1932

Abstract

The nonreceptor tyrosine phosphatase SHP2 has been at the center of cell signaling research for three decades. SHP2 is required to fully activate the RTK/RAS/ERK signaling cascade, although the underlying mechanisms are not completely understood. , which encodes SHP2, is the first identified proto-oncogene that encodes a tyrosine phosphatase, with dominantly activating mutations detected in leukemias and solid tumors. However, SHP2 has pro- and antioncogenic effects, and the most recent data reveal opposite activities of SHP2 in tumor cells and microenvironment cells. Allosteric SHP2 inhibitors show promising antitumor effects and overcome resistance to inhibitors of RAS/ERK signaling in animal models. Many clinical trials with orally bioactive SHP2 inhibitors, alone or combined with other regimens, are ongoing for a variety of cancers worldwide, with therapeutic outcomes yet unknown. This review discusses the multifaceted functions of SHP2 in oncogenesis, preclinical studies, and clinical trials with SHP2 inhibitors in oncological treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062722-013740
2024-06-12
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062722-013740.html?itemId=/content/journals/10.1146/annurev-cancerbio-062722-013740&mimeType=html&fmt=ahah

Literature Cited

  1. Aceto N, Sausgruber N, Brinkhaus H, Gaidatzis D, Martiny-Baron G, et al. 2012.. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. . Nat. Med. 18::52937
    [Crossref] [Google Scholar]
  2. Agazie YM, Hayman MJ. 2003.. Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. . Mol. Cell. Biol. 23::787586
    [Crossref] [Google Scholar]
  3. Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, et al. 2004.. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. . Nat. Med. 10::84957
    [Crossref] [Google Scholar]
  4. Bader-Meunier B, Tchernia G, Mielot F, Fontaine JL, Thomas C, et al. 1997.. Occurrence of myeloproliferative disorder in patients with Noonan syndrome. . J. Pediatr. 130::88589
    [Crossref] [Google Scholar]
  5. Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, et al. 2011.. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. . Cancer Cell 19::62939
    [Crossref] [Google Scholar]
  6. Bard-Chapeau EA, Yuan J, Droin N, Long S, Zhang EE, et al. 2006.. Concerted functions of Gab1 and Shp2 in liver regeneration and hepatoprotection. . Mol. Cell. Biol. 26::466474
    [Crossref] [Google Scholar]
  7. Batth TS, Papetti M, Pfeiffer A, Tollenaere MAX, Francavilla C, Olsen JV. 2018.. Large-scale phosphoproteomics reveals Shp-2 phosphatase-dependent regulators of Pdgf receptor signaling. . Cell Rep. 22::278496
    [Crossref] [Google Scholar]
  8. Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG. 1994.. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. . PNAS 91::733539
    [Crossref] [Google Scholar]
  9. Bentires-Alj M, Gil SG, Chan R, Wang ZC, Wang Y, et al. 2006.. A role for the scaffolding adapter GAB2 in breast cancer. . Nat. Med. 12::11421
    [Crossref] [Google Scholar]
  10. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, et al. 2004.. Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. . Cancer Res. 64::881620
    [Crossref] [Google Scholar]
  11. Bobone S, Pannone L, Biondi B, Solman M, Flex E, et al. 2021.. Targeting oncogenic Src homology 2 domain-containing phosphatase 2 (SHP2) by inhibiting its protein-protein interactions. . J. Med. Chem. 64::1597390
    [Crossref] [Google Scholar]
  12. Bocanegra M, Bergamaschi A, Kim YH, Miller MA, Rajput AB, et al. 2010.. Focal amplification and oncogene dependency of GAB2 in breast cancer. . Oncogene 29::77479
    [Crossref] [Google Scholar]
  13. Bowen ME, Boyden ED, Holm IA, Campos-Xavier B, Bonafé L, et al. 2011.. Loss-of-function mutations in PTPN11 cause metachondromatosis, but not Ollier disease or Maffucci syndrome. . PLOS Genet. 7::e1002050
