1932

Abstract

Pediatric brain tumors comprise a diverse set of diseases. (Epi)genomic analyses have provided insights into the biology of these tumors, stratifying them into distinct subtypes with different oncogenic driver mechanisms and developmental origins. A feature shared by these tumors is their initiation within neural stem or progenitor cells that undergo stalled differentiation in unique, niche-dependent ways. In this review, we provide an overview of how (epi)genomic characterization has revealed pediatric brain tumor origins and underlying biology. We focus on the best characterized tumor types—gliomas, ependymomas, medulloblastomas—as well as select rarer types such as embryonal tumors with multilayered rosettes, atypical teratoid/rhabdoid tumors, and choroid plexus carcinomas in which new insights have been made. The discovery of diverse developmental origins of these tumors and their defining molecular characteristics has led to a better understanding of their etiologies, with important implications for diagnostics, future therapy development, and clinical trial design.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062722-034650
2024-06-12
2025-04-20
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062722-034650.html?itemId=/content/journals/10.1146/annurev-cancerbio-062722-034650&mimeType=html&fmt=ahah

Literature Cited

  1. Abdallah AS, Cardona HJ, Gadd SL, Brat DJ, Powla PP, et al. 2023.. Novel genetically engineered. H3 .3G34R model reveals cooperation with ATRX loss in upregulation of Hoxa cluster genes and promotion of neuronal lineage. . Neurooncol. Adv. 5::vdad003
    [Google Scholar]
  2. Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, et al. 2019.. Challenges to curing primary brain tumours. . Nat. Rev. Clin. Oncol. 16::50920
    [Crossref] [Google Scholar]
  3. Andrade AF, Chen CC, Jabado N. 2023.. Oncohistones in brain tumors: the soil and seed. . Trends Cancer 9::44455
    [Crossref] [Google Scholar]
  4. Andreiuolo F, Varlet P, Tauziède-Espariat A, Jünger ST, Dörner E, et al. 2019.. Childhood supratentorial ependymomas with YAP1-MAMLD1 fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. . Brain Pathol. 29::20516
    [Crossref] [Google Scholar]
  5. Arabzade A, Zhao Y, Varadharajan S, Chen HC, Jessa S, et al. 2021.. ZFTA-RELA dictates oncogenic transcriptional programs to drive aggressive supratentorial ependymoma. . Cancer Discov. 11::220015
    [Crossref] [Google Scholar]
  6. Archer TC, Ehrenberger T, Mundt F, Gold MP, Krug K, et al. 2018.. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. . Cancer Cell 34::396410.e8
    [Crossref] [Google Scholar]
  7. Atlasi Y, Stunnenberg HG. 2017.. The interplay of epigenetic marks during stem cell differentiation and development. . Nat. Rev. Genet. 18::64358
    [Crossref] [Google Scholar]
  8. Badodi S, Marino S. 2022.. Epigenetic mechanisms in paediatric brain tumours: Regulators lose control. . Biochem. Soc. Trans. 50::16785
    [Crossref] [Google Scholar]
  9. Baker SJ, Ellison DW, Gutmann DH. 2016.. Pediatric gliomas as neurodevelopmental disorders. . Glia 64::87995
    [Crossref] [Google Scholar]
  10. Bayliss J, Mukherjee P, Lu C, Jain SU, Chung C, et al. 2016.. Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. . Sci. Transl. Med. 8::366ra161
    [Crossref] [Google Scholar]
  11. Behjati S, Gilbertson RJ, Pfister SM. 2021.. Maturation block in childhood cancer. . Cancer Discov. 11::54244
    [Crossref] [Google Scholar]
  12. Bejarano L, Jordāo MJC, Joyce JA. 2021.. Therapeutic targeting of the tumor microenvironment. . Cancer Discov. 11::93359
    [Crossref] [Google Scholar]
  13. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DTW, et al. 2013.. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. . Cancer Cell 24::66072
    [Crossref] [Google Scholar]
  14. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, et al. 2013.. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. . Cancer Discov. 3::51219
    [Crossref] [Google Scholar]
  15. Broniscer A, Baker SJ, West AN, Fraser MM, Proko E, et al. 2007.. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. . J. Clin. Oncol. 25::68289
    [Crossref] [Google Scholar]
  16. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, et al. 2016.. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. . N. Engl. J. Med. 375::256169
    [Crossref] [Google Scholar]
  17. Cantor E, Wierzbicki K, Tarapore RS, Ravi K, Thomas C, et al. 2022.. Serial H3K27M cell-free tumor DNA (cf-tDNA) tracking predicts ONC201 treatment response and progression in diffuse midline glioma. . Neuro Oncol. 24::136674
    [Crossref] [Google Scholar]
  18. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, et al. 2018.. DNA methylation–based classification of central nervous system tumours. . Nature 555::46974
    [Crossref] [Google Scholar]
  19. Carvalho D, Taylor KR, Olaciregui NG, Molinari V, Clarke M, et al. 2019.. ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. . Commun. Biol. 2::156
    [Crossref] [Google Scholar]
