1932

Abstract

Lineage plasticity, a cell's capacity to switch lineage-restricted gene expression states, is required for normal tissue homeostasis. Cancer lineage plasticity is increasingly observed as a mechanism of resistance to therapy, particularly molecularly targeted therapies. These therapies often owe their superior efficacy to the lineage-restricted nature of their therapeutic target, so cancers can evade such therapies by changing lineage states. As increasingly effective molecularly targeted therapies are deployed, cancer lineage plasticity is likely to be a growing clinical problem. Lineage plasticity reflects a nongenetic, potentially reversible transcriptional adaptation, but oncogenic genetic mutations likely drive elevated lineage plasticity that is typical of cancer cells. Here key concepts relevant to cancer lineage plasticity are presented, evidence implicating loss of the tumor-suppressor gene in driving cancer lineage plasticity is reviewed, and possible therapeutic approaches to counter cancer lineage plasticity are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-070120-092840
2022-04-11
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/6/1/annurev-cancerbio-070120-092840.html?itemId=/content/journals/10.1146/annurev-cancerbio-070120-092840&mimeType=html&fmt=ahah

Literature Cited

  1. Abida W, Cyrta J, Heller G, Prandi D, Armenia J et al. 2019. Genomic correlates of clinical outcome in advanced prostate cancer. PNAS 116:2311428–36
    [Google Scholar]
  2. Akamatsu S, Inoue T, Ogawa O, Gleave ME. 2018. Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int. J. Urol. 25:4345–51
    [Google Scholar]
  3. Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC et al. 2013. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin. Cancer Res. 19:3621–30
    [Google Scholar]
  4. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J et al. 2013. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155:1309–22
    [Google Scholar]
  5. Baylin SB, Jones PA. 2016. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol. 8:9a019505
    [Google Scholar]
  6. Bebber CM, Thomas ES, Stroh J, Chen Z, Androulidaki A et al. 2021. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes. Nat. Commun. 12:2048
    [Google Scholar]
  7. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L et al. 2016. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22:298–305
    [Google Scholar]
  8. Beltran H, Rickman DS, Park K, Chae SS, Sboner A et al. 2011. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1:487–95
    [Google Scholar]
  9. Berger A, Brady NJ, Bareja R, Robinson B, Conteduca V et al. 2019. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J. Clin. Investig. 130:3924–40
    [Google Scholar]
  10. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–26
    [Google Scholar]
  11. Bhagirath D, Yang TL, Tabatabai ZL, Majid S, Dahiya R et al. 2019. BRN4 is a novel driver of neuroendocrine differentiation in castration-resistant prostate cancer and is selectively released in extracellular vesicles with BRN2. Clin. Cancer Res. 25:6532–45
    [Google Scholar]
  12. Biehs B, Dijkgraaf GJP, Piskol R, Alicke B, Boumahdi S et al. 2018. A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition. Nature 562:429–33
    [Google Scholar]
  13. Bishop JL, Thaper D, Vahid S, Davies A, Ketola K et al. 2017. The master neural transcription factor BRN2 is an androgen receptor–suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov. 7:54–71
    [Google Scholar]
  14. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S et al. 2017. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32:474–89.e6
    [Google Scholar]
  15. Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A et al. 2016. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep. 16:1259–72
    [Google Scholar]
  16. Boumahdi S, de Sauvage FJ. 2020. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 19:39–56
    [Google Scholar]
  17. Burkhart DL, Sage J. 2008. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer 8:671–82
    [Google Scholar]
  18. Byers LA, Diao L, Wang J, Saintigny P, Girard L et al. 2013. An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 19:279–90
    [Google Scholar]
  19. Chan JM, Quintanal-Villalonga A, Gao VR, Xie Y, Allaj V et al. 2021. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 39:111479–96.e18
    [Google Scholar]
  20. Chang YT, Lin TP, Campbell M, Pan CC, Lee SH et al. 2017. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci. Rep. 7:42795
    [Google Scholar]