    [Crossref] [Google Scholar]
  14. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, et al. 2015.. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. . Nat. Commun. 6::8859
    [Crossref] [Google Scholar]
  15. Chan G, Cheung LS, Yang W, Milyavsky M, Sanders AD, et al. 2011.. Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells. . Blood 117::425361
    [Crossref] [Google Scholar]
  16. Chan G, Kalaitzidis D, Neel BG. 2008.. The tyrosine phosphatase Shp2 (PTPN11) in cancer. . Cancer Metastasis Rev. 27::17992
    [Crossref] [Google Scholar]
  17. Chan RJ, Feng GS. 2007.. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. . Blood 109::86267
    [Crossref] [Google Scholar]
  18. Chan RJ, Johnson SA, Li Y, Yoder MC, Feng GS. 2003.. A definitive role of Shp-2 tyrosine phosphatase in mediating embryonic stem cell differentiation and hematopoiesis. . Blood 102::207480
    [Crossref] [Google Scholar]
  19. Chen D, Barsoumian HB, Yang L, Younes AI, Verma V, et al. 2020.. SHP-2 and PD-L1 inhibition combined with radiotherapy enhances systemic antitumor effects in an anti-PD-1-resistant model of non-small cell lung cancer. . Cancer Immunol. Res. 8::88394
    [Crossref] [Google Scholar]
  20. Chen WS, Liang Y, Zong M, Liu JJ, Kaneko K, et al. 2021.. Single-cell transcriptomics reveals opposing roles of Shp2 in Myc-driven liver tumor cells and microenvironment. . Cell Rep. 37::109974
    [Crossref] [Google Scholar]
  21. Chen YN, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, et al. 2016.. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. . Nature 535::14852
    [Crossref] [Google Scholar]
  22. Choong K, Freedman MH, Chitayat D, Kelly EN, Taylor G, Zipursky A. 1999.. Juvenile myelomonocytic leukemia and Noonan syndrome. . J. Pediatr. Hematol. Oncol. 21::52327
    [Crossref] [Google Scholar]
  23. Cleghon V, Feldmann P, Ghiglione C, Copeland TD, Perrimon N, et al. 1998.. Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. . Mol. Cell 2::71927
    [Crossref] [Google Scholar]
  24. Cotton JL, Williams RG. 1995.. Noonan syndrome and neuroblastoma. . Arch. Pediatr. Adolesc. Med. 149::128081
    [Crossref] [Google Scholar]
  25. Dardaei L, Wang HQ, Singh M, Fordjour P, Shaw KX, et al. 2018.. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. . Nat. Med. 24::51217
    [Crossref] [Google Scholar]
  26. Das TK, Gatto J, Mirmira R, Hourizadeh E, Kaufman D, et al. 2021.. Drosophila RASopathy models identify disease subtype differences and biomarkers of drug efficacy. . iScience 24::102306
    [Crossref] [Google Scholar]
  27. Digilio MC, Conti E, Sarkozy A, Mingarelli R, Dottorini T, et al. 2002.. Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. . Am. J. Hum. Genet. 71::38994
    [Crossref] [Google Scholar]
  28. Dong L, Yu W-M, Zheng H, Loh ML, Bunting ST, et al. 2016.. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. . Nature 539::3048
    [Crossref] [Google Scholar]
  29. Du L, Ji Y, Xin B, Zhang J, Lu LC, 2023.. Shp2 deficiency in Kupffer cells and hepatocytes aggravates hepatocarcinogenesis by recruiting non-Kupffer macrophages. . Cell Mol. Gastroenterol. Hepatol. 15::135169
    [Crossref] [Google Scholar]
  30. Ekman S, Kallin A, Engström U, Heldin C-H, Rönnstrand L. 2002.. SHP-2 is involved in heterodimer specific loss of phosphorylation of Tyr771 in the PDGF β-receptor. . Oncogene 21::187075
    [Crossref] [Google Scholar]
  31. Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, et al. 2020.. Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. . EMBO Mol. Med. 12::e11571
    [Crossref] [Google Scholar]
  32. Fedele C, Li S, Teng KW, Foster CJR, Peng D, et al. 2021.. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. . J. Exp. Med. 218::e20201414
    [Crossref] [Google Scholar]
  33. Fedele C, Ran H, Diskin B, Wei W, Jen J, et al. 2018.. SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. . Cancer Discov. 8::123749