  20. Carvalho DM, Richardson PJ, Olaciregui N, Stankunaite R, et al. 2022.. Repurposing vandetanib plus everolimus for the treatment of ACVR1-mutant diffuse intrinsic pontine glioma. . Cancer Discov. 12::41631
    [Crossref] [Google Scholar]
  21. Cesare AJ, Reddel RR. 2010.. Alternative lengthening of telomeres: models, mechanisms and implications. . Nat. Rev. Genet. 11::31930
    [Crossref] [Google Scholar]
  22. Chaouch A, Berlandi J, Chen CCL, Frey F, Badini S, et al. 2021.. Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks. . Mol. Cell 81::487690.e7
    [Crossref] [Google Scholar]
  23. Chatwin HV, Cruz J, Green AL. 2021.. Pediatric high-grade glioma: moving toward subtype-specific multimodal therapy. . FEBS J. 288::612741
    [Crossref] [Google Scholar]
  24. Chen CCL, Deshmukh S, Jessa S, Hadjadj D, Lisi V, et al. 2020.. Histone H3.3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. . Cell 183::161733.e22
    [Crossref] [Google Scholar]
  25. Chen Z, Ioris RM, Richardson S, Van Ess AN, Vendrell I, et al. 2022.. Disease-associated KBTBD4 mutations in medulloblastoma elicit neomorphic ubiquitylation activity to promote CoREST degradation. . Cell Death Differ. 29::195569
    [Crossref] [Google Scholar]
  26. Chung C, Sweha SR, Pratt D, Tamrazi B, Panwalkar P, et al. 2020.. Integrated metabolic and epigenomic reprograming by H3K27M mutations in diffuse intrinsic pontine gliomas. . Cancer Cell 38::33449.e9
    [Crossref] [Google Scholar]
  27. Clynes D, Jelinska C, Xella B, Ayyub H, Scott C, et al. 2015.. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. . Nat. Commun. 6::7538
    [Crossref] [Google Scholar]
  28. Clynes D, Jelinska C, Xella B, Ayyub H, Taylor S, et al. 2014.. ATRX dysfunction induces replication defects in primary mouse cells. . PLOS ONE 9::e92915
    [Crossref] [Google Scholar]
  29. Cohen AR. 2022.. Brain tumors in children. . New Engl. J. Med. 386::192231
    [Crossref] [Google Scholar]
  30. Collins KL, Pollack IF. 2020.. Pediatric low-grade gliomas. . Cancers 12::1152
    [Crossref] [Google Scholar]
  31. Collins VP, Jones DTW, Giannini C. 2015.. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. . Acta Neuropathol. 129::77588
    [Crossref] [Google Scholar]
  32. Deshmukh S, Ptack A, Krug B, Jabado N. 2022.. Oncohistones: a roadmap to stalled development. . FEBS J. 289::131528
    [Crossref] [Google Scholar]
  33. Dhar SS, Zhao D, Lin T, Gu B, Pal K, et al. 2018.. MLL4 is required to maintain broad H3K4me3 peaks and super-enhancers at tumor suppressor genes. . Mol. Cell 70::82541.e6
    [Crossref] [Google Scholar]
  34. Ellison DW, Aldape KD, Capper D, Fouladi M, Gilbert MR, et al. 2020.. cIMPACT-NOW update 7: advancing the molecular classification of ependymal tumors. . Brain Pathol. 30::86366
    [Crossref] [Google Scholar]
  35. Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, et al. 2005.. β-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. . J. Clin. Oncol. 23::795157
    [Crossref] [Google Scholar]
  36. Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A, et al. 2017.. A precision therapy against cancers driven by KIT/PDGFRA mutations. . Sci. Transl. Med. 9::eaao1690
    [Crossref] [Google Scholar]
  37. Fang FY, Rosenblum JS, Ho WS, Heiss JD. 2022.. New developments in the pathogenesis, therapeutic targeting, and treatment of pediatric medulloblastoma. . Cancers 14::2285
    [Crossref] [Google Scholar]
  38. Filbin M, Monje M. 2019.. Developmental origins and emerging therapeutic opportunities for childhood cancer. . Nat. Med. 25::36776
    [Crossref] [Google Scholar]
  39. Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, et al. 2018.. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. . Science 360::33135
    [Crossref] [Google Scholar]
  40. Fontebasso AM, Gayden T, Nikbakht H, Neirinck M, Papillon-Cavanagh S, et al. 2014a.. Epigenetic dysregulation: a novel pathway of oncogenesis in pediatric brain tumors. . Acta Neuropathol. 128::61527
    [Crossref] [Google Scholar]
  41. Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, et al. 2014b.. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. . Nat. Genet. 46::46266
    [Crossref] [Google Scholar]
  42. Forget A, Martignetti L, Puget S, Calzone L, Brabetz S, et al. 2018.. Aberrant ERBB4-SRC signaling as a hallmark of group 4 medulloblastoma revealed by integrative phosphoproteomic profiling. . Cancer Cell 34::37995.e7
    [Crossref] [Google Scholar]
  43. Fortin J, Tian R, Zarrabi I, Hill G, Williams E, et al. 2020.. Mutant ACVR1 arrests glial cell differentiation to drive tumorigenesis in pediatric gliomas. . Cancer Cell 37::30823.e12
    [Crossref] [Google Scholar]
  44. Friedman GK, Johnston JM, Bag AK, Bernstock JD, Li R, et al. 2021.. Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. New Engl. . J. Med. 384::161322
    [Google Scholar]
  45. Funato K, Major T, Lewis PW, Allis CD, Tabar V. 2014.. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. . Science 346::152933
    [Crossref] [Google Scholar]