  21. Chen WY, Wen YC, Lin SR, Yeh HL, Jiang KC et al. 2021. Nerve growth factor interacts with CHRM4 and promotes neuroendocrine differentiation of prostate cancer and castration resistance. Commun. Biol. 4:22
    [Google Scholar]
  22. Chua CW, Epsi NJ, Leung EY, Xuan S, Lei M et al. 2018. Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation. eLife 7:e28768
    [Google Scholar]
  23. Ci X, Hao J, Dong X, Choi SY, Xue H et al. 2018. Heterochromatin protein 1α mediates development and aggressiveness of neuroendocrine prostate cancer. Cancer Res. 78:2691–704
    [Google Scholar]
  24. Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A et al. 2016. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30:563–77
    [Google Scholar]
  25. Davies AH, Beltran H, Zoubeidi A. 2018. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15:271–86
    [Google Scholar]
  26. Davis RL, Weintraub H, Lassar AB. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000
    [Google Scholar]
  27. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S et al. 2011. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364:1995–2005
    [Google Scholar]
  28. Dick FA, Goodrich DW, Sage J, Dyson NJ 2018. Non-canonical functions of the RB protein in cancer. Nat. Rev. Cancer 18:442–51
    [Google Scholar]
  29. Drapkin BJ, Rudin CM. 2021. Advances in small-cell lung cancer (SCLC) translational research. Cold Spring Harb. Perspect. Med. 11:a038240
    [Google Scholar]
  30. Dravis C, Chung CY, Lytle NK, Herrera-Valdez J, Luna G et al. 2018. Epigenetic and transcriptomic profiling of mammary gland development and tumor models disclose regulators of cell state plasticity. Cancer Cell 34:466–82.e6
    [Google Scholar]
  31. Dyson N. 1998. The regulation of E2F by pRB-family proteins. Genes Dev. 12:2245–62
    [Google Scholar]
  32. Faugeroux V, Pailler E, Oulhen M, Deas O, Brulle-Soumare L et al. 2020. Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived eXplant model. Nat. Commun. 11:1884
    [Google Scholar]
  33. Ferrer L, Giaj Levra M, Brevet M, Antoine M, Mazieres J et al. 2019. A brief report of transformation from NSCLC to SCLC: molecular and therapeutic characteristics. J. Thorac. Oncol. 14:130–34
    [Google Scholar]
  34. Flavahan WA, Gaskell E, Bernstein BE 2017. Epigenetic plasticity and the hallmarks of cancer. Science 357:6348eaal2380
    [Google Scholar]
  35. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM et al. 1986. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–66
    [Google Scholar]
  36. Fujita S, Masago K, Katakami N, Yatabe Y 2016. Transformation to SCLC after treatment with the ALK inhibitor alectinib. J. Thorac. Oncol. 11:e67–72
    [Google Scholar]
  37. Fung YK, Murphree AL, T'Ang A, Qian J, Hinrichs SH, Benedict WF 1987. Structural evidence for the authenticity of the human retinoblastoma gene. Science 236:1657–61
    [Google Scholar]
  38. Gao H, Sun X, Rao Y. 2020. PROTAC technology: opportunities and challenges. ACS Med. Chem. Lett. 11:237–40
    [Google Scholar]
  39. Garcia-Cao M, Gonzalo S, Dean D, Blasco MA 2002. A role for the Rb family of proteins in controlling telomere length. Nat. Genet. 32:415–19
    [Google Scholar]
  40. Ge Y, Gomez NC, Adam RC, Nikolova M, Yang H et al. 2017. Stem cell lineage infidelity drives wound repair and cancer. Cell 169:636–50.e14
    [Google Scholar]
  41. Gong X, Du J, Parsons SH, Merzoug FF, Webster Y et al. 2019. Aurora A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 9:248–63
    [Google Scholar]
  42. Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH et al. 2005. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat. Cell Biol. 7:420–28
    [Google Scholar]
  43. Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH 1991. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67:293–302
    [Google Scholar]
  44. Guler GD, Tindell CA, Pitti R, Wilson C, Nichols K et al. 2017. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure. Cancer Cell 32:221–37.e13
    [Google Scholar]
  45. Guo CC, Dancer JY, Wang Y, Aparicio A, Navone NM et al. 2011. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum. Pathol. 42:11–17
    [Google Scholar]
  46. Guo H, Ci X, Ahmed M, Hua JT, Soares F et al. 2019. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat. Commun. 10:278
    [Google Scholar]
  47. Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM et al. 2016. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22:262–69
    [Google Scholar]
  48. Huang YH, Klingbeil O, He XY, Wu XS, Arun G et al. 2018. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev. 32:915–28
