1932

Abstract

Autologous chimeric antigen receptor (CAR) T cell therapy, produced from the patient's own T cells, has changed the treatment landscape for hematologic malignancies but has some drawbacks that prevent large-scale clinical application, including logistical complexities in supply, patient T cell health, treatment delays, and limited manufacturing slots. Allogeneic, or off-the-shelf, CAR T cell therapies have the potential to overcome many of the limitations of autologous therapies, with the aim of bringing benefit to all patients eligible for treatment. This review highlights the progress and challenges of allogeneic cell therapies for cancer and the various approaches that are being evaluated preclinically and in clinical trials to enhance the persistence and antitumor efficacy of allogeneic CAR T cells, including new strategies to avoid immune rejection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062822-023316
2024-06-12
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062822-023316.html?itemId=/content/journals/10.1146/annurev-cancerbio-062822-023316&mimeType=html&fmt=ahah

Literature Cited

  1. Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, et al. 2020.. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. . Lancet 396:(10254):83952
    [Crossref] [Google Scholar]
  2. Alabanza L, Pegues M, Geldres C, Shi V, Wiltzius JJW, et al. 2017.. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. . Mol. Ther. 25::245265
    [Crossref] [Google Scholar]
  3. Al-Homsi A-S, Anguille S, Deeren D, Nishihori T, Meuleman N, et al. 2021.. Immunicy-1: targeting BCMA with Cyad-211 to establish proof of concept of an shRNA-based allogeneic CAR T cell therapy platform. . Blood 138:(Suppl. 1):2817
    [Crossref] [Google Scholar]
  4. Bachier C, Borthakur G, Hosing C, Blum W, Rotta M, et al. 2020.. A phase 1 study of NKX101, an allogeneic CAR natural killer (NK) cell therapy, in subjects with relapsed/refractory (R/R) acute myeloid leukemia (AML) or higher-risk myelodysplastic syndrome (MDS). . Blood 136:(Suppl. 1):4243
    [Crossref] [Google Scholar]
  5. Benjamin R, Jain N, Maus MV, Boissel N, Graham C, et al. 2022.. UCART19, a first-in-class allogeneic anti-CD19 chimeric antigen receptor T-cell therapy for adults with relapsed or refractory B-cell acute lymphoblastic leukaemia (CALM): a phase 1, dose-escalation trial. . Lancet Haematol. 9:(11):e83343
    [Crossref] [Google Scholar]
  6. Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, et al. 2021.. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. . Lancet 398:(10297):31424
    [Crossref] [Google Scholar]
  7. Bergstrom TC, Garratt RJ, Sheehan-Connor D. 2009.. One chance in a million: altruism and the bone marrow registry. . Am. Econ. Rev. 99:(4):130934
    [Crossref] [Google Scholar]
  8. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, et al. 2013.. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. . Sci. Transl. Med. 5:(177):177ra38
    [Crossref] [Google Scholar]
  9. Caribou Biosciences. 2023.. Corporate presentation: transformative genome-edited therapies for patients. https://investor.cariboubio.com/static-files/3168b9f6-48dd-4e44-8103-df5ff9013b6b
    [Google Scholar]
  10. Davis ZB, Felices M, Verneris MR, Miller JS. 2015.. Natural killer cell adoptive transfer therapy. . Cancer J. 21:(6):48691
    [Crossref] [Google Scholar]
  11. Deuse T, Hu X, Agbor-Enoh S, Jang MK, Alawi M, et al. 2021.. The SIRPα–CD47 immune checkpoint in NK cells. . J. Exp. Med. 218:(3):e20200839
    [Crossref] [Google Scholar]
  12. Dickinson M, Hamad N, Bryant CE, Borthakur G, Hosing C, et al. 2021.. A phase 1 study of NKX019, a CD19 chimeric antigen receptor natural killer (CAR NK) cell therapy, in subjects with B-cell malignancies. . Blood 138:(Suppl. 1):3868
    [Crossref] [Google Scholar]
  13. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, et al. 2005.. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. . J. Clin. Oncol. 23:(10):234657
    [Crossref] [Google Scholar]
  14. Eshhar Z, Waks T, Gross G, Schindler DG. 1993.. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. . PNAS 90::72024
    [Crossref] [Google Scholar]
  15. Eve HE, Linch D, Qian W, Ross M, Seymour JF, et al. 2009.. Toxicity of fludarabine and cyclophosphamide with or without rituximab as initial therapy for patients with previously untreated mantle cell lymphoma: results of a randomised phase II study. . Leuk. Lymphoma 50:(2):21115