    [Crossref] [Google Scholar]
  34. Feng GS. 1999.. Shp-2 tyrosine phosphatase: signaling one cell or many. . Exp. Cell Res. 253::4754
    [Crossref] [Google Scholar]
  35. Feng GS. 2012.. Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. . Cancer Cell 21::15054
    [Crossref] [Google Scholar]
  36. Feng GS, Hui CC, Pawson T. 1993.. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. . Science 259::160711
    [Crossref] [Google Scholar]
  37. Feng GS, Pawson T. 1994.. Phosphotyrosine phosphatases with SH2 domains: regulators of signal transduction. . Trends Genet. 10::5458
    [Crossref] [Google Scholar]
  38. Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, et al. 1996.. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. . Mol. Cell. Biol. 16::688799
    [Crossref] [Google Scholar]
  39. Gagné-Sansfaçon J, Coulombe G, Langlois MJ, Langlois A, Paquet M, et al. 2016.. SHP-2 phosphatase contributes to KRAS-driven intestinal oncogenesis but prevents colitis-associated cancer development. . Oncotarget 7::6567695
    [Crossref] [Google Scholar]
  40. Gelb BD, Tartaglia M. 1993.. Noonan syndrome with multiple lentigines. . In GeneReviews®, ed. MP Adam, GM Mirzaa, RA Pagon, SE Wallace, LJH Bean, KW Gripp, A Amemiya . Seattle:: Univ. Wash. Press
    [Google Scholar]
  41. Gu S, Sayad A, Chan G, Yang W, Lu Z, et al. 2018.. SHP2 is required for BCR-ABL1-induced hematologic neoplasia. . Leukemia 32::20313
    [Crossref] [Google Scholar]
  42. Gutch MJ, Flint AJ, Keller J, Tonks NK, Hengartner MO. 1998.. The Caenorhabditis elegans SH2 domain-containing protein tyrosine phosphatase PTP-2 participates in signal transduction during oogenesis and vulval development. . Genes Dev. 12::57185
    [Crossref] [Google Scholar]
  43. Han T, Xiang D-M, Sun W, Liu N, Sun H-L, et al. 2015.. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. . J. Hepatol. 63::65160
    [Crossref] [Google Scholar]
  44. Hanafusa H, Torii S, Yasunaga T, Matsumoto K, Nishida E. 2004.. Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. . J. Biol. Chem. 279::2299295
    [Crossref] [Google Scholar]
  45. Hanley KL, Liang Y, Wang G, Lin X, Yang M, et al. 2021.. Concurrent disruption of Ras/MAPK and NF-κB pathways induces circadian deregulation and hepatocarcinogenesis. . Mol. Cancer Res. 20:(3):33749
    [Crossref] [Google Scholar]
  46. Hatakeyama M. 2004.. Oncogenic mechanisms of the Helicobacter pylori CagA protein. . Nat. Rev. Cancer 4::68894
    [Crossref] [Google Scholar]
  47. Hatakeyama M. 2014.. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. . Cell Host Microbe 15::30616
    [Crossref] [Google Scholar]
  48. Heynen G, Lisek K, Vogel R, Wulf-Goldenberg A, Alcaniz J, et al. 2022.. Targeting SHP2 phosphatase in breast cancer overcomes RTK-mediated resistance to PI3K inhibitors. . Breast Cancer Res. 24::23
    [Crossref] [Google Scholar]
  49. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, et al. 2002.. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. . Science 295::68386
    [Crossref] [Google Scholar]
  50. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. 1998.. Crystal structure of the tyrosine phosphatase SHP-2. . Cell 92::44150
    [Crossref] [Google Scholar]
  51. Hu Z, Li J, Gao Q, Wei S, Yang B. 2017.. SHP2 overexpression enhances the invasion and metastasis of ovarian cancer in vitro and in vivo. . OncoTargets Ther. 10::388191
    [Crossref] [Google Scholar]
  52. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, et al. 2017.. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. . Science 355::142833
    [Crossref] [Google Scholar]
  53. Kaneko K, Liang Y, Liu Q, Chen WS, Feng GS. 2022.. CD133+ intercellsome mediates direct cell-cell communication to offset intracellular signal deficit. . bioRxiv 2022.05.16.492226. https://doi.org/10.1101/2022.05.16.492226
