1932

Abstract

Cancer immunotherapies, such as immune checkpoint blockade (ICB), have been used in a wide range of tumor types with immense clinical benefit. However, ICB does not work in all patients, and attempts to combine ICB with other immune-based therapies have not lived up to their initial promise. Thus, there is a significant unmet need to discover new targets and combination therapies to extend the benefits of immunotherapy to more patients. Systems biology approaches are well suited for addressing this problem because these approaches enable evaluation of many gene targets simultaneously and ranking their relative importance for a phenotype of interest. As such, loss-of-function CRISPR screens are an emerging set of tools being used to prioritize gene targets for modulating pathways of interest in tumor and immune cells. This review describes the first screens performed to discover cancer immunotherapy targets and the technological advances that will enable next-generation screens.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-070120-094725
2022-04-11
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/6/1/annurev-cancerbio-070120-094725.html?itemId=/content/journals/10.1146/annurev-cancerbio-070120-094725&mimeType=html&fmt=ahah

Literature Cited

  1. Adamson B, Norman TM, Jost M, Cho MY, Nunez JK et al. 2016. A multiplexed single cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167:1867–82.e21
    [Google Scholar]
  2. Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M et al. 2019. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574:696–701
    [Google Scholar]
  3. Ardolino M, Azimi CS, Iannello A, Trevino TN, Horan L et al. 2014. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J. Clin. Investig. 124:4781–94
    [Google Scholar]
  4. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A et al. 2011. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Investig. 121:2350–60
    [Google Scholar]
  5. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH 2016. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34:539–73
    [Google Scholar]
  6. Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE et al. 2016. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity 45:358–73
    [Google Scholar]
  7. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A et al. 2004. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–37
    [Google Scholar]
  8. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF et al. 2018. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24:541–50
    [Google Scholar]
  9. Biswas SK, Mantovani A. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11:889–96
    [Google Scholar]
  10. Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. 2018. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18:635–47
    [Google Scholar]
  11. Brenner D, Blaser H, Mak TW. 2015. Regulation of tumour necrosis factor signalling: live or let die. Nat. Rev. Immunol. 15:362–74
    [Google Scholar]
  12. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL et al. 2014. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26:638–52
    [Google Scholar]
  13. Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A et al. 2019. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36:385–401.e8
    [Google Scholar]
  14. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT et al. 2019. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25:249–54
    [Google Scholar]
  15. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
    [Google Scholar]
  16. Chen Z, Arai E, Khan O, Zhang Z, Ngiow SF et al. 2021. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184:1262–80.e22
    [Google Scholar]
  17. Chow RD, Chen S. 2018. Cancer CRISPR screens in vivo. Trends Cancer 4:349–58
    [Google Scholar]
  18. Chylinski K, Hubmann M, Hanna RE, Yanchus C, Michlits G et al. 2019. CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci. Nat. Commun. 10:5454
    [Google Scholar]
  19. Cong L, Ran FA, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23
    [Google Scholar]
  20. Cortez JT, Montauti E, Shifrut E, Gatchalian J, Zhang Y et al. 2020. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582:416–20
    [Google Scholar]
  21. Crowther MD, Dolton G, Legut M, Caillaud ME, Lloyd A et al. 2020. Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat. Immunol. 21:178–85
    [Google Scholar]
  22. Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P et al. 2017. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14:297–301
    [Google Scholar]
  23. Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin J et al. 2021. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science 371:595–602
    [Google Scholar]
  24. DeWeirdt PC, Sanson KR, Sangree AK, Hegde M, Hanna RE et al. 2021. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39:94–104
    [Google Scholar]
  25. Di Pilato M, Kim EY, Cadilha BL, Prüßmann JN, Nasrallah MN et al. 2019. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature 570:112–16