  46. Funato K, Smith RC, Saito Y, Tabar V. 2021.. Dissecting the impact of regional identity and the oncogenic role of human-specific NOTCH2NL in an hESC model of H3.3G34R-mutant glioma. . Cell Stem Cell 28::894905.e7
    [Crossref] [Google Scholar]
  47. Gajjar A, Pfister SM, Taylor MD, Gilbertson RJ. 2014.. Molecular insights into pediatric brain tumors have the potential to transform therapy. . Clin. Cancer Res. 20::563040
    [Crossref] [Google Scholar]
  48. Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, et al. 2021.. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. . Cell 184::245470.e26
    [Crossref] [Google Scholar]
  49. Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, et al. 2010.. Subtypes of medulloblastoma have distinct developmental origins. . Nature 468::109599
    [Crossref] [Google Scholar]
  50. Gilbertson RJ, Ellison DW. 2008.. The origins of medulloblastoma subtypes. . Annu. Rev. Pathol. 3::34165
    [Crossref] [Google Scholar]
  51. Ginn KF, Gajjar A. 2012.. Atypical teratoid rhabdoid tumor: current therapy and future directions. . Front. Oncol. 2::114
    [Crossref] [Google Scholar]
  52. Gojo J, Englinger B, Jiang L, Hübner JM, Shaw ML, et al. 2020.. Single-cell RNA-seq reveals cellular hierarchies and impaired developmental trajectories in pediatric ependymoma. . Cancer Cell 38::4459.e9
    [Crossref] [Google Scholar]
  53. Gonzalez Castro LN, Liu I, Filbin M. 2022.. Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods. . Neuro Oncol. 25::23447
    [Crossref] [Google Scholar]
  54. Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, et al. 2015.. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. . Nat. Med. 21::55559
    [Crossref] [Google Scholar]
  55. Guerreiro Stucklin AS, Ryall S, Fukuoka K, Zapotocky M, Lassaletta A, et al. 2019.. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. . Nat. Commun. 10::4343
    [Crossref] [Google Scholar]
  56. Haag D, Mack N, Benites Goncalves da Silva P, Statz B, Clark J, et al. 2021.. H3.3-K27M drives neural stem cell–specific gliomagenesis in a human iPSC-derived model. . Cancer Cell 39::40722.e13
    [Crossref] [Google Scholar]
  57. Harutyunyan AS, Chen H, Lu T, Horth C, Nikbakht H, et al. 2020.. H3K27M in gliomas causes a one-step decrease in H3K27 methylation and reduced spreading within the constraints of H3K36 methylation. . Cell Rep. 33::108390
    [Crossref] [Google Scholar]
  58. Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M, et al. 2019.. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. . Nat. Commun. 10::1262
    [Crossref] [Google Scholar]
  59. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, et al. 2014.. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. . Nat. Med. 20::139496
    [Crossref] [Google Scholar]
  60. Hasselblatt M, Nagel I, Oyen F, Bartelheim K, Russell RB, et al. 2014.. SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. . Acta Neuropathol. 128::45356
    [Crossref] [Google Scholar]
  61. Hendrikse LD, Haldipur P, Saulnier O, Millman J, Sjoboen AH, et al. 2022.. Author correction: Failure of human rhombic lip differentiation underlies medulloblastoma formation. . Nature 612::E12
    [Crossref] [Google Scholar]
  62. Holdhof D, Johann PD, Spohn M, Bockmayr M, Safaei S, et al. 2021.. Atypical teratoid/rhabdoid tumors (ATRTs) with SMARCA4 mutation are molecularly distinct from SMARCB1-deficient cases. . Acta Neuropathol. 141::291301
    [Crossref] [Google Scholar]
  63. Hovestadt V, Ayrault O, Swartling FJ, Robinson GW, Pfister SM, Northcott PA. 2020.. Medulloblastomics revisited: biological and clinical insights from thousands of patients. . Nat. Rev. Cancer 20::4256
    [Crossref] [Google Scholar]
  64. Hovestadt V, Smith KS, Bihannic L, Filbin MG, Shaw ML, et al. 2019.. Resolving medulloblastoma cellular architecture by single-cell genomics. . Nature 572::7479
    [Crossref] [Google Scholar]
  65. Hu C, Wang K, Damon C, Fu Y, Ma T, et al. 2022.. ATRX loss promotes immunosuppressive mechanisms in IDH1 mutant glioma. . Neuro Oncol. 24::888900
    [Crossref] [Google Scholar]
  66. Hubner JM, Muller T, Papageorgiou DN, Mauermann M, Krijgsveld J, et al. 2019.. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. . Neuro Oncol. 21::87889
    [Crossref] [Google Scholar]
  67. Ishi Y, Zhang Y, Zhang A, Sasaki T, Piunti A, et al. 2022.. Therapeutic targeting of EZH2 and BET BRD4 in pediatric rhabdoid tumors. . Mol. Cancer Ther. 21::71526
    [Crossref] [Google Scholar]
  68. Izquierdo E, Carvalho DM, Mackay A, Temelso S, Boult JKR, et al. 2022.. DIPG harbors alterations targetable by MEK inhibitors, with acquired resistance mechanisms overcome by combinatorial inhibition. . Cancer Discov. 12::71229
    [Crossref] [Google Scholar]
  69. Jackson ER, Duchatel RJ, Staudt DE, Persson ML, Mannan A, et al. 2023.. ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma. . Cancer Res. 83::242137
    [Crossref] [Google Scholar]
  70. Jain SU, Do TJ, Lund PJ, Rashoff AQ, Diehl KL, et al. 2019.. PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M–like mechanism. . Nat. Commun. 10::2146
    [Crossref] [Google Scholar]
  71. Jain SU, Rashoff AQ, Krabbenhoft SD, Hoelper D, Do TJ, et al. 2020.. H3 K27M and EZHIP impede H3K27-methylation spreading by inhibiting allosterically stimulated PRC2. . Mol. Cell 80::72635.e7
    [Crossref] [Google Scholar]
  72. Jenseit A, Camgoz A, Pfister SM, Kool M. 2022.. EZHIP: a new piece of the puzzle towards understanding pediatric posterior fossa ependymoma. . Acta Neuropathol. 143::113
    [Crossref] [Google Scholar]
  73. Jessa S, Blanchet-Cohen A, Krug B, Vladoiu M, Coutelier M, et al. 2019.. Stalled developmental programs at the root of pediatric brain tumors. . Nat. Genet. 51::170213
    [Crossref] [Google Scholar]
  74. Jessa S, Mohammadnia A, Harutyunyan AS, Hulswit M, Varadharajan S, et al. 2022.. K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. . Nat. Genet. 54::186580
    [Crossref] [Google Scholar]
  75. Johann PD, Erkek S, Zapatka M, Kerl K, Buchhalter I, et al. 2016.. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. . Cancer Cell 29::37993
    [Crossref] [Google Scholar]
  76. Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, et al. 2010.. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. . Nature 466::63236
    [Crossref] [Google Scholar]
  77. Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, et al. 2017.. Pediatric high-grade glioma: biologically and clinically in need of new thinking. . Neuro Oncol. 19::15361
    [Google Scholar]
  78. Jones DTW, Banito A, Grünewald TGP, Haber M, Jäger N, et al. 2019.. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. . Nat. Rev. Cancer 19::42038
    [Crossref] [Google Scholar]
  79. Jones DTW, Kocialkowski S, Liu L, Pearson DM, Bäcklund LM, et al. 2008.. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. . Cancer Res. 68::867377
    [Crossref] [Google Scholar]
  80. Kadiyala P, Carney SV, Gauss JC, Garcia-Fabiani MB, Haase S, et al. 2021.. Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. . J. Clin. Investig. 131::e139542
    [Crossref] [Google Scholar]
  81. Kessler JD, Hasegawa H, Brun SN, Emmenegger BA, Yang Z-J, et al. 2009.. N-myc alters the fate of preneoplastic cells in a mouse model of medulloblastoma. . Genes Dev. 23::15770
    [Crossref] [Google Scholar]
  82. Khazaei S, De Jay N, Deshmukh S, Hendrikse LD, Jawhar W, et al. 2020.. H3.3 G34W promotes growth and impedes differentiation of osteoblast-like mesenchymal progenitors in giant cell tumor of bone. . Cancer Discov. 10::196887
    [Crossref] [Google Scholar]
  83. Khuong-Quang D-A, Buczkowicz P, Rakopoulos P, Liu X-Y, Fontebasso AM, et al. 2012.. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. . Acta Neuropathol. 124::43947
    [Crossref] [Google Scholar]
  84. Kleinman CL, Gerges N, Papillon-Cavanagh S, Sin-Chan P, Pramatarova A, et al. 2014.. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. . Nat. Genet. 46::3944
    [Crossref] [Google Scholar]
  85. Kool M, Jones DT, Jäger N, Northcott PA, Pugh TJ, et al. 2014.. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. . Cancer Cell 25::393405
    [Crossref] [Google Scholar]
  86. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, et al. 2008.. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. . PLOS ONE 3::e3088
    [Crossref] [Google Scholar]
  87. Korshunov A, Remke M, Gessi M, Ryzhova M, Hielscher T, et al. 2010.. Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. . Acta Neuropathol. 120::25360
    [Crossref] [Google Scholar]
  88. Krug B, de Jay N, Harutyunyan AS, Deshmukh S, Marchione DM, et al. 2019.. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. . Cancer Cell 36::33839
    [Crossref] [Google Scholar]
  89. Kupp R, Ruff L, Terranova S, Nathan E, Ballereau S, et al. 2021.. ZFTA translocations constitute ependymoma chromatin remodeling and transcription factors. . Cancer Discov. 11::221629
    [Crossref] [Google Scholar]
  90. Kutscher LM, Okonechnikov K, Batora NV, Clark J, Silva PBG, et al. 2020.. Functional loss of a noncanonical BCOR–PRC1.1 complex accelerates SHH-driven medulloblastoma formation. . Genes Dev. 34::116176
    [Crossref] [Google Scholar]
  91. Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, et al. 2017.. Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. . J. Clin. Oncol. 35::293441
    [Crossref] [Google Scholar]
  92. Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD. 2010.. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. . PNAS 107::1407580
    [Crossref] [Google Scholar]
  93. Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, et al. 2013.. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. . Science 340::85761
    [Crossref] [Google Scholar]
  94. Li M, Lee KF, Lu Y, Clarke I, Shih D, et al. 2009.. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. . Cancer Cell 16::53346
    [Crossref] [Google Scholar]
  95. Lieberman NAP, Degolier K, Kovar HM, Davis A, Hoglund V, et al. 2019.. Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy. . Neuro Oncol. 21::8394
    [Crossref] [Google Scholar]
  96. Lin GL, Nagaraja S, Filbin MG, Suva ML, Vogel H, Monje M. 2018.. Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. . Acta Neuropathol. Commun. 6::51
    [Crossref] [Google Scholar]
  97. Liu APY, Smith KS, Kumar R, Paul L, Bihannic L, et al. 2021.. Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. . Cancer Cell 39::151930.e4
    [Crossref] [Google Scholar]
  98. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, et al. 2021.. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. . Neuro Oncol. 23::123151
    [Crossref] [Google Scholar]
  99. Luo Z, Xia M, Shi W, Zhao C, Wang J, et al. 2022.. Human fetal cerebellar cell atlas informs medulloblastoma origin and oncogenesis. . Nature 612::78794
    [Crossref] [Google Scholar]
  100. Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, et al. 2014.. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. . Nature 506::44550
    [Crossref] [Google Scholar]
  101. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, et al. 2017.. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. . Cancer Cell 32::52037.e5
    [Crossref] [Google Scholar]
  102. Mackay A, Burford A, Molinari V, Jones DTW, Izquierdo E, et al. 2018.. Molecular, pathological, radiological, and immune profiling of non-brainstem pediatric high-grade glioma from the HERBY phase II randomized trial. . Cancer Cell 33::82942.e5
    [Crossref] [Google Scholar]
  103. Majzner RG, Ramakrishna S, Yeom KW, Patel S, Chinnasamy H, et al. 2022.. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. . Nature 603::93441
    [Crossref] [Google Scholar]
  104. Manoharan N, Liu KX, Mueller S, Haas-Kogan DA, Bandopadhayay P. 2023.. Pediatric low-grade glioma: targeted therapeutics and clinical trials in the molecular era. . Neoplasia 36::100857
    [Crossref] [Google Scholar]
  105. Marinoff AE, Ma C, Guo D, Snuderl M, Wright KD, et al. 2017.. Rethinking childhood ependymoma: A retrospective, multi-center analysis reveals poor long-term overall survival. . J. Neurooncol. 135::20111
    [Crossref] [Google Scholar]
  106. McGovern SL, Grosshans D, Mahajan A. 2014.. Embryonal brain tumors. . Cancer J. 20::397402
    [Crossref] [Google Scholar]
  107. McKean-Cowdin R, Razavi P, Barrington-Trimis J, Baldwin RT, Asgharzadeh S, et al. 2013.. Trends in childhood brain tumor incidence, 1973–2009. . J. Neurooncol. 115::15360
    [Crossref] [Google Scholar]
  108. McNicholas M, De Cola A, Bashardanesh Z, Foss A, Lloyd CB, et al. 2023.. A compendium of syngeneic, transplantable pediatric high-grade glioma models reveals subtype-specific therapeutic vulnerabilities. . Cancer Discov. 13::1592615
    [Crossref] [Google Scholar]
  109. Merchant TE. 2017.. Current clinical challenges in childhood ependymoma: a focused review. . J. Clin. Oncol. 35::236469
    [Crossref] [Google Scholar]
  110. Merino DM, Shlien A, Villani A, Pienkowska M, Mack S, et al. 2015.. Molecular characterization of choroid plexus tumors reveals novel clinically relevant subgroups. . Clin. Cancer Res. 21::18492
    [Crossref] [Google Scholar]
  111. Merk DJ, Ohli J, Merk ND, Thatikonda V, Morrissy S, et al. 2018.. Opposing effects of CREBBP mutations govern the phenotype of Rubinstein-Taybi syndrome and adult SHH medulloblastoma. . Dev. Cell 44::70924.e6
    [Crossref] [Google Scholar]
  112. Miklja Z, Yadav VN, Cartaxo RT, Siada R, Thomas CC, et al. 2020.. Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. . J. Clin. Investig. 130::531325
    [Crossref] [Google Scholar]
  113. Miller AM, Szalontay L, Bouvier N, Hill K, Ahmad H, et al. 2022.. Next-generation sequencing of cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent and young adult brain tumor patients. . Neuro Oncol. 24::176372
    [Crossref] [Google Scholar]
  114. Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, et al. 2015.. BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. . J. Clin. Oncol. 33::101522
    [Crossref] [Google Scholar]
  115. Mo Y, Duan S, Zhang X, Hua X, Zhou H, et al. 2022.. Epigenome programming by H3.3K27M mutation creates a dependence of pediatric glioma on SMARCA4. . Cancer Discov. 12::290629
    [Crossref] [Google Scholar]
  116. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Hojfeldt JW, et al. 2017.. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. . Nat. Med. 23::48392
    [Crossref] [Google Scholar]
  117. Mohankumar KM, Currle DS, White E, Boulos N, Dapper J, et al. 2015.. An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. . Nat. Genet. 47::87887
    [Crossref] [Google Scholar]
  118. Monje M, Káradóttir RT. 2021.. The bright and the dark side of myelin plasticity: neuron-glial interactions in health and disease. . Semin. Cell Dev. Biol. 116::1015
    [Crossref] [Google Scholar]
  119. Mount CW, Majzner RG, Sundaresh S, Arnold EP, Kadapakkam M, et al. 2018.. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. . Nat. Med. 24::57279
    [Crossref] [Google Scholar]
  120. Mu L, Long Y, Yang C, Jin L, Tao H, et al. 2018.. The IDH1 mutation–induced oncometabolite, 2-hydroxyglutarate, may affect DNA methylation and expression of PD-L1 in gliomas. . Front. Mol. Neurosci. 11::82
    [Crossref] [Google Scholar]
  121. Mueller S, Taitt JM, Villanueva-Meyer JE, Bonner ER, Nejo T, et al. 2020.. Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. . J. Clin. Investig. 130::632537
    [Crossref] [Google Scholar]
  122. Nicholson JG, Fine HA. 2021.. Diffuse glioma heterogeneity and its therapeutic implications. . Cancer Discov. 11::57590
    [Crossref] [Google Scholar]
  123. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, et al. 2017.. The whole-genome landscape of medulloblastoma subtypes. . Nature 547::31117
    [Crossref] [Google Scholar]
  124. Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, et al. 2012.. Medulloblastomics: the end of the beginning. . Nat. Rev. Cancer 12::81834
    [Crossref] [Google Scholar]
  125. Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, et al. 2019.. Medulloblastoma. . Nat. Rev. Disease Primers 5::11
    [Crossref] [Google Scholar]
  126. Okonechnikov K, Camgöz A, Chapman O, Wani S, Park DE, et al. 2023.. 3D genome mapping identifies subgroup-specific chromosome conformations and tumor-dependency genes in ependymoma. . Nat. Commun. 14::2300
    [Crossref] [Google Scholar]
  127. Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, et al. 2005.. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. . Development 132::242539
    [Crossref] [Google Scholar]
  128. Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, et al. 2015.. Alex's Lemonade Stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. . Neuro Oncol. 16:(Suppl. 10):x136
    [Crossref] [Google Scholar]
  129. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. 2020.. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. . Neuro Oncol. 22::iv196
    [Crossref] [Google Scholar]
  130. Ostrom QT, Price M, Ryan K, Edelson J, Neff C, et al. 2022.. CBTRUS statistical report: Pediatric Brain Tumor Foundation childhood and adolescent primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. . Neuro Oncol. 24::iii138
    [Crossref] [Google Scholar]
  131. Pagès M, Rotem D, Gydush G, Reed S, Rhoades J, et al. 2022.. Liquid biopsy detection of genomic alterations in pediatric brain tumors from cell-free DNA in peripheral blood, CSF, and urine. . Neuro Oncol. 24::135263
    [Crossref] [Google Scholar]
  132. Pajtler KW, Mack SC, Ramaswamy V, Smith CA, Witt H, et al. 2017.. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. . Acta Neuropathol. 133::512
    [Crossref] [Google Scholar]
  133. Pajtler KW, Wen J, Sill M, Lin T, Orisme W, et al. 2018.. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. . Acta Neuropathol. 136::21126
    [Crossref] [Google Scholar]
  134. Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, et al. 2015.. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. . Cancer Cell 27::72843
    [Crossref] [Google Scholar]
  135. Panditharatna E, Marques JG, Wang T, Trissal MC, Liu I, et al. 2022.. BAF complex maintains glioma stem cells in pediatric H3K27M glioma. . Cancer Discov. 12::2880905
    [Google Scholar]
  136. Panwalkar P, Clark J, Ramaswamy V, Hawes D, Yang F, et al. 2017.. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. . Acta Neuropathol. 134::70514
    [Crossref] [Google Scholar]
  137. Panwalkar P, Tamrazi B, Dang D, Chung C, Sweha S, et al. 2021.. Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas. . Sci. Transl. Med. 13::eabc0497
    [Crossref] [Google Scholar]
  138. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, et al. 2014.. C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. . Nature 506::45155
    [Crossref] [Google Scholar]
  139. Pathania M, de Jay N, Maestro N, Harutyunyan AS, Nitarska J, et al. 2017.. H3.3K27M cooperates with Trp53 loss and PDGFRA gain in mouse embryonic neural progenitor cells to induce invasive high-grade gliomas. . Cancer Cell 32::684700.e9
    [Crossref] [Google Scholar]
  140. Persson ML, Douglas AM, Alvaro F, Faridi P, Larsen MR, et al. 2022.. The intrinsic and microenvironmental features of diffuse midline glioma: implications for the development of effective immunotherapeutic treatment strategies. . Neuro Oncol. 24::140822
    [Crossref] [Google Scholar]
  141. Pfister S, Remke M, Castoldi M, Bai AHC, Muckenthaler MU, et al. 2009.. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. . Acta Neuropathol. 117::45764
    [Crossref] [Google Scholar]
  142. Phillips RE, Soshnev AA, Allis CD. 2020.. Epigenomic reprogramming as a driver of malignant glioma. . Cancer Cell 38::64760
    [Crossref] [Google Scholar]
  143. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, et al. 2016.. Medulloblastoma genotype dictates blood brain barrier phenotype. . Cancer Cell 29::50822
    [Crossref] [Google Scholar]
  144. Picard D, Miller S, Hawkins CE, Bouffet E, Rogers HA, et al. 2012.. Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. . Lancet Oncol. 13::83848
    [Crossref] [Google Scholar]