  54. Kaneko K, Liang Y, Liu Q, Zhang S, Scheiter A, et al. 2023.. Identification of CD133+ intercellsomes in intercellular communication to offset intracellular signal deficit. . eLife 12::RP86824
    [Crossref] [Google Scholar]
  55. Kanumuri R, Kumar Pasupuleti S, Burns SS, Ramdas B, Kapur R. 2022.. Targeting SHP2 phosphatase in hematological malignancies. . Expert Opin. Ther. Targets 26::31932
    [Crossref] [Google Scholar]
  56. Ke Y, Wu D, Princen F, Nguyen T, Pang Y, et al. 2007.. Role of Gab2 in mammary tumorigenesis and metastasis. . Oncogene 26::495160
    [Crossref] [Google Scholar]
  57. Kerr DL, Haderk F, Bivona TG. 2021.. Allosteric SHP2 inhibitors in cancer: targeting the intersection of RAS, resistance, and the immune microenvironment. . Curr. Opin. Chem. Biol. 62::112
    [Crossref] [Google Scholar]
  58. Kharitonenkov A, Chen Z, Sures I, Wang H, Schilling J, Ullrich A. 1997.. A family of proteins that inhibit signalling through tyrosine kinase receptors. . Nature 386::18186
    [Crossref] [Google Scholar]
  59. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. 1991.. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. . Science 252::66874
    [Crossref] [Google Scholar]
  60. Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. 2006.. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. . J. Biol. Chem. 281::678592
    [Crossref] [Google Scholar]
  61. Lai LA, Zhao C, Zhang EE, Feng GS. 2004.. The Shp-2 tyrosine phosphatase. . In Protein Phosphatases, ed. J Arino, D Alexander , pp. 27599. Berlin:: Springer-Verlag
    [Google Scholar]
  62. Lechleider RJ, Sugimoto S, Bennett AM, Kashishian AS, Cooper JA, et al. 1993.. Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor. . J. Biol. Chem. 268::2147881
    [Crossref] [Google Scholar]
  63. Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, et al. 1998.. Molecular basis of T cell inactivation by CTLA-4. . Science 282::226366
    [Crossref] [Google Scholar]
  64. Legius E, Schrander-Stumpel C, Schollen E, Pulles-Heintzberger C, Gewillig M, Fryns JP. 2002.. PTPN11 mutations in LEOPARD syndrome. . J. Med. Genet. 39::57174
    [Crossref] [Google Scholar]
  65. Li S, Hsu DD, Li B, Luo X, Alderson N, et al. 2014.. Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis. . Cell Metab. 20::32032
    [Crossref] [Google Scholar]
  66. Li S, Wang X, Li Q, Li C. 2023.. Role of SHP2/PTPN11 in the occurrence and prognosis of cancer: a systematic review and meta-analysis. . Oncol. Lett. 25::19
    [Crossref] [Google Scholar]
  67. Li W, Nishimura R, Kashishian A, Batzer AG, Kim WJ, et al. 1994.. A new function for a phosphotyrosine phosphatase: linking GRB2-SOS to a receptor tyrosine kinase. . Mol. Cell. Biol. 14::50917
    [Google Scholar]
  68. Liu JJ, Li Y, Chen WS, Liang Y, Wang G, et al. 2018.. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-catenin, PIK3CA and MET. . J. Hepatol. 69::7988
    [Crossref] [Google Scholar]
  69. Liu JJ, Xin B, Du L, Chen L, Long Y, Feng GS. 2023.. Pharmaceutical SH2 domain-containing protein tyrosine phosphatase 2 inhibition suppresses primary and metastasized liver tumors by provoking hepatic innate immunity. . Hepatology 77::151226
    [Crossref] [Google Scholar]
  70. Liu K-W, Feng H, Bachoo R, Kazlauskas A, Smith EM, et al. 2011.. SHP-2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans. . J. Clin. Investig. 121::90517
    [Crossref] [Google Scholar]
  71. Liu Z, Liu Y, Qian L, Jiang S, Gai X, et al. 2021.. A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies. . Mol. Cell 81::407690.e8
    [Crossref] [Google Scholar]
  72. Luo X, Liao R, Hanley KL, Zhu HH, Malo KN, et al. 2016.. Dual Shp2 and Pten deficiencies promote non-alcoholic steatohepatitis and genesis of liver tumor-initiating cells. . Cell Rep. 17::297993
    [Crossref] [Google Scholar]
  73. Mainardi S, Mulero-Sánchez A, Prahallad A, Germano G, Bosma A, et al. 2018.. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. . Nat. Med. 24::96167