    [Google Scholar]
  26. Dighe AS, Richards E, Old LJ, Schreiber RD. 1994. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFNγ receptors. Immunity 1:447–56
    [Google Scholar]
  27. Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:1853–66.e17
    [Google Scholar]
  28. Doench JG. 2018. Am I ready for CRISPR? A user's guide to genetic screens. Nat. Rev. Genet. 19:67–80
    [Google Scholar]
  29. Dong MB, Wang G, Chow RD, Ye L, Zhu L et al. 2019. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178:1189–204.e23
    [Google Scholar]
  30. Dranoff G. 2011. Experimental mouse tumour models: What can be learnt about human cancer immunology?. Nat. Rev. Immunol. 12:61–66
    [Google Scholar]
  31. Dubrot J, Lane-Reticker SK, Kessler EA, Ayer A, Mishra G et al. 2021. In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma. Immunity 54:571–85.e6
    [Google Scholar]
  32. DuPage M, Jacks T. 2013. Genetically engineered mouse models of cancer reveal new insights about the antitumor immune response. Curr. Opin. Immunol. 25:192–99
    [Google Scholar]
  33. Eng CL, Lawson M, Zhu Q, Dries R, Koulena N et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568:235–39
    [Google Scholar]
  34. Evavold CL, Hafner-Bratkovič I, Devant P, D'Andrea JM, Ngwa EM et al. 2021. Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell 184:4495–511.e19
    [Google Scholar]
  35. Feldman D, Singh A, Schmid-Burgk JL, Carlson RJ, Mezger A et al. 2019. Optical pooled screens in human cells. Cell 179:787–99.e17
    [Google Scholar]
  36. Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP et al. 2020. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584:624–29
    [Google Scholar]
  37. Fontenot JD, Gavin MA, Rudensky AY 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4:330–36
    [Google Scholar]
  38. Forsburg SL. 2001. The art and design of genetic screens: yeast. Nat. Rev. Genet. 2:659–68
    [Google Scholar]
  39. Franco F, Jaccard A, Romero P, Yu YR, Ho PC 2020. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab 2:1001–12
    [Google Scholar]
  40. Frangieh CJ, Melms JC, Thakore PI, Geiger-Schuller KR, Ho P et al. 2021. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53:332–41
    [Google Scholar]
  41. Gaczynska M, Rock KL, Goldberg AL. 1993. γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365:264–67
    [Google Scholar]
  42. Gajewski TF, Schreiber H, Fu YX. 2013. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14:1014–22
    [Google Scholar]
  43. Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S et al. 2018. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49:1148–61.e7
    [Google Scholar]
  44. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–61
    [Google Scholar]
  45. Godec J, Cowley GS, Barnitz RA, Alkan O, Root DE et al. 2015. Inducible RNAi in vivo reveals that the transcription factor BATF is required to initiate but not maintain CD8+ T-cell effector differentiation. PNAS 112:512–17
    [Google Scholar]
  46. Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J et al. 2021. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 595:309–14
    [Google Scholar]
  47. Gurusamy D, Henning AN, Yamamoto TN, Yu Z, Zacharakis N et al. 2020. Multi-phenotype CRISPR-Cas9 screen identifies p38 kinase as a target for adoptive immunotherapies. Cancer Cell 37:818–33.e9
    [Google Scholar]
  48. Hanahan D, Coussens LM. 2012. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–22
    [Google Scholar]
  49. Hanna RE, Doench JG. 2020. Design and analysis of CRISPR–Cas experiments. Nat. Biotechnol. 38:813–23
    [Google Scholar]
  50. Hanna RE, Hegde M, Fagre CR, DeWeirdt PC, Sangree AK et al. 2021. Massively parallel assessment of human variants with base editor screens. Cell 184:1064–80.e20
    [Google Scholar]
  51. Haslam A, Prasad V. 2019. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open. 2:e192535
    [Google Scholar]
  52. Hegde PS, Chen DS. 2020. Top 10 challenges in cancer immunotherapy. Immunity 52:17–35
    [Google Scholar]
  53. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H et al. 2008. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:1097–100
    [Google Scholar]
  54. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP et al. 2009. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. PNAS 106:9362–67
    [Google Scholar]
  55. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. New Engl. J. Med. 363:711–23
    [Google Scholar]
  56. Huang H, Zhou P, Wei J, Long L, Shi H et al. 2021. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ T cell fate decisions. Cell 184:1245–61.e21
    [Google Scholar]
  57. Jaiswal S, Chao MP, Majeti R, Weissman IL 2010. Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31:212–19
    [Google Scholar]
  58. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H et al. 2016. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167:1883–96.e15
    [Google Scholar]
