 degraders based on nutlin. . Eur. J. Med. Chem. 176::47691
    [Crossref] [Google Scholar]
  134. Watson PA, Arora VK, Sawyers CL. 2015.. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. . Nat. Rev. Cancer 15:(12):70111
    [Crossref] [Google Scholar]
  135. Weerapana E, Wang C, Simon GM, Richter F, Khare S, et al. 2010.. Quantitative reactivity profiling predicts functional cysteines in proteomes. . Nature 468:(7325):79095
    [Crossref] [Google Scholar]
  136. Wu Z, Nicoll M, Ingham RJ. 2010.. AP-1 family transcription factors: a diverse family of proteins that regulate varied cellular activities in classical Hodgkin lymphoma and ALK+ALCL. . Exp. Hematol. Oncol. 10::4
    [Crossref] [Google Scholar]
  137. Xia L, Tan S, Zhou Y, Lin J, Wang H, et al. 2018.. Role of the NFκB-signaling pathway in cancer. . Onco Targets Ther. 11::206373
    [Crossref] [Google Scholar]
  138. Xiang W, Zhao L, Han X, Qin C, Miao B, et al. 2021.. Discovery of ARD-2585 as an exceptionally potent and orally active PROTAC degrader of androgen receptor for the treatment of advanced prostate cancer. . J. Med. Chem. 64:(18):13487509
    [Crossref] [Google Scholar]
  139. Xie H, Liu J, Alem Glison DM, Fleming JB. 2021.. The clinical advances of proteolysis targeting chimeras in oncology. . Explor. Target. Antitumor Ther. 2:(6):51121
    [Crossref] [Google Scholar]
  140. Yin X, Giap C, Lazo JS, Prochownik EV. 2003.. Low molecular weight inhibitors of Myc-Max interaction and function. . Oncogene 22:(40):615159
    [Crossref] [Google Scholar]
  141. Yu F, Yu C, Li F, Zuo Y, Wang Y, et al. 2021.. Wnt/β-catenin signaling in cancers and targeted therapies. . Signal Transduct. Target. Ther. 6::307
    [Crossref] [Google Scholar]
  142. Zanon PRA, Lewald L, Hacker SM. 2020.. Isotopically labeled desthiobiotin azide (isoDTB) tags enable global profiling of the bacterial cysteinome. . Angew. Chem. Int. Ed. 59:(7):282936
    [Crossref] [Google Scholar]
  143. Zhao L, Han X, Lu J, McEachern D, Wang S. 2020.. A highly potent PROTAC androgen receptor (AR) degrader ARD-61 effectively inhibits AR-positive breast cancer cell growth in vitro and tumor growth in vivo. . Neoplasia 22:(10):52232
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062722-012209
Loading
/content/journals/10.1146/annurev-cancerbio-062722-012209
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error