    [Google Scholar]
  49. Huggins C, Hodges CV. 1941. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1:293–97
    [Google Scholar]
  50. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y et al. 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–86
    [Google Scholar]
  51. Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ et al. 2020. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell 38:60–78.e12
    [Google Scholar]
  52. Isaac CE, Francis SM, Martens AL, Julian LM, Seifried LA et al. 2006. The retinoblastoma protein regulates pericentric heterochromatin. Mol. Cell. Biol. 26:3659–71
    [Google Scholar]
  53. Ishak CA, Marshall AE, Passos DT, White CR, Kim SJ et al. 2016. An RB-EZH2 complex mediates silencing of repetitive DNA sequences. Mol. Cell 64:61074–87
    [Google Scholar]
  54. Jessen KR, Mirsky R, Arthur-Farraj P. 2015. The role of cell plasticity in tissue repair: adaptive cellular reprogramming. Dev. Cell 34:613–20
    [Google Scholar]
  55. Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT et al. 2013. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504:138–42
    [Google Scholar]
  56. Kareta MS, Gorges LL, Hafeez S, Benayoun BA, Marro S et al. 2015. Inhibition of pluripotency networks by the RB tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16:39–50
    [Google Scholar]
  57. Knudsen ES, Nambiar R, Rosario SR, Smiraglia DJ, Goodrich DW, Witkiewicz AK. 2020. Pan-cancer molecular analysis of the RB tumor suppressor protein pathway. Commun. Biol. 3:158
    [Google Scholar]
  58. Knudsen ES, Pajak TF, Qeenan M, McClendon AK, Armon BD et al. 2012. Retinoblastoma and phosphate and tensin homolog tumor suppressors: impact on ductal carcinoma in situ progression. J. Natl. Cancer Inst. 104:1825–36
    [Google Scholar]
  59. Knudsen ES, Pruitt SC, Hershberger PA, Witkiewicz AK, Goodrich DW. 2019. Cell cycle and beyond: exploiting new RB1 controlled mechanisms for cancer therapy. Trends Cancer 5:308–24
    [Google Scholar]
  60. Knudsen KE, Scher HI. 2009. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin. Cancer Res. 15:4792–98
    [Google Scholar]
  61. Korenjak M, Brehm A. 2005. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr. Opin. Genet. Dev. 15:520–27
    [Google Scholar]
  62. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M et al. 2017. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355:78–83
    [Google Scholar]
  63. Kuczynski EA, Sargent DJ, Grothey A, Kerbel RS 2013. Drug rechallenge and treatment beyond progression—implications for drug resistance. Nat. Rev. Clin. Oncol. 10:571–87
    [Google Scholar]
  64. Kurata T, Tamura K, Kaneda H, Nogami T, Uejima H et al. 2004. Effect of re-treatment with gefitinib (‘Iressa’, ZD1839) after acquisition of resistance. Ann. Oncol. 15:173–74
    [Google Scholar]
  65. Lafuente E, Beldade P. 2019. Genomics of developmental plasticity in animals. Front. Genet. 10:720
    [Google Scholar]
  66. Lally BE, Urbanic JJ, Blackstock AW, Miller AA, Perry MC. 2007. Small cell lung cancer: Have we made any progress over the last 25 years?. Oncologist 12:1096–104
    [Google Scholar]
  67. Laudato S, Aparicio A, Giancotti FG. 2019. Clonal evolution and epithelial plasticity in the emergence of AR-independent prostate carcinoma. Trends Cancer 5:440–55
    [Google Scholar]
  68. Le Magnen C, Shen MM, Abate-Shen C. 2018. Lineage plasticity in cancer progression and treatment. Annu. Rev. Cancer Biol. 2:271–89
    [Google Scholar]
  69. Leach JP, Morrisey EE. 2018. Repairing the lungs one breath at a time: How dedicated or facultative are you?. Genes Dev. 32:1461–71
    [Google Scholar]
  70. Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EYHP. 1987. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235:1394–99
    [Google Scholar]
  71. Levacq D, D'Haene N, de Wind R, Remmelink M, Berghmans T 2016. Histological transformation of ALK rearranged adenocarcinoma into small cell lung cancer: a new mechanism of resistance to ALK inhibitors. Lung Cancer 102:38–41
    [Google Scholar]
  72. Levis NA, Pfennig DW. 2016. Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. Trends Ecol. Evol. 31:563–74
    [Google Scholar]
  73. Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA et al. 2017. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20:233–46.e7
    [Google Scholar]
  74. Lovnicki J, Gan Y, Feng T, Li Y, Xie N et al. 2020. LIN28B promotes the development of neuroendocrine prostate cancer. J. Clin. Investig. 130:5338–48
    [Google Scholar]
  75. Malumbres M, Barbacid M. 2001. To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer 1:222–31
    [Google Scholar]
  76. Manning AL, Longworth MS, Dyson NJ. 2010. Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev. 24:1364–76
    [Google Scholar]
  77. Marcoux N, Gettinger SN, O'Kane G, Arbour KC, Neal JW et al. 2019. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J. Clin. Oncol. 37:278–85
    [Google Scholar]
  78. Maynard A, McCoach CE, Rotow JK, Harris L, Haderk F et al. 2020. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182:1232–51.e22
    [Google Scholar]
  79. McColl K, Wildey G, Sakre N, Lipka MB, Behtaj M et al. 2017. Reciprocal expression of INSM1 and YAP1 defines subgroups in small cell lung cancer. Oncotarget 8:73745–56
    [Google Scholar]
  80. McNair C, Xu K, Mandigo AC, Benelli M, Leiby B et al. 2017. Differential impact of RB status on E2F1 reprogramming in human cancer. J. Clin. Investig. 128:1341–58
    [Google Scholar]
  81. Menon DR, Das S, Krepler C, Vultur A, Rinner B et al. 2015. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 34:4448–59
    [Google Scholar]
  82. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. 2003. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4:181–89
    [Google Scholar]
  83. Miettinen PJ, Warburton D, Bu D, Zhao JS, Berger JE et al. 1997. Impaired lung branching morphogenesis in the absence of functional EGF receptor. Dev. Biol. 186:224–36
    [Google Scholar]
  84. Mishra R, Haldar S, Placencio V, Madhav A, Rohena-Rivera K et al. 2018. Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J. Clin. Investig. 128:4472–84
    [Google Scholar]
  85. Miskinyte G, Devaraju K, Gronning Hansen M, Monni E, Tornero D et al. 2017. Direct conversion of human fibroblasts to functional excitatory cortical neurons integrating into human neural networks. Stem. Cell Res. Ther. 8:207
    [Google Scholar]
  86. Mollaoglu G, Guthrie MR, Bohm S, Bragelmann J, Can I et al. 2017. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell 31:270–85
    [Google Scholar]
  87. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E et al. 2017. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355:84–88
    [Google Scholar]
  88. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J et al. 2018. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science 360:800–5
    [Google Scholar]
  89. Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A et al. 2017. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550:475–80
    [Google Scholar]
  90. Narita M, Nunez S, Heard E, Narita M, Lin AW et al. 2003. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–16
    [Google Scholar]
  91. Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL et al. 2015. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun. 6:6377
    [Google Scholar]
  92. Nowell PC. 1976. The clonal evolution of tumor cell populations. Science 194:23–28
    [Google Scholar]
  93. Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A et al. 2014. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156:663–77
    [Google Scholar]
  94. Onder TT, Kara N, Cherry A, Sinha AU, Zhu N et al. 2012. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483:598–602
    [Google Scholar]
  95. Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A et al. 2018. Cells lacking the RB1 tumor suppressor gene are hyperdependent on aurora B kinase for survival. Cancer Discov. 9:2230–47
    [Google Scholar]
  96. Oser MG, Niederst MJ, Sequist LV, Engelman JA. 2015. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 16:e165–72
    [Google Scholar]
  97. Park JW, Lee JK, Sheu KM, Wang L, Balanis NG et al. 2018. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 362:91–95
    [Google Scholar]
  98. Perino M, Veenstra GJ. 2016. Chromatin control of developmental dynamics and plasticity. Dev. Cell 38:610–20
    [Google Scholar]
  99. Pisco AO, Brock A, Zhou J, Moor A, Mojtahedi M et al. 2013. Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat. Commun. 4:2467
    [Google Scholar]
  100. Qi J, Nakayama K, Cardiff RD, Borowsky AD, Kaul K et al. 2010. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18:23–38
    [Google Scholar]
  101. Rambow F, Rogiers A, Marin-Bejar O, Aibar S, Femel J et al. 2018. Toward minimal residual disease-directed therapy in melanoma. Cell 174:4843–55.e19
    [Google Scholar]
  102. Ramirez M, Rajaram S, Steininger RJ, Osipchuk D, Roth MA et al. 2016. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7:10690
    [Google Scholar]