    [Crossref] [Google Scholar]
  74. Mañes S, Mira E, Gómez-Mouton C, Zhao ZJ, Lacalle RA, Martínez AC. 1999.. Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. . Mol. Cell. Biol. 19::312535
    [Crossref] [Google Scholar]
  75. Marasco M, Berteotti A, Weyershaeuser J, Thorausch N, Sikorska J, et al. 2020.. Molecular mechanism of SHP2 activation by PD-1 stimulation. . Sci. Adv. 6::eaay4458
    [Crossref] [Google Scholar]
  76. Marengère LE, Waterhouse P, Duncan GS, Mittrücker HW, Feng GS, Mak TW. 1996.. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. . Science 272::117073
    [Crossref] [Google Scholar]
  77. Marin TM, Keith K, Davies B, Conner DA, Guha P, et al. 2011.. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. . J. Clin. Investig. 121::102643
    [Crossref] [Google Scholar]
  78. Martin E, Agazie YM. 2021.. SHP2 potentiates the oncogenic activity of β-catenin to promote triple-negative breast cancer. . Mol. Cancer Res. 19::194656
    [Crossref] [Google Scholar]
  79. Martinelli S, Carta C, Flex E, Binni F, Cordisco EL, et al. 2006.. Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. . Cancer Genet. Cytogenet. 166::12429
    [Crossref] [Google Scholar]
  80. Mason JM, Morrison DJ, Basson MA, Licht JD. 2006.. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. . Trends Cell Biol. 16::4554
    [Crossref] [Google Scholar]
  81. Muenst S, Obermann EC, Gao F, Oertli D, Viehl CT, et al. 2013.. Src homology phosphotyrosyl phosphatase-2 expression is an independent negative prognostic factor in human breast cancer. . Histopathology 63::7482
    [Crossref] [Google Scholar]
  82. Nagamura Y, Miyazaki M, Nagano Y, Tomiyama A, Ohki R, et al. 2021.. SHP2 as a potential therapeutic target in diffuse-type gastric carcinoma addicted to receptor tyrosine kinase signaling. . Cancers 13::4309
    [Crossref] [Google Scholar]
  83. Neel BG, Gu H, Pao L. 2003.. The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. . Trends Biochem. Sci. 28::28493
    [Crossref] [Google Scholar]
  84. Nguyen TV, Ke Y, Zhang EE, Feng GS. 2006.. Conditional deletion of Shp2 tyrosine phosphatase in thymocytes suppresses both pre-TCR and TCR signals. . J. Immunol. 177::599096
    [Crossref] [Google Scholar]
  85. Nichols RJ, Haderk F, Stahlhut C, Schulze CJ, Hemmati G, et al. 2018.. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. . Nat. Cell Biol. 20::106473
    [Crossref] [Google Scholar]
  86. Ogata T, Yoshida R. 2005.. PTPN11 mutations and genotype-phenotype correlations in Noonan and LEOPARD syndromes. . Pediatr. Endocrinol. Rev. 2::66974
    [Google Scholar]
  87. Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, et al. 2008.. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. . PNAS 105::10038
    [Crossref] [Google Scholar]
  88. Perkins LA, Larsen I, Perrimon N. 1992.. corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. . Cell 70::22536
    [Crossref] [Google Scholar]
  89. Pluskey S, Wandless TJ, Walsh CT, Shoelson SE. 1995.. Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains. . J. Biol. Chem. 270::2897900
    [Crossref] [Google Scholar]
  90. Qu CK. 2000.. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. . Cell Res. 10::27988
    [Crossref] [Google Scholar]
  91. Qu C-K, Nguyen S, Chen J, Feng G-S. 2001.. Requirement of Shp-2 tyrosine phosphatase in lymphoid and hematopoietic cell development. . Blood 97::91114
    [Crossref] [Google Scholar]
  92. Qu C-K, Shi Z-Q, Shen R, Tsai F-Y, Orkin SH, Feng G-S. 1997.. A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development. . Mol. Cell. Biol. 17::5499507
    [Crossref] [Google Scholar]
  93. Qu C-K, Yu W-M, Azzarelli B, Cooper S, Broxmeyer HE, Feng G-S. 1998.. Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells. . Mol. Cell. Biol. 18::607582
    [Crossref] [Google Scholar]