    [Crossref] [Google Scholar]
  16. Feucht J, Sun J, Eyquem J, Ho Y-J, Zhao Z, et al. 2018.. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. . Nat. Med. 25::8288
    [Crossref] [Google Scholar]
  17. Foster MC, Savoldo B, Lau W, Rubinos C, Grover N, et al. 2021.. Utility of a safety switch to abrogate CD19.CAR T-cell–associated neurotoxicity. . Blood 137:(23):33069
    [Crossref] [Google Scholar]
  18. Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, et al. 2018.. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. . Nat. Med. 24:(5):56371
    [Crossref] [Google Scholar]
  19. Friedman KM, Garrett TE, Evans JW, Horton HM, Latimer HJ, et al. 2018.. Effective targeting of multiple B-cell maturation antigen–expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. . Hum. Gene Ther. 29:(5):585601
    [Crossref] [Google Scholar]
  20. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, et al. 2017.. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. . Blood 129:(25):332231
    [Crossref] [Google Scholar]
  21. Garner E, Degagné E, Roy S, Donohoue P, Fowler T, et al. 2023.. CB-011, a BCMA-specific allogeneic CAR-T cell therapy, engineered with next-generation CRISPR technology to knock out B2M and express a B2M–HLA-E fusion transgene to blunt immune cell-mediated rejection, for R/R multiple myeloma. Paper presented at the 2023 Tandem Meetings, Feb. 15–19 , Orlando, FL:
    [Google Scholar]
  22. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, et al. 2015.. The prognostic landscape of genes and infiltrating immune cells across human cancers. . Nat. Med. 21::93845
    [Crossref] [Google Scholar]
  23. Ghassemi S, Nunez-Cruz S, O'Connor RS, Fraietta JA, Patel PR, et al. 2018.. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. . Cancer Immunol. Res. 6::11009
    [Crossref] [Google Scholar]
  24. Gragert L, Eapen M, Williams E, Freeman J, Spellman S, et al. 2014.. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. Registry. . N. Engl. J. Med. 371::33948
    [Crossref] [Google Scholar]
  25. Hadidi SA, Szabo A, Esselmann J, Hammons L, Hussain M, et al. 2023.. Clinical outcome of patients with relapsed refractory multiple myeloma listed for BCMA directed commercial CAR-T therapy. . Bone Marrow Transpl. 58:(4):44345
    [Crossref] [Google Scholar]
  26. Hammer Q, Perica K, Mbofung RM, van Ooijen H, Varady E, et al. 2022.. Combined genetic ablation of CD54 and CD58 in CAR engineered cytotoxic lymphocytes effectively averts allogeneic immune cell rejection. . Blood 140:(Suppl. 1):116566
    [Crossref] [Google Scholar]
  27. Hansen DK, Sidana S, Peres LC, Leitzinger CC, Shune L, et al. 2023.. Idecabtagene vicleucel for relapsed/refractory multiple myeloma: real-world experience from the myeloma CAR T consortium. . J. Clin. Oncol. 41:(11):208797
    [Crossref] [Google Scholar]
  28. Heczey A, Courtney AN, Montalbano A, Robinson S, Liu K, et al. 2020.. Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis. . Nat. Med. 26:(11):168690
    [Crossref] [Google Scholar]
  29. Heslop HE, Sharma S, Rooney CM. 2021.. Adoptive T-cell therapy for Epstein-Barr virus–related lymphomas. . J. Clin. Oncol. 39:(5):51424
    [Crossref] [Google Scholar]
  30. Hirayama AV, Gauthier J, Hay KA, Voutsinas JM, Wu Q, et al. 2019.. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. . Blood 133:(17):187687
    [Crossref] [Google Scholar]
  31. Hu X, Manner K, DeJesus R, White K, Gattis C, et al. 2023.. Hypoimmune anti-CD19 chimeric antigen receptor T cells provide lasting tumor control in fully immunocompetent allogeneic humanized mice. . Nat. Commun. 14:(1):2020
    [Crossref] [Google Scholar]
  32. Iacoboni G, Villacampa G, Martinez-Cibrian N, Bailén R, Corral LL, et al. 2021.. Real-world evidence of tisagenlecleucel for the treatment of relapsed or refractory large B-cell lymphoma. . Cancer Med. 10:(10):321423
    [Crossref] [Google Scholar]
  33. Irving BA, Weiss A. 1991.. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. . Cell 64::891901
    [Crossref] [Google Scholar]
  34. Jacobson CA, Chavez JC, Sehgal AR, William BM, Munoz J, et al. 2022.. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. . Lancet Oncol. 23:(1):91103
    [Crossref] [Google Scholar]