  103. Reina-Campos M, Linares JF, Duran A, Cordes T, L'Hermitte A et al. 2019. Increased serine and one-carbon pathway metabolism by PKCλ/Ι deficiency promotes neuroendocrine prostate cancer. Cancer Cell 35:3385–400.e9
    [Google Scholar]
  104. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ et al. 2015. Integrative clinical genomics of advanced prostate cancer. Cell 162:51215–28
    [Google Scholar]
  105. Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E et al. 2017. Integrative clinical genomics of metastatic cancer. Nature 548:297–303
    [Google Scholar]
  106. Roswall P, Bocci M, Bartoschek M, Li H, Kristiansen G et al. 2018. Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling. Nat. Med. 24:463–73
    [Google Scholar]
  107. Rotinen M, You S, Yang J, Coetzee SG, Reis-Sobreiro M et al. 2018. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat. Med. 24:1887–98
    [Google Scholar]
  108. Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A et al. 2019. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat. Rev. Cancer 19:289–97
    [Google Scholar]
  109. Rusan M, Li K, Li Y, Christensen CL, Abraham BJ et al. 2018. Suppression of adaptive responses to targeted cancer therapy by transcriptional repression. Cancer Discov. 8:59–73
    [Google Scholar]
  110. Ryan CJ, Bajrami I, Lord CJ. 2018. Synthetic lethality and cancer—penetrance as the major barrier. Trends Cancer 4:671–83
    [Google Scholar]
  111. Salgia R, Kulkarni P. 2018. The genetic/non-genetic duality of drug ‘resistance’ in cancer. Trends Cancer 4:110–18
    [Google Scholar]
  112. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN et al. 2012. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367:1187–97
    [Google Scholar]
  113. Schoenfeld AJ, Chan JM, Kubota D, Sato H, Rizvi H et al. 2020. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer. Clin. Cancer Res. 26:2654–63
    [Google Scholar]
  114. Schwendenwein A, Megyesfalvi Z, Barany N, Valko Z, Bugyik E et al. 2021. Molecular profiles of small cell lung cancer subtypes: therapeutic implications. Mol. Ther. Oncolytics 20:470–83
    [Google Scholar]
  115. Selinger CI, Rogers TM, Russell PA, O'Toole S, Yip P et al. 2013. Testing for ALK rearrangement in lung adenocarcinoma: a multicenter comparison of immunohistochemistry and fluorescent in situ hybridization. Mod. Pathol. 26:1545–53
    [Google Scholar]
  116. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB et al. 2011. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3:75ra26
    [Google Scholar]
  117. Setton J, Zinda M, Riaz N, Durocher D, Zimmermann M et al. 2021. Synthetic lethality in cancer therapeutics: the next generation. Cancer Discov. 11:71626–35
    [Google Scholar]
  118. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B et al. 2017. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546:431–35
    [Google Scholar]
  119. Shaffer SM, Emert BL, Reyes Hueros RA, Cote C, Harmange G et al. 2020. Memory sequencing reveals heritable single-cell gene expression programs associated with distinct cellular behaviors. Cell 182:4947–59.e17
    [Google Scholar]
  120. Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N et al. 2010. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J. Clin. Investig. 120:4478–92
    [Google Scholar]
  121. Sharma S, Kelly TK, Jones PA 2010. Epigenetics in cancer. Carcinogenesis 31:27–36
    [Google Scholar]
  122. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F et al. 2010. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80
    [Google Scholar]
  123. Siddiqui H, Fox SR, Gunawardena RW, Knudsen ES. 2007. Loss of RB compromises specific heterochromatin modifications and modulates HP1α dynamics. J. Cell. Physiol. 211:131–37
    [Google Scholar]
  124. Smith BA, Balanis NG, Nanjundiah A, Sheu KM, Tsai BL et al. 2018. A human adult stem cell signature marks aggressive variants across epithelial cancers. Cell Rep. 24:3353–66.e5
    [Google Scholar]
  125. Soufi A, Donahue G, Zaret KS. 2012. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151:994–1004
    [Google Scholar]
  126. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–72
    [Google Scholar]
  127. Takegawa N, Hayashi H, Iizuka N, Takahama T, Ueda H et al. 2016. Transformation of ALK rearrangement-positive adenocarcinoma to small-cell lung cancer in association with acquired resistance to alectinib. Ann. Oncol. 27:953–55
    [Google Scholar]
  128. Talos F, Mitrofanova A, Bergren SK, Califano A, Shen MM. 2017. A computational systems approach identifies synergistic specification genes that facilitate lineage conversion to prostate tissue. Nat. Commun. 8:14662