  59. Jiang C, Trudeau SJ, Cheong TC, Guo R, Teng M et al. 2019. CRISPR/Cas9 screens reveal multiple layers of B cell CD40 regulation. Cell Rep 28:1307–22.e8
    [Google Scholar]
  60. Jiang F, Doudna JA. 2017. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46:505–529
    [Google Scholar]
  61. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J 2013. RNA-programmed genome editing in human cells. eLife 2:e00471
    [Google Scholar]
  62. Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N et al. 2017. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214:895–904
    [Google Scholar]
  63. Kaelin WG Jr. 2012. Use and abuse of RNAi to study mammalian gene function. Science 337:421–22
    [Google Scholar]
  64. Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ et al. 2018. Tumor immune evasion arises through loss of TNF sensitivity. Sci. Immunol. 3:eaar3451
    [Google Scholar]
  65. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND et al. 2019. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565:234–39
    [Google Scholar]
  66. Kiss M, Van Gassen S, Movahedi K, Saeys Y, Laoui D. 2018. Myeloid cell heterogeneity in cancer: not a single cell alike. Cell Immunol 330:188–201
    [Google Scholar]
  67. Kochan G, Escors D, Breckpot K, Guerrero-Setas D. 2013. Role of non-classical MHC class I molecules in cancer immunosuppression. OncoImmunology 2:e26491
    [Google Scholar]
  68. Kootstra NA, Zwart BM, Schuitemaker H. 2000. Diminished human immunodeficiency virus type 1 reverse transcription and nuclear transport in primary macrophages arrested in early G1 phase of the cell cycle. J. Virol. 74:1712–17
    [Google Scholar]
  69. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M et al. 2015. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–96
    [Google Scholar]
  70. Kumar V, Patel S, Tcyganov E, Gabrilovich DI 2016. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–20
    [Google Scholar]
  71. Kurachi M, Barnitz RA, Yosef N, Odorizzi PM, DiIorio MA et al. 2014. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol. 15:373–83
    [Google Scholar]
  72. LaFleur MW, Muroyama Y, Drake CG, Sharpe AH 2018. Inhibitors of the PD-1 pathway in tumor therapy. J. Immunol. 200:375–83
    [Google Scholar]
  73. LaFleur MW, Nguyen TH, Coxe MA, Miller BC, Yates KB et al. 2019a. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20:1335–47
    [Google Scholar]
  74. LaFleur MW, Nguyen TH, Coxe MA, Yates KB, Trombley JD et al. 2019b. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10:1668
    [Google Scholar]
  75. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P et al. 2019. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381:1535–46
    [Google Scholar]
  76. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR et al. 2017. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–13
    [Google Scholar]
  77. Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R et al. 2015. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21:81–85
    [Google Scholar]
  78. Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C et al. 2019. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol 20:1083–97
    [Google Scholar]
  79. Loo CS, Gatchalian J, Liang Y, Leblanc M, Xie M et al. 2020. A genome-wide CRISPR screen reveals a role for the non-canonical nucleosome-remodeling BAF complex in Foxp3 expression and regulatory T cell function. Immunity 53:143–57.e8
    [Google Scholar]
  80. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M et al. 2008. Highly parallel identification of essential genes in cancer cells. PNAS 105:20380–85
    [Google Scholar]
  81. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–14
    [Google Scholar]
  82. Mali P, Yang L, Esvelt KM, Aach J, Guell M et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–26
    [Google Scholar]
  83. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB et al. 2017. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547:413–18
    [Google Scholar]
  84. Marshall HT, Djamgoz MBA. 2018. Immuno-oncology: emerging targets and combination therapies. Front. Oncol. 8:315
    [Google Scholar]
  85. McLane LM, Abdel-Hakeem MS, Wherry EJ. 2019. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37:457–95
    [Google Scholar]
  86. Mellman I, Coukos G, Dranoff G 2011. Cancer immunotherapy comes of age. Nature 480:480–89
    [Google Scholar]
  87. Miao D, Margolis CA, Gao W, Voss MH, Li W et al. 2018. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359:801–6
    [Google Scholar]
  88. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV et al. 2019. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20:326–36
    [Google Scholar]
  89. Mimitou EP, Cheng A, Montalbano A, Hao S, Stoeckius M et al. 2019. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16:409–12
    [Google Scholar]
  90. Morvan MG, Lanier LL. 2016. NK cells and cancer: You can teach innate cells new tricks. Nat. Rev. Cancer 16:7–19
    [Google Scholar]
  91. Murciano-Goroff YR, Warner AB, Wