1932

Abstract

Mutations in RAS proteins play a pivotal role in the development of human cancers, driving persistent RAF activation and deregulating the mitogen-activated protein kinase (MAPK) signaling pathway. While progress has been made in targeting specific oncogenic RAS proteins, effective drug-based therapies for most RAS mutations remain limited. Recent investigations into RAS–RAF complexes and the SHOC2–MRAS–PP1C holoenzyme complex have provided crucial insights into the structural and functional aspects of RAF activation within the MAPK signaling pathway. Moreover, these studies have also unveiled new blueprints for developing inhibitors, allowing us to think beyond the current RAS and MEK inhibitors. In this review, we explore the roles of RAS and SHOC2 in activating RAF and discuss potential therapeutic strategies to target these proteins. A comprehensive understanding of the molecular interactions involved in RAF activation and their therapeutic implications can potentially drive innovative approaches in combating RAS-/RAF-driven cancers.

Keyword(s): 14-3-3 dimerMRASPP1CRAFRASSHOC2
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062822-030450
2024-06-12
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062822-030450.html?itemId=/content/journals/10.1146/annurev-cancerbio-062822-030450&mimeType=html&fmt=ahah

Literature Cited

  1. Adachi Y, Kimura R, Hirade K, Yanase S, Nishioka Y, et al. 2023.. Scribble mis-localization induces adaptive resistance to KRAS G12C inhibitors through feedback activation of MAPK signaling mediated by YAP-induced MRAS. . Nat. Cancer 4:(6):82943
    [Crossref] [Google Scholar]
  2. Bertola D, Yamamoto G, Buscarilli M, Jorge A, Passos-Bueno MR, Kim C. 2017.. The recurrent PPP1CB mutation p.Pro49Arg in an additional Noonan-like syndrome individual: broadening the clinical phenotype. . Am. J. Med. Genet. A 173::82428
    [Crossref] [Google Scholar]
  3. Bollen M, Peti W, Ragusa MJ, Beullens M. 2010.. The extended PP1 toolkit: designed to create specificity. . Trends Biochem. Sci. 35::45058
    [Crossref] [Google Scholar]
  4. Bonsor DA, Alexander P, Snead K, Hartig N, Drew M, et al. 2022.. Structure of the SHOC2–MRAS–PP1C complex provides insights into RAF activation and Noonan syndrome. . Nat. Struct. Mol. Biol. 29::96677
    [Crossref] [Google Scholar]
  5. Bonsor DA, Simanshu DK. 2023.. Structural insights into the role of SHOC2-MRAS-PP1C complex in RAF activation. . FEBS J. 270::485263
    [Crossref] [Google Scholar]
  6. Brtva TR, Drugan JK, Ghosh S, Terrell RS, Campbell-Burk S, et al. 1995.. Two distinct Raf domains mediate interaction with Ras. . J. Biol. Chem. 270::980912
    [Crossref] [Google Scholar]
  7. Chen MJ, Dixon JE, Manning G. 2017.. Genomics and evolution of protein phosphatases. . Sci. Signal. 10:(474):eaag1796
    [Crossref] [Google Scholar]
  8. Choy MS, Moon TM, Ravindran R, Bray JA, Robinson LC, et al. 2019.. SDS22 selectively recognizes and traps metal-deficient inactive PP1. . PNAS 116::2047281
    [Crossref] [Google Scholar]
  9. Choy MS, Swingle M, D'Arcy B, Abney K, Rusin SF, et al. 2017.. PP1:tautomycetin complex reveals a path toward the development of PP1-specific inhibitors. . J. Am. Chem. Soc. 139::177036
    [Crossref] [Google Scholar]
  10. Chuang E, Barnard D, Hettich L, Zhang XF, Avruch J, Marshall MS. 1994.. Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues. . Mol. Cell. Biol. 14::531825
    [Google Scholar]
  11. Cookis T, Mattos C. 2021.. Crystal structure reveals the full Ras–Raf interface and advances mechanistic understanding of Raf activation. . Biomolecules 11:(7):996
    [Crossref] [Google Scholar]
  12. Cordeddu V, Di Schiavi E, Pennacchio LA, Ma'ayan A, Sarkozy A, et al. 2009.. Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. . Nat. Genet. 41::102226
    [Crossref] [Google Scholar]
  13. Daub M, Jöckel J, Quack T, Weber CK, Schmitz F, et al. 1998.. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. . Mol. Cell. Biol. 18::6698710
    [Crossref] [Google Scholar]
  14. Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, et al. 2005.. Regulation of Raf-1 by direct feedback phosphorylation. . Mol. Cell 17::21524
    [Crossref] [Google Scholar]
  15. Endo T. 2020.. M-Ras is muscle-Ras, moderate-Ras, mineral-Ras, migration-Ras, and many more-Ras. . Exp. Cell Res. 397::112342
    [Crossref] [Google Scholar]
  16. Fang Z, Lee K-Y, Huo K-G, Gasmi-Seabrook G, Zheng L, et al. 2020.. Multivalent assembly of KRAS with the RAS-binding and cysteine-rich domains of CRAF on the membrane. . PNAS 117::121018
    [Crossref] [Google Scholar]
  17. Fell JB, Fischer JP, Baer BR, Blake JF, Bouhana K, et al. 2020.. Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer. . J. Med. Chem. 63::667993
    [Crossref] [Google Scholar]
  18. Fetics SK, Guterres H, Kearney BM, Buhrman G, Ma B, et al. 2015.. Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. . Structure 23::50516
    [Crossref] [Google Scholar]
  19. Fontanillo M, Zemskov I, Hafner M, Uhrig U, Salvi F, et al. 2016.. Synthesis of highly selective submicromolar microcystin-based inhibitors of protein phosphatase (PP)2A over PP1. . Angew. Chem. Int. Ed. Engl. 55::1398589
    [Crossref] [Google Scholar]
  20. Ghosh S, Bell RM. 1994.. Identification of discrete segments of human Raf-1 kinase critical for high affinity binding to Ha-Ras. . J. Biol. Chem. 269::3078588
    [Crossref] [Google Scholar]
  21. Ghosh S, Strum JC, Sciorra VA, Daniel L, Bell RM. 1996.. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. . J. Biol. Chem. 271::847280
    [Crossref] [Google Scholar]
  22. Ghosh S, Xie WQ, Quest AF, Mabrouk GM, Strum JC, Bell RM. 1994.. The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras. . J. Biol. Chem. 269::100007
    [Crossref] [Google Scholar]
  23. Goldberg J, Huang HB, Kwon YG, Greengard P, Nairn AC, Kuriyan J. 1995.. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. . Nature 376::74553
    [Crossref] [Google Scholar]
  24. Grigoriu S, Bond R, Cossio P, Chen JA, Ly N, et al. 2013.. The molecular mechanism of substrate engagement and immunosuppressant inhibition of calcineurin. . PLOS Biol. 11::e1001492
    [Crossref] [Google Scholar]
  25. Gripp KW, Aldinger KA, Bennett JT, Baker L, Tusi J, et al. 2016.. A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair. . Am. J. Med. Genet. A 170::223747
    [Crossref] [Google Scholar]
  26. Hagenbeek TJ, Zbieg JR, Hafner M, Mroue R, Lacap JA, et al. 2023.. An allosteric pan-TEAD inhibitor blocks oncogenic YAP/TAZ signaling and overcomes KRAS G12C inhibitor resistance. . Nat. Cancer 4:(6):81228
    [Crossref] [Google Scholar]
  27. Hallin J, Bowcut V, Calinisan A, Briere DM, Hargis L, et al. 2022.. Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. . Nat. Med. 28::217182
    [Crossref] [Google Scholar]
  28. Hannig V, Jeoung M, Jang ER, Phillips JA 3rd, Galperin E. 2014.. A novel SHOC2 variant in Rasopathy. . Hum. Mutat. 35::129094
    [Google Scholar]
  29. Hauseman ZJ, Fodor M, Dhembi A, Viscomi J, Egli D, et al. 2022.. Structure of the MRAS–SHOC2–PP1C phosphatase complex. . Nature 609::41623
    [Crossref] [Google Scholar]
  30. He X, Ma X, Wang J, Zou Z, Huang H, et al. 2022.. Identification and clinical phenotypic analysis of novel mutation of the PPP1CB gene in NSLH2 syndrome. . Front. Behav. Neurosci. 16::987259
    [Crossref] [Google Scholar]
  31. Herrmann C, Martin GA, Wittinghofer A. 1995.. Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. . J. Biol. Chem. 270::29015
    [Crossref] [Google Scholar]
  32. Higgins EM, Bos JM, Mason-Suares H, Tester DJ, Ackerman JP, et al. 2017.. Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. . JCI Insight 2::e91225
    [Crossref] [Google Scholar]
  33. Hoermann B, Kokot T, Helm D, Heinzlmeir S, Chojnacki JE, et al. 2020.. Dissecting the sequence determinants for dephosphorylation by the catalytic subunits of phosphatases PP1 and PP2A. . Nat. Commun. 11::3583
    [Crossref] [Google Scholar]
  34. Hu CD, Kariya K, Tamada M, Akasaka K, Shirouzu M, et al. 1995.. Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. . J. Biol. Chem. 270::3027477
    [Crossref] [Google Scholar]
  35. Jang ER, Shi P, Bryant J, Chen J, Dukhande V, et al. 2014.. HUWE1 is a molecular link controlling RAF-1 activity supported by the Shoc2 scaffold. . Mol. Cell. Biol. 34::357993
    [Crossref] [Google Scholar]
  36. Jang H, Stevens P, Gao T, Galperin E. 2021.. The leucine-rich repeat signaling scaffolds Shoc2 and Erbin: cellular mechanism and role in disease. . FEBS J. 288::72139
    [Crossref] [Google Scholar]
  37. Jones GG, Del Río IB, Sari S, Sekerim A, Young LC, et al. 2019.. SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. . Nat. Commun. 10::2532
    [Crossref] [Google Scholar]
  38. Kohn M. 2020.. Turn and face the strange: a new view on phosphatases. . ACS Cent. Sci. 6::46777
    [Crossref] [Google Scholar]
  39. Kondo Y, Ognjenović J, Banerjee S, Karandur D, Merk A, et al. 2019.. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. . Science 366::10915
    [Crossref] [Google Scholar]
  40. Kwan AK, Piazza GA, Keeton AB, Leite CA. 2022.. The path to the clinic: a comprehensive review on direct KRASG12C inhibitors. . J. Exp. Clin. Cancer Res. 41::27
    [Crossref] [Google Scholar]
  41. Kwon JJ, Hahn WC. 2021.. A leucine-rich repeat protein provides a SHOC2 the RAS circuit: a structure-function perspective. . Mol. Cell. Biol. 41:(4):e00627-20
    [Crossref] [Google Scholar]
  42. Kwon JJ, Hajian B, Bian Y, Young LC, Amor AJ, et al. 2022.. Structure-function analysis of the SHOC2-MRAS-PP1C holophosphatase complex. . Nature 609::40815
    [Crossref] [Google Scholar]
  43. Lai LP, Fer N, Burgan W, Wall VE, Xu B, et al. 2022.. Classical RAS proteins are not essential for paradoxical ERK activation induced by RAF inhibitors. . PNAS 119::e2113491119
    [Crossref] [Google Scholar]
  44. Lavoie H, Therrien M. 2015.. Regulation of RAF protein kinases in ERK signalling. . Nat. Rev. Mol. Cell Biol. 16::28198
    [Crossref] [Google Scholar]
  45. Li S, Jang H, Zhang J, Nussinov R. 2018.. Raf-1 cysteine-rich domain increases the affinity of K-Ras/Raf at the membrane, promoting MAPK signaling. . Structure 26::51325.e2
    [Crossref] [Google Scholar]
  46. Liau NPD, Johnson MC, Izadi S, Gerosa L, Hammel M, et al. 2022.. Structural basis for SHOC2 modulation of RAS signalling. . Nature 609::4007
    [Crossref] [Google Scholar]
  47. Liau NPD, Venkatanarayan A, Quinn JG, Phung W, Malek S, et al. 2020a.. Dimerization induced by C-terminal 14-3-3 binding is sufficient for BRAF kinase activation. . Biochemistry 59::398292
    [Crossref] [Google Scholar]
  48. Liau NPD, Wendorff TJ, Quinn JG, Steffek M, Phung W, et al. 2020b.. Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. . Nat. Struct. Mol. Biol. 27::13441
    [Crossref] [Google Scholar]
  49. Lin C-H, Lin W-D, Chou IC, Lee I-C, Fan H-C, Hong S-Y. 2018.. Epileptic spasms in PPP1CB-associated Noonan-like syndrome: a case report with clinical and therapeutic implications. . BMC Neurol. 18::150
    [Crossref] [Google Scholar]
  50. Longo JF, Carroll SL. 2022.. The RASopathies: biology, genetics and therapeutic options. . Adv. Cancer Res. 153::30541
    [Crossref] [Google Scholar]
  51. Ma L, Bayram Y, McLaughlin HM, Cho MT, Krokosky A, et al. 2016.. De novo missense variants in PPP1CB are associated with intellectual disability and congenital heart disease. . Hum. Genet 135::1399409
    [Crossref] [Google Scholar]
  52. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. 2002.. The protein kinase complement of the human genome. . Science 298::191234
    [Crossref] [Google Scholar]
  53. Martinez Fiesco JA, Durrant DE, Morrison DK, Zhang P. 2022.. Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding. . Nat. Commun. 13::486
    [Crossref] [Google Scholar]
  54. Mazzanti L, Cacciari E, Cicognani A, Bergamaschi R, Scarano E, Forabosco A. 2003.. Noonan-like syndrome with loose anagen hair: a new syndrome?. Am. J. Med. Genet. A 118A::27986
    [Crossref] [Google Scholar]
  55. Mott HR, Carpenter JW, Zhong S, Ghosh S, Bell RM, Campbell SL. 1996.. The solution structure of the Raf-1 cysteine-rich domain: a novel Ras and phospholipid binding site. . PNAS 93::831217
    [Crossref] [Google Scholar]
  56. Motta M, Solman M, Bonnard AA, Kuechler A, Pantaleoni F, et al. 2022.. Expanding the molecular spectrum of pathogenic SHOC2 variants underlying Mazzanti syndrome. . Hum. Mol. Genet. 31::276678
    [Crossref] [Google Scholar]
  57. Nakhaeizadeh H, Amin E, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. 2016.. The RAS-effector interface: isoform-specific differences in the effector binding regions. . PLOS ONE 11::e0167145
    [Crossref] [Google Scholar]
  58. Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A. 1995.. The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. . Nature 375::55460
    [Crossref] [Google Scholar]
  59. Ostrem JML, Shokat KM. 2022.. Targeting KRAS G12C with covalent inhibitors. . Annu. Rev. Cancer Biol. 6::4964
    [Crossref] [Google Scholar]
  60. Park E, Rawson S, Li K, Kim BW, Ficarro SB, et al. 2019.. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. . Nature 575::54550
    [Crossref] [Google Scholar]
  61. Park E, Rawson S, Schmoker A, Kim BW, Oh S, et al. 2023.. Cryo-EM structure of a RAS/RAF recruitment complex. . Nat. Commun. 14::4580
    [Crossref] [Google Scholar]
  62. Peti W, Nairn AC, Page R. 2013.. Structural basis for protein phosphatase 1 regulation and specificity. . FEBS J. 280::596611
    [Crossref] [Google Scholar]
  63. Prior IA, Hood FE, Hartley JL. 2020.. The frequency of Ras mutations in cancer. . Cancer Res. 80::296974
    [Crossref] [Google Scholar]
  64. Rajalingam K, Schreck R, Rapp UR, Albert S. 2007.. Ras oncogenes and their downstream targets. . Biochim. Biophys. Acta 1773::117795
    [Crossref] [Google Scholar]