    [Google Scholar]
  129. Teply BA, Wang H, Luber B, Sullivan R, Rifkind I et al. 2018. Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol. 19:76–86
    [Google Scholar]
  130. Tetteh PW, Basak O, Farin HF, Wiebrands K, Kretzschmar K et al. 2016. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18:203–13
    [Google Scholar]
  131. Thomson S, Buck E, Petti F, Griffin G, Brown E et al. 2005. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res. 65:9455–62
    [Google Scholar]
  132. Touil Y, Igoudjil W, Corvaisier M, Dessein AF, Vandomme J et al. 2014. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin. Cancer Res. 20:837–46
    [Google Scholar]
  133. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K et al. 2013. Diagnosis of lung adenocarcinoma in resected specimens: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch. Pathol. Lab. Med. 137:685–705
    [Google Scholar]
  134. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. 2010. Direct conversion of fibro-blasts to functional neurons by defined factors. Nature 463:1035–41
    [Google Scholar]
  135. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM et al. 2017. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–57
    [Google Scholar]
  136. Waddington CH. 1957. The Strategy of Genes: A Discussion of Some Aspects of Theoretical Biology London: Allen & Unwin
    [Google Scholar]
  137. Watson PA, Arora VK, Sawyers CL. 2015. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15:701–11
    [Google Scholar]
  138. Weng CH, Chen LY, Lin YC, Shih JY, Lin YC et al. 2019. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 38:455–68
    [Google Scholar]
  139. Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K et al. 2006. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 66:944–50
    [Google Scholar]
  140. Wooten DJ, Groves SM, Tyson DR, Liu Q, Lim JS et al. 2019. Systems-level network modeling of small cell lung cancer subtypes identifies master regulators and destabilizers. PLOS Comput. Biol. 15:e1007343
    [Google Scholar]
  141. Yadav A, Dhole K, Sinha H. 2016. Genetic regulation of phenotypic plasticity and canalisation in yeast growth. PLOS ONE 11:e0162326
    [Google Scholar]
  142. Yano S, Nakataki E, Ohtsuka S, Inayama M, Tomimoto H et al. 2005. Retreatment of lung adenocarcinoma patients with gefitinib who had experienced favorable results from their initial treatment with this selective epidermal growth factor receptor inhibitor: a report of three cases. Oncol. Res. 15:107–11
    [Google Scholar]
  143. Yao Z, Fenoglio S, Gao DC, Camiolo M, Stiles B et al. 2010. TGF-β IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. PNAS 107:15535–40
    [Google Scholar]
  144. Yasumizu Y, Rajabi H, Jin C, Hata T, Pitroda S et al. 2020. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat. Commun. 11:338
    [Google Scholar]
  145. Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W et al. 2005. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin. Cancer Res. 11:8686–98
    [Google Scholar]
  146. Zawistowski JS, Bevill SM, Goulet DR, Stuhlmiller TJ, Beltran AS et al. 2017. Enhancer remodeling during adaptive bypass to MEK inhibition is attenuated by pharmacologic targeting of the P-TEFb complex. Cancer Discov. 7:302–21
    [Google Scholar]
  147. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L et al. 2012. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481:329–34
    [Google Scholar]
  148. Zhang W, Stabile LP, Keohavong P, Romkes M, Grandis JR et al. 2006. Mutation and polymorphism in the EGFR-TK domain associated with lung cancer. J. Thorac. Oncol. 1:635–47
    [Google Scholar]
  149. Zhang Y, Zheng D, Zhou T, Song H, Hulsurkar M et al. 2018. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat. Commun. 9:4080
    [Google Scholar]
  150. Zhao C, Li X, Su C, Li J, Cheng N et al. 2015. High expression of E-cadherin in pleural effusion cells predicts better prognosis in lung adenocarcinoma patients. Int. J. Clin. Exp. Pathol. 8:3104–9
    [Google Scholar]
  151. Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW et al. 2006. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66:7889–98
    [Google Scholar]
  152. Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S et al. 2017. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. 7:736–49
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-070120-092840
Loading
/content/journals/10.1146/annurev-cancerbio-070120-092840
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error