  145. Pickles JC, Fairchild AR, Stone TJ, Brownlee L, Merve A, et al. 2020.. DNA methylation–based profiling for paediatric CNS tumour diagnosis and treatment: a population-based study. . Lancet Child Adolesc. Health 4::12130
    [Crossref] [Google Scholar]
  146. Pienkowska M, Choufani S, Turinsky AL, Guha T, Merino DM, et al. 2019.. DNA methylation signature is prognostic of choroid plexus tumor aggressiveness. . Clin Epigenet. 11::117
    [Crossref] [Google Scholar]
  147. Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM, et al. 2017.. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. . Nat. Med. 23::493500
    [Crossref] [Google Scholar]
  148. Plant AS, Koyama S, Sinai C, Solomon IH, Griffin GK, et al. 2018.. Immunophenotyping of pediatric brain tumors: correlating immune infiltrate with histology, mutational load, and survival and assessing clonal T cell response. . J. Neurooncol. 137::26978
    [Crossref] [Google Scholar]
  149. Pollack IF, Agnihotri S, Broniscer A. 2019.. Childhood brain tumors: current management, biological insights, and future directions. . J. Neurosurg. Pediatr. 23::26173
    [Crossref] [Google Scholar]
  150. Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, et al. 2016.. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. . Acta Neuropathol. 131::83345
    [Crossref] [Google Scholar]
  151. Rahmann EP, Gilbertson RJ. 2018.. Multiomic medulloblastomas. . Cancer Cell 34::35153
    [Crossref] [Google Scholar]
  152. Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, et al. 2016.. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. . Acta Neuropathol. 131::82131
    [Crossref] [Google Scholar]
  153. Rickert CH, Wiestler OD, Paulus W. 2002.. Chromosomal imbalances in choroid plexus tumors. . Am. J. Pathol. 160::110513
    [Crossref] [Google Scholar]
  154. Ross JL, Chen Z, Herting CJ, Grabovska Y, Szulzewsky F, et al. 2021.. Platelet-derived growth factor β is a potent inflammatory driver in paediatric high-grade glioma. . Brain 144::5369
    [Crossref] [Google Scholar]
  155. Ruland V, Hartung S, Kordes U, Wolff JE, Paulus W, Hasselblatt M. 2014.. Choroid plexus carcinomas are characterized by complex chromosomal alterations related to patient age and prognosis. . Genes Chromosomes Cancer 53::37380
    [Crossref] [Google Scholar]
  156. Ryall S, Krishnatry R, Arnoldo A, Buczkowicz P, Mistry M, et al. 2016.. Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. . Acta Neuropathol. Commun. 4::93
    [Crossref] [Google Scholar]
  157. Ryall S, Tabori U, Hawkins C. 2020a.. Pediatric low-grade glioma in the era of molecular diagnostics. . Acta Neuropathol. Commun. 8::30
    [Crossref] [Google Scholar]
  158. Ryall S, Zapotocky M, Fukuoka K, Nobre L, Guerreiro Stucklin A, et al. 2020b.. Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. . Cancer Cell 37::56983.e5
    [Crossref] [Google Scholar]
  159. Salinas RD, Connolly DR, Song H. 2020.. Epigenetics in neurodevelopment. . Neuropathol. Appl. Neurobiol. 46::627
    [Crossref] [Google Scholar]
  160. Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E, et al. 2012.. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. . Nature 482::22631
    [Crossref] [Google Scholar]
  161. Shiraishi R, Kawauchi D. 2021.. Epigenetic regulation in medulloblastoma pathogenesis revealed by genetically engineered mouse models. . Cancer Sci. 112::294857
    [Crossref] [Google Scholar]
  162. Silveira AB, Kasper LH, Fan Y, Jin H, Wu G, et al. 2019.. H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo. . Acta Neuropathol. 137::63755
    [Crossref] [Google Scholar]
  163. Sredni ST, Tomita T. 2015.. Rhabdoid tumor predisposition syndrome. . Pediatric Dev. Pathol. 18::4958
    [Crossref] [Google Scholar]
  164. Sturm D, Pfister SM, Jones DTW. 2017.. Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. . J. Clin. Oncol. 35::237077
    [Crossref] [Google Scholar]
  165. Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones DTW, et al. 2012.. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. . Cancer Cell 22::42537
    [Crossref] [Google Scholar]
  166. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, et al. 2012.. Molecular subgroups of medulloblastoma: the current consensus. . Acta Neuropathol. 123::46572
    [Crossref] [Google Scholar]
  167. Taylor MD, Poppleton H, Fuller C, Su X, et al. 2005.. Radial glia cells are candidate stem cells of ependymoma. . Cancer Cell 8::32335
    [Crossref] [Google Scholar]
  168. Thomas C, Sill M, Ruland V, Witten A, Hartung S, et al. 2016.. Methylation profiling of choroid plexus tumors reveals 3 clinically distinct subgroups. . Neuro Oncol. 18::79096
    [Crossref] [Google Scholar]
  169. Thomas C, Soschinski P, Zwaig M, Oikonomopoulos S, Okonechnikov K, et al. 2021.. The genetic landscape of choroid plexus tumors in children and adults. . Neuro Oncol. 23::65060
    [Crossref] [Google Scholar]
  170. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, et al. 2006.. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. . J. Clin. Oncol. 24::192431
    [Crossref] [Google Scholar]