  35. Janssen Biotech. 2022.. CARVYKTI US Prescribing Information. Horsham, PA:: Janssen Biotech, Inc.
    [Google Scholar]
  36. Jhita N, Raikar SS. 2022.. Allogeneic gamma delta T cells as adoptive cellular therapy for hematologic malignancies. . Explor. Immunol. 2:(3):33450
    [Crossref] [Google Scholar]
  37. Jo S, Das S, Williams A, Chretien A-S, Pagliardini T, et al. 2022.. Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. . Nat. Commun. 13:(1):3453
    [Crossref] [Google Scholar]
  38. Joseph KB, Awadallah N, Delay ER, Delay RJ. 2020.. Transient effects of cyclophosphamide on basal cell proliferation of olfactory epithelia. . Chem. Senses 45:(7):54961
    [Crossref] [Google Scholar]
  39. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, et al. 2011.. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. . Sci. Transl. Med. 3:(95):95ra7
    [Crossref] [Google Scholar]
  40. Karpanasamy T, Wawrzyniecka P, Devereaux S, Kassimatis L, Maciocia NC, et al. 2022.. A novel protein-based approach to generate allogeneic CAR-T cells with simultaneous TCR and MHC class 1 downregulation. . Blood 140:(Suppl. 1):63637
    [Crossref] [Google Scholar]
  41. Kim RD, Prenen H, Rottey S, Kim DW, Flament A, et al. 2022.. KEYNOTE-B79 phase 1b trial to evaluate the allogeneic CAR T-cells CYAD-101 and pembrolizumab in refractory metastatic colorectal cancer patients. . J. Clin. Oncol. 40:(4_suppl):TPS227
    [Crossref] [Google Scholar]
  42. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, et al. 2012.. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells. . Blood 119:(12):270920
    [Crossref] [Google Scholar]
  43. Kourelis T, Bansal R, Berdeja J, Siegel D, Patel K, et al. 2023.. Ethical challenges with multiple myeloma BCMA chimeric antigen receptor T cell slot allocation: a multi-institution experience. . Transpl. Cell Ther. 29:(4):25558
    [Crossref] [Google Scholar]
  44. Kunte AS, Gagelmann N, Badbaran A, Berger C, Massoud R, et al. 2022.. Viral reactivation and immune reconstitution after CAR-T cell treatment in patients with hematologic malignancies. . Blood 140:(Suppl. 1):753132
    [Crossref] [Google Scholar]
  45. Lauron EJ, Sanchez J, Zhang K, Ramanathan V, Nguyen D, et al. 2023.. Preclinical evaluation of allogeneic CD19 CAR T cells expressing an anti-rejection CD70 CAR. . J. ImmunoTher. Cancer 11:(Suppl. 1). https://doi.org/10.1136/jitc-2023-SITC2023.0279 (Abstr. )
    [Google Scholar]
  46. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, et al. 2015.. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. . Lancet 385:(9967):51728
    [Crossref] [Google Scholar]
  47. Li S, Wang X, Yuan Z, Liu L, Luo L, et al. 2021.. Eradication of T-ALL cells by CD7-targeted universal CAR-T cells and initial test of ruxolitinib-based CRS management. . Clin. Cancer Res. 27:(5):124246
    [Crossref] [Google Scholar]
  48. Lin M-Y, Yoon H, Nguyen A, Sasu B, Pertel T. 2022.. Allogeneic CAR T cells derived from younger donor T cells have more desirable T cell phenotype and better in vitro functionality. Poster presented at the 25th ASGCT Conference, May 16–19 , Washington, DC:
    [Google Scholar]
  49. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, et al. 2020.. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. . N. Engl. J. Med. 382:(6):54553
    [Crossref] [Google Scholar]
  50. Liu Q, Liu Z, Wan R, Huang W. 2022.. Clinical strategies for enhancing the efficacy of CAR T-cell therapy for hematological malignancies. . Cancers 14:(18):4452
    [Crossref] [Google Scholar]
  51. Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, et al. 2019.. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. . Lancet Oncol. 20:(1):3142