  65. Rodríguez A, Roy J, Martínez-Martínez S, López-Maderuelo MD, Niño-Moreno P, et al. 2009.. A conserved docking surface on calcineurin mediates interaction with substrates and immunosuppressants. . Mol. Cell 33::61626
    [Crossref] [Google Scholar]
  66. Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F. 2006a.. A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. . Mol. Cell 22::21730
    [Crossref] [Google Scholar]
  67. Rodriguez-Viciana P, Sabatier C, McCormick F. 2004.. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. . Mol. Cell. Biol. 24::494354
    [Crossref] [Google Scholar]
  68. Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, et al. 2006b.. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. . Science 311::128790
    [Crossref] [Google Scholar]
  69. Shin Y, Jeong JW, Wurz RP, Achanta P, Arvedson T, et al. 2019.. Discovery of N-(1-acryloylazetidin-3-yl)-2-(1H-indol-1-yl)acetamides as covalent inhibitors of KRASG12C. . ACS Med. Chem. Lett. 10::13028
    [Crossref] [Google Scholar]
  70. Simanshu DK, Philips MR, Hancock JF. 2023.. Consensus on the RAS dimerization hypothesis: strong evidence for lipid-mediated clustering but not for G-domain-mediated interactions. . Mol. Cell 83::121015
    [Crossref] [Google Scholar]
  71. Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. 2021.. The crossroads between RAS and RHO signaling pathways in cellular transformation, motility and contraction. . Genes 12:(6):819
    [Crossref] [Google Scholar]
  72. Spencer-Smith R, Terrell EM, Insinna C, Agamasu C, Wagner ME, et al. 2022.. RASopathy mutations provide functional insight into the BRAF cysteine-rich domain and reveal the importance of autoinhibition in BRAF regulation. . Mol. Cell 82::426276.e5
    [Crossref] [Google Scholar]
  73. Sulahian R, Kwon JJ, Walsh KH, Pailler E, Bosse TL, et al. 2019.. Synthetic lethal interaction of SHOC2 depletion with MEK inhibition in RAS-driven cancers. . Cell Rep. 29::11834
    [Crossref] [Google Scholar]
  74. Suzuki H, Takenouchi T, Uehara T, Takasago S, Ihara S, et al. 2019.. Severe Noonan syndrome phenotype associated with a germline Q71R MRAS variant: a recurrent substitution in RAS homologs in various cancers. . Am. J. Med. Genet. A 179::162830
    [Crossref] [Google Scholar]
  75. Tappan E, Chamberlin AR. 2008.. Activation of protein phosphatase 1 by a small molecule designed to bind to the enzyme's regulatory site. . Chem. Biol. 15::16774
    [Crossref] [Google Scholar]
  76. Tartaglia M, Aoki Y, Gelb BD. 2022.. The molecular genetics of RASopathies: an update on novel disease genes and new disorders. . Am. J. Med. Genet. C 190::42539
    [Crossref] [Google Scholar]
  77. Terai H, Hamamoto J, Emoto K, Masuda T, Manabe T, et al. 2021.. SHOC2 is a critical modulator of sensitivity to EGFR-TKIs in non-small cell lung cancer cells. . Mol. Cancer Res. 19::31728
    [Crossref] [Google Scholar]
  78. Terrell EM, Durrant DE, Ritt DA, Sealover NE, Sheffels E, et al. 2019.. Distinct binding preferences between Ras and Raf family members and the impact on oncogenic Ras signaling. . Mol. Cell 76::87284.e5
    [Crossref] [Google Scholar]
  79. Terrell EM, Morrison DK. 2019.. Ras-mediated activation of the Raf family kinases. Cold Spring Harb. . Perspect. Med. 9:(1):a033746
    [Google Scholar]
  80. Tran TH, Chan AH, Young LC, Bindu L, Neale C, et al. 2021.. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. . Nat. Commun. 12::1176
    [Crossref] [Google Scholar]