  94. Quintana E, Schulze CJ, Myers DR, Choy TJ, Mordec K, et al. 2020.. Allosteric inhibition of SHP2 stimulates antitumor immunity by transforming the immunosuppressive environment. . Cancer Res. 80::2889902
    [Crossref] [Google Scholar]
  95. Ruess DA, Heynen GJ, Ciecielski KJ, Ai J, Berninger A, et al. 2018.. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. . Nat. Med. 24::95460
    [Crossref] [Google Scholar]
  96. Sarkozy A, Digilio MC, Dallapiccola B. 2008.. Leopard syndrome. . Orphanet J. Rare Dis. 3::13
    [Crossref] [Google Scholar]
  97. Saxton TM, Henkemeyer M, Gasca S, Shen R, Rossi DJ, et al. 1997.. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. . EMBO J. 16::235264
    [Crossref] [Google Scholar]
  98. Sha F, Gencer EB, Georgeon S, Koide A, Yasui N, et al. 2013.. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. . PNAS 110::1492429
    [Crossref] [Google Scholar]
  99. Shi ZQ, Lu W, Feng GS. 1998.. The Shp-2 tyrosine phosphatase has opposite effects in mediating the activation of extracellular signal-regulated and c-Jun NH2-terminal mitogen-activated protein kinases. . J. Biol. Chem. 273::49048
    [Crossref] [Google Scholar]
  100. Shi ZQ, Yu DH, Park M, Marshall M, Feng GS. 2000.. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. . Mol. Cell. Biol. 20::152636
    [Crossref] [Google Scholar]
  101. Sobreira NL, Cirulli ET, Avramopoulos D, Wohler E, Oswald GL, et al. 2010.. Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene. . PLOS Genet. 6::e1000991
    [Crossref] [Google Scholar]
  102. Solman M, Blokzijl-Franke S, Piques F, Yan C, Yang Q, et al. 2022a.. Inflammatory response in hematopoietic stem and progenitor cells triggered by activating SHP2 mutations evokes blood defects. . eLife 11::e73040
    [Crossref] [Google Scholar]
  103. Solman M, Woutersen DTJ, den Hertog J. 2022b.. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. . Front. Cell Dev. Biol. 10::1046415
    [Crossref] [Google Scholar]
  104. Song Y, Wang S, Zhao M, Yang X, Yu B. 2022.. Strategies targeting protein tyrosine phosphatase SHP2 for cancer therapy. . J. Med. Chem. 65306679
    [Google Scholar]
  105. Tajan M, Batut A, Cadoudal T, Deleruyelle S, Le Gonidec S, et al. 2014.. LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. . PNAS 111::E4494503
    [Crossref] [Google Scholar]
  106. Tao Y, Xie J, Zhong Q, Wang Y, Zhang S, et al. 2021.. A novel partially open state of SHP2 points to a “multiple gear” regulation mechanism. . J. Biol. Chem. 296::100538
    [Crossref] [Google Scholar]
  107. Tartaglia M, Aoki Y, Gelb BD. 2022.. The molecular genetics of RASopathies: an update on novel disease genes and new disorders. . Am. J. Med. Genet. C 190::42539
    [Crossref] [Google Scholar]
  108. Tartaglia M, Gelb BD. 2005.. Germ-line and somatic PTPN11 mutations in human disease. . Eur. J. Med. Genet. 48::8196
    [Crossref] [Google Scholar]
  109. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, et al. 2001.. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. . Nat. Genet. 29::46568
    [Crossref] [Google Scholar]
  110. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, et al. 2003.. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. . Nat. Genet. 34::14850
    [Crossref] [Google Scholar]
  111. Tsutsumi R, Takahashi A, Azuma T, Higashi H, Hatakeyama M. 2006.. Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. . Mol. Cell. Biol. 26::26176
    [Crossref] [Google Scholar]
  112. Vemulapalli V, Chylek LA, Erickson A, Pfeiffer A, Gabriel K-H, et al. 2021.. Time-resolved phosphoproteomics reveals scaffolding and catalysis-responsive patterns of SHP2-dependent signaling. . eLife 10::e64251
    [Crossref] [Google Scholar]
  113. Vogel W, Lammers R, Huang J, Ullrich A. 1993.. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. . Science 259::161114
    [Crossref] [Google Scholar]
  114. Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, et al. 2016.. Clonal evolution of glioblastoma under therapy. . Nat. Genet. 48::76876
    [Crossref] [Google Scholar]
  115. Wang M, Lu J, Wang M, Yang CY, Wang S. 2020.. Discovery of SHP2-D26 as a first, potent, and effective PROTAC degrader of SHP2 protein. . J. Med. Chem. 63::751028
    [Crossref] [Google Scholar]
  116. Wang Q, Yu WN, Chen X, Peng XD, Jeon SM, et al. 2016.. Spontaneous hepatocellular carcinoma after the combined deletion of Akt isoforms. . Cancer Cell 29::52335
    [Crossref] [Google Scholar]
  117. Wu J, Zhang H, Zhao G, Wang R. 2021.. Allosteric inhibitors of SHP2: an updated patent review (2015–2020). . Curr. Med. Chem. 28::382542
    [Crossref] [Google Scholar]
  118. Xin B, Yang M, Wu P, Du L, Deng X, et al. 2022.. Enhancing the therapeutic efficacy of programmed death ligand 1 antibody for metastasized liver cancer by overcoming hepatic immunotolerance in mice. . Hepatology 76::63045
    [Crossref] [Google Scholar]
  119. Xu D, Wang S, Yu WM, Chan G, Araki T, et al. 2010.. A germline gain-of-function mutation in Ptpn11 (Shp-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells. . Blood 116::361121
    [Crossref] [Google Scholar]
  120. Yang W, Wang J, Moore DC, Liang H, Dooner M, et al. 2013.. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. . Nature 499::49195
    [Crossref] [Google Scholar]
  121. Yu D-H, Qu C-K, Henegariu O, Lu X, Feng G-S. 1998.. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. . J. Biol. Chem. 273::2112531
    [Crossref] [Google Scholar]
  122. Yu ZH, Xu J, Walls CD, Chen L, Zhang S, et al. 2013.. Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. . J. Biol. Chem. 288::1047282
    [Crossref] [Google Scholar]
  123. Yu ZH, Zhang RY, Walls CD, Chen L, Zhang S, et al. 2014.. Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. . Biochemistry 53::413651
    [Crossref] [Google Scholar]
  124. Yuan X, Bu H, Zhou J, Yang CY, Zhang H. 2020.. Recent advances of SHP2 inhibitors in cancer therapy: current development and clinical application. . J. Med. Chem. 63::1136896
    [Crossref] [Google Scholar]
  125. Zhang K, Zhao H, Ji Z, Zhang C, Zhou P, et al. 2016.. Shp2 promotes metastasis of prostate cancer by attenuating the PAR3/PAR6/aPKC polarity protein complex and enhancing epithelial-to-mesenchymal transition. . Oncogene 35::127182
    [Crossref] [Google Scholar]
  126. Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, et al. 2004.. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. . Mol. Cell 13::34155
    [Crossref] [Google Scholar]
  127. Zhao ZJ, Zhao R. 1998.. Purification and cloning of PZR, a binding protein and putative physiological substrate of tyrosine phosphatase SHP-2. . J. Biol. Chem. 273::2936772
    [Crossref] [Google Scholar]
  128. Zhou X, Coad J, Ducatman B, Agazie YM. 2008.. SHP2 is up-regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis. . Histopathology 53::389402
    [Crossref] [Google Scholar]
  129. Zhu G, Xie J, Kong W, Xie J, Li Y, et al. 2020.. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. . Cell 183::490502.e18
    [Crossref] [Google Scholar]
  130. Zhu HH, Ji K, Alderson N, He Z, Li S, et al. 2011.. Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool. . Blood 117::535061
    [Crossref] [Google Scholar]
  131. Zhu HH, Luo X, Zhang K, Cui J, Zhao H, et al. 2015.. Shp2 and Pten have antagonistic roles in myeloproliferation but cooperate to promote erythropoiesis in mammals. . PNAS 112::1334247
    [Crossref] [Google Scholar]
  132. Zhu P, Wu X, Zhang RY, Hsu CC, Zhang ZY, Tao WA. 2022.. An integrated proteomic strategy to identify SHP2 substrates. . J. Proteome Res. 21::251525
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062722-013740
Loading
/content/journals/10.1146/annurev-cancerbio-062722-013740
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error