  171. Tiberi L, Bonnefont J, van den Ameele J, Le Bon S-D, Herpoel A, et al. 2014.. A BCL6/BCOR/SIRT1 complex triggers neurogenesis and suppresses medulloblastoma by repressing sonic hedgehog signaling. . Cancer Cell 26::797812
    [Crossref] [Google Scholar]
  172. Tong Y, Merino D, Nimmervoll B, Gupta K, Wang YD, et al. 2015.. Cross-species genomics identifies TAF12, NFYC, and RAD54L as choroid plexus carcinoma oncogenes. . Cancer Cell 27::71227
    [Crossref] [Google Scholar]
  173. Tripathy A, John V, Wadden J, Kong S, Sharba S, Koschmann C. 2023.. Liquid biopsy in pediatric brain tumors. . Front. Genet. 13::1114762
    [Crossref] [Google Scholar]
  174. Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, et al. 2022.. Epigenetics of glioblastoma multiforme: from molecular mechanisms to therapeutic approaches. . Semin. Cancer Biol. 83::10020
    [Crossref] [Google Scholar]
  175. Uusitalo E, Rantanen M, Kallionpää RA, Pöyhönen M, Leppävirta J, et al. 2016.. Distinctive cancer associations in patients with neurofibromatosis type 1. . J. Clin. Oncol. 34::197886
    [Crossref] [Google Scholar]
  176. Vanner RJ, Remke M, Gallo M, Selvadurai HJ, Coutinho F, et al. 2014.. Quiescent Sox2+ cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. . Cancer Cell 26::3347
    [Crossref] [Google Scholar]
  177. Venkatesh H, Monje M. 2017.. Neuronal activity in ontogeny and oncology. . Trends Cancer 3::89112
    [Crossref] [Google Scholar]
  178. Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, et al. 2015.. Neuronal activity promotes glioma growth through neuroligin-3 secretion. . Cell 161::80316
    [Crossref] [Google Scholar]
  179. Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, et al. 2019.. Electrical and synaptic integration of glioma into neural circuits. . Nature 573::53945
    [Crossref] [Google Scholar]
  180. Venneti S, Kawakibi AR, Ji S, Waszak SM, Sweha SR, et al. 2023.. Clinical efficacy of ONC201 in H3K27M-mutant diffuse midline gliomas is driven by disruption of integrated metabolic and epigenetic pathways. . Cancer Discov. 13::237093
    [Crossref] [Google Scholar]
  181. Vladoiu MC, El-Hamamy I, Donovan LK, Farooq H, Holgado BL, et al. 2019.. Childhood cerebellar tumours mirror conserved fetal transcriptional programs. . Nature 572::6773
    [Crossref] [Google Scholar]
  182. Voon HPJ, Udugama M, Lin W, Hii L, Law RHP, et al. 2018.. Inhibition of a K9/K36 demethylase by an H3.3 point mutation found in paediatric glioblastoma. . Nat. Commun. 9::3142
    [Crossref] [Google Scholar]
  183. Waszak SM, Robinson GW, Gudenas BL, Smith KS, Forget A, et al. 2020.. Germline Elongator mutations in Sonic Hedgehog medulloblastoma. . Nature 580::396401
    [Crossref] [Google Scholar]
  184. Wei X, Meel MH, Breur M, Bugiani M, Hulleman E, Phoenix TN. 2021.. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. . Acta Neuropathol. Commun. 9::142
    [Crossref] [Google Scholar]
  185. Wilson BG, Roberts CWM. 2011.. SWI/SNF nucleosome remodellers and cancer. . Nat. Rev. Cancer 11::48192
    [Crossref] [Google Scholar]
  186. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, et al. 2011.. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. . Cancer Cell 20::14357
    [Crossref] [Google Scholar]
  187. Woroniecka K, Chongsathidkiet P, Rhodin K, Kemeny H, Dechant C, et al. 2018.. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. . Clin. Cancer Res. 24::417586
    [Crossref] [Google Scholar]
  188. Wu CP, Lusvarghi S, Wang JC, Hsiao SH, Huang YH, et al. 2019.. Avapritinib: a selective inhibitor of KIT and PDGFRα that reverses ABCB1 and ABCG2-mediated multidrug resistance in cancer cell lines. . Mol. Pharm. 16::304052
    [Crossref] [Google Scholar]
  189. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, et al. 2014.. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. . Nat. Genet. 46::44450
    [Crossref] [Google Scholar]
  190. Wu J, Armstrong TS, Gilbert MR. 2016.. Biology and management of ependymomas. . Neuro Oncol. 18::90213
    [Crossref] [Google Scholar]
  191. Yang J, Wang Q, Zhang Z-Y, Long L, Ezhilarasan R, et al. 2022.. DNA methylation–based epigenetic signatures predict somatic genomic alterations in gliomas. . Nat. Commun. 13::4410
    [Crossref] [Google Scholar]
  192. Yeo KK, Margol AS, Kennedy RJ, Hung L, Robison NJ, et al. 2019.. Prognostic significance of molecular subgroups of medulloblastoma in young children receiving irradiation-sparing regimens. . J. Neurooncol. 145::37583
    [Crossref] [Google Scholar]
  193. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, et al. 2013.. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. . Nat. Genet. 45::60212
    [Crossref] [Google Scholar]
  194. Zheng T, Ghasemi DR, Okonechnikov K, Korshunov A, Sill M, et al. 2021.. Cross-species genomics reveals oncogenic dependencies in ZFTA/C11orf95 fusion-positive supratentorial ependymomas. . Cancer Discov. 11::223047
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062722-034650
Loading
/content/journals/10.1146/annurev-cancerbio-062722-034650
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error