  81. Travers T, López CA, Van QN, Neale C, Tonelli M, et al. 2018.. Molecular recognition of RAS/RAF complex at the membrane: role of RAF cysteine-rich domain. . Sci. Rep. 8::8461
    [Crossref] [Google Scholar]
  82. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, et al. 2017.. Defining a cancer dependency map. . Cell 170::56476
    [Crossref] [Google Scholar]
  83. Verbinnen I, Ferreira M, Bollen M. 2017.. Biogenesis and activity regulation of protein phosphatase 1. . Biochem. Soc. Trans. 45::8999
    [Crossref] [Google Scholar]
  84. Wakula P, Beullens M, Ceulemans H, Stalmans W, Bollen M. 2003.. Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. . J. Biol. Chem. 278::1881723
    [Crossref] [Google Scholar]
  85. Wang Q, Cheng S, Fu Y, Yuan H. 2022.. A de novo RASopathy-causing SHOC2 variant in a Chinese girl with Noonan syndrome-like with loose anagen hair. . Front. Genet. 13::1040124
    [Crossref] [Google Scholar]
  86. Wang T, Yu H, Hughes NW, Liu B, Kendirli A, et al. 2017.. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. . Cell 168::890903
    [Crossref] [Google Scholar]
  87. Wang X, Allen S, Blake JF, Bowcut V, Briere DM, et al. 2022.. Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor. . J. Med. Chem. 65::312333
    [Crossref] [Google Scholar]
  88. Williams JG, Drugan JK, Yi GS, Clark GJ, Der CJ, Campbell SL. 2000.. Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. . J. Biol. Chem. 275::2217279
    [Crossref] [Google Scholar]
  89. Xiao-Pei H, Ji-Kuai C, Xue W, Dong YF, Yan L, et al. 2018.. Systematic identification of celastrol-binding proteins reveals that Shoc2 is inhibited by celastrol. . Biosci. Rep. 38:(6):BSR20181233
    [Crossref] [Google Scholar]
  90. Yen I, Shanahan F, Lee J, Hong YS, Shin SJ, et al. 2021.. ARAF mutations confer resistance to the RAF inhibitor belvarafenib in melanoma. . Nature 594::41823
    [Crossref] [Google Scholar]
  91. Young LC, Hartig N, Boned del Río I, Sari S, Ringham-Terry B, et al. 2018.. SHOC2-MRAS-PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. . PNAS 115::E1057685
    [Crossref] [Google Scholar]
  92. Young LC, Hartig N, Muñoz-Alegre M, Oses-Prieto JA, Durdu S, et al. 2013.. An MRAS, SHOC2, and SCRIB complex coordinates ERK pathway activation with polarity and tumorigenic growth. . Mol. Cell 52::67992
    [Crossref] [Google Scholar]
  93. Young LC, Rodriguez-Viciana P. 2018.. MRAS: a close but understudied member of the RAS family. . Cold Spring Harb. Perspect. Med. 8::a033621
    [Crossref] [Google Scholar]
  94. Zambrano RM, Marble M, Chalew SA, Lilje C, Vargas A, Lacassie Y. 2017.. Further evidence that variants in PPP1CB cause a rasopathy similar to Noonan syndrome with loose anagen hair. . Am. J. Med. Genet. A 173::56567
    [Crossref] [Google Scholar]
  95. Zhang G, Kazanietz MG, Blumberg PM, Hurley JH. 1995.. Crystal structure of the Cys2 activator-binding domain of protein kinase Cδ in complex with phorbol ester. . Cell 81::91724
    [Crossref] [Google Scholar]
  96. Zhou Y, Liang H, Rodkey T, Ariotti N, Parton RG, Hancock JF. 2014.. Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters. . Mol. Cell. Biol. 34::86276
    [Crossref] [Google Scholar]
  97. Zhou Y, Prakash P, Gorfe AA, Hancock JF. 2018.. Ras and the plasma membrane: a complicated relationship. . Cold Spring Harb. Perspect. Med. 8:(10):a031831
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062822-030450
Loading
/content/journals/10.1146/annurev-cancerbio-062822-030450
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error