    [Crossref] [Google Scholar]
  52. Locke FL, Lekakis LJ, Eradat H, Munoz J, Tees MT, et al. 2023.. Phase 1 results with anti-CD19 allogeneic CAR T ALLO-501/501A in relapsed/refractory large B-cell lymphoma (R/R LBCL). . J. Clin. Oncol. 41:(16_suppl):2517
    [Crossref] [Google Scholar]
  53. Locke FL, Malik S, Tees MT, Neelapu SS, Popplewell L, et al. 2021.. First-in-human data of ALLO-501A, an allogeneic chimeric antigen receptor (CAR) T-cell therapy and ALLO-647 in relapsed/refractory large B-cell lymphoma (R/R LBCL): ALPHA2 study. . J. Clin. Oncol. 39::2529
    [Crossref] [Google Scholar]
  54. Locke FL, Rossi JM, Neelapu SS, Jacobson CA, Miklos DB, et al. 2020.. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. . Blood Adv. 4::4898911
    [Crossref] [Google Scholar]
  55. Mailankody S, Matous JV, Chhabra S, Liedtke M, Sidana S, et al. 2023.. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: phase 1 UNIVERSAL trial interim results. . Nat. Med. 29:(2):42229
    [Crossref] [Google Scholar]
  56. Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, et al. 2020.. Tuning the antigen density requirement for CAR T-cell activity. . Cancer Discov. 10::70223
    [Crossref] [Google Scholar]
  57. Mamonkin M, Rouce RH, Tashiro H, Brenner MK. 2015.. A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies. . Blood 126:(8):98392
    [Crossref] [Google Scholar]
  58. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, et al. 2018.. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. . N. Engl. J. Med. 378:(5):43948
    [Crossref] [Google Scholar]
  59. Mavers M, Maas-Bauer K, Negrin RS. 2017.. Invariant natural killer T cells as suppressors of graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. . Front. Immunol. 8::900
    [Crossref] [Google Scholar]
  60. McGuirk JP, Tam CS, Kröger N, Riedell PA, Murthy HS, et al. 2022.. CTX110 allogeneic CRISPR-Cas9-engineered CAR T cells in patients (pts) with relapsed or refractory (R/R) large B-cell lymphoma (LBCL): results from the phase 1 dose escalation CARBON study. . Blood 140:(Suppl. 1):103036
    [Crossref] [Google Scholar]
  61. Metelo AM, Walker I, Jozwik A, Graham C, Attwood C, et al. 2019.. Allogeneic anti-BCMA CAR-T cells show tumour specific killing against primary multiple myeloma cells from different genomic sub-groups. . Blood 134::1834
    [Crossref] [Google Scholar]
  62. Mo F, Watanabe N, McKenna MK, Hicks MJ, Srinivasan M, et al. 2021.. Engineered off-the-shelf therapeutic T cells resist host immune rejection. . Nat. Biotechnol. 39:(1):5663
    [Crossref] [Google Scholar]
  63. Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, et al. 2021.. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. . N. Engl. J. Med. 384:(8):70516
    [Crossref] [Google Scholar]
  64. Neelapu SS, Nath R, Munoz J, Tees M, Miklos DB, et al. 2021.. ALPHA study: ALLO-501 produced deep and durable responses in patients with relapsed/refractory non-Hodgkin's lymphoma comparable to autologous CAR T. . Blood 138::3878
    [Crossref] [Google Scholar]
  65. Neelapu SS, Stevens DA, Hamadani M, Frank MJ, Holmes H, et al. 2022.. A phase 1 study of ADI-001: anti-CD20 CAR-engineered allogeneic gamma delta1 (γδ) T cells in adults with B-cell malignancies. . Blood 140::461719
    [Crossref] [Google Scholar]
  66. Panowski SH, Srinivasan S, Tan N, Tacheva-Grigorova SK, Smith B, et al. 2022.. Preclinical development and evaluation of allogeneic CAR T cells targeting CD70 for the treatment of renal cell carcinoma. . Cancer Res. 82:(14):261024
    [Crossref] [Google Scholar]
  67. Pender MP, Csurhes PA, Smith C, Douglas NL, Neller MA, et al. 2018.. Epstein-Barr virus–specific T cell therapy for progressive multiple sclerosis. . JCI Insight 3:(22):e124714
    [Crossref] [Google Scholar]
  68. Poirot L, Philip B, Schiffer-Mannioui C, Clerre DL, Chion-Sotinel I, et al. 2015.. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. . Cancer Res. 75:(18):385364
    [Crossref] [Google Scholar]
  69. Porter DL, Levine BL, Kalos M, Bagg A, June CH. 2011.. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. . N. Engl. J. Med. 365:(8):72533
    [Crossref] [Google Scholar]
  70. Precision Biosciences. 2022.. Mid-year 2022 allogeneic CAR T pipeline update. . Rep., June 8, Precis. Biosci., Durham, NC. https://investor.precisionbiosciences.com/static-files/717d82d7-d304-4428-ba22-1a19c965d8d5
  71. Precision Biosciences. 2023.. ASCO 2023 cell therapy update. . Rep., May 31, Precis. Biosci., Durham, NC. https://investor.precisionbiosciences.com/static-files/df1179ae-c2c7-4f88-bb3e-431293fa6ba6
  72. Prockop S, Doubrovina E, Suser S, Heller G, Barker J, et al. 2020.. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. . J. Clin. Investig. 130:(2):73347
    [Crossref] [Google Scholar]
  73. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, et al. 2008.. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. . Nat. Med. 14:(11):126470
    [Crossref] [Google Scholar]
  74. Qasim W, Amrolia PJ, Samarasinghe S, Ghorashian S, Zhan H, et al. 2015.. First clinical application of TALEN engineered universal CAR19 T cells in B-ALL. . Blood 126::2046
    [Crossref] [Google Scholar]
  75. Rao SP, Sancho J, Campos-Rivera J, Boutin PM, Severy PB, et al. 2012.. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. . PLOS ONE 7:(6):e39416
    [Crossref] [Google Scholar]
  76. Riedell PA, Hwang W-T, Nastoupil LJ, Pennisi M, McGuirk JP, et al. 2022.. Patterns of use, outcomes, and resource utilization among recipients of commercial axicabtagene ciloleucel and tisagenlecleucel for relapsed/refractory aggressive B cell lymphomas. . Transpl. Cell Ther. 28:(10):66976
    [Crossref] [Google Scholar]
  77. Roberts ZJ, Better M, Bot A, Roberts MR, Ribas A. 2018.. Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. . Leuk. Lymphoma 59:(8):178596
    [Crossref] [Google Scholar]
  78. Rosenberg SA, Spiess P, Lafreniere R. 1986.. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. . Science 233:(4770):131821
    [Crossref] [Google Scholar]
  79. Sasu BJ, Opiteck GJ, Gopalakrishnan S, Kaimal V, Furmanak T, et al. 2022.. Detection of chromosomal alteration after infusion of gene-edited allogeneic CAR T cells. . Mol. Ther. 31:(3):67685
    [Crossref] [Google Scholar]
  80. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, et al. 2019.. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. . N. Engl. J. Med. 380:(1):4556
    [Crossref] [Google Scholar]
  81. Shah BD, Ghobadi A, Oluwole OO, Logan AC, Boissel N, et al. 2021.. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. . Lancet 398:(10299):491502
    [Crossref] [Google Scholar]
  82. Singh N, Perazzelli J, Grupp SA, Barrett DM. 2016.. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. . Sci. Transl. Med. 8:(320):320ra3
    [Crossref] [Google Scholar]
  83. Sinha D, Srihari S, Beckett K, Texier LL, Solomon M, et al. 2021.. ‘ Off-the-shelf’ allogeneic antigen-specific adoptive T-cell therapy for the treatment of multiple EBV-associated malignancies. . J. Immunother. Cancer 9:(2):e001608
    [Crossref] [Google Scholar]
  84. Sommer C, Cheng H-Y, Nguyen D, Dettling D, Yeung YA, et al. 2020.. Allogeneic FLT3 CAR T cells with an off-switch exhibit potent activity against AML and can be depleted to expedite bone marrow recovery. . Mol. Ther. 28:(10):223751
    [Crossref] [Google Scholar]
  85. Srour S. 2023.. A phase 1 multicenter study (TRAVERSE) evaluating the safety and efficacy of ALLO-316 following conditioning regimen in pts with advanced or metastatic clear cell renal cell carcinoma (ccRCC). . Cancer Res. 83:(8_Suppl.):CT011
    [Crossref] [Google Scholar]
  86. Sung AD, Chao NJ. 2013.. Acute graft-versus-host disease: immunobiology, prevention, and treatment. . Stem Cells Transl. Med. 2::2532
    [Crossref] [Google Scholar]
  87. Tees MT, Neelapu SS, Hari P, Mailankody S, Miklos DB, et al. 2021.. Safety and PK/PD of ALLO-647, an anti-CD52 antibody, with fludarabine (Flu)/cyclophosphamide (Cy) for lymphodepletion in the setting of allogeneic CAR-T cell therapy. . J. Clin. Oncol. 39::2527
    [Crossref] [Google Scholar]
  88. Terrett JA. 2023.. CTX112 and CTX131: next-generation CRISPR/Cas9-engineered allogeneic (allo) CAR T cells incorporating novel edits that increase potency and efficacy in the treatment of lymphoid and solid tumors. . Cancer Res. 83:(7_Suppl.):ND02
    [Crossref] [Google Scholar]
  89. Tran E, Turcotte S, Gros A, Robbins PF, Lu Y-C, et al. 2014.. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. . Science 344::64145
    [Crossref] [Google Scholar]
  90. Tseng D, Volkmer J-P, Willingham SB, Contreras-Trujillo H, Fathman JW, et al. 2013.. Anti-CD47 antibody–mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. . PNAS 110:(27):111038
    [Crossref] [Google Scholar]
  91. Turtle CJ, Hanafi L-A, Berger C, Hudecek M, Pender B, et al. 2016.. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor–modified T cells. . Sci. Transl. Med. 8:(355):355ra116
    [Crossref] [Google Scholar]
  92. Tyagarajan S, Spencer T, Smith J. 2020.. Optimizing CAR-T cell manufacturing processes during pivotal clinical trials. . Mol. Ther. Methods Clin. Dev. 16::13644
    [Crossref] [Google Scholar]
  93. US Food Drug Adm. 2022.. Considerations for the development of chimeric antigen receptor (CAR) T cell products. Pap. FDA-2021-D-0404. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-development-chimeric-antigen-receptor-car-t-cell-products
    [Google Scholar]
  94. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, et al. 2020.. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. . N. Engl. J. Med. 382:(14):133142
    [Crossref] [Google Scholar]
  95. Wang Y, Li H, Song X, Qi K, Cheng H, et al. 2021.. Kinetics of immune reconstitution after anti-CD19 chimeric antigen receptor T cell therapy in relapsed or refractory acute lymphoblastic leukemia patients. . Int. J. Lab. Hematol. 43:(2):25058
    [Crossref] [Google Scholar]
  96. Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, et al. 1979.. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. . N. Engl. J. Med. 300:(19):106873
    [Crossref] [Google Scholar]
  97. Zakeri N, Hall A, Swadling L, Pallett LJ, Schmidt NM, et al. 2022.. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. . Nat. Commun. 13:(1):1372
    [Crossref] [Google Scholar]
  98. Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. 2022.. CAR-T cell therapy in hematological malignancies: current opportunities and challenges. . Front. Immunol. 13::2876
    [Google Scholar]
  99. Zhou F. 2009.. Molecular mechanisms of IFN-γ to up-regulate MHC class I antigen processing and presentation. . Int. Rev. Immunol. 28:(3–4):23960
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062822-023316
Loading
/content/journals/10.1146/annurev-cancerbio-062822-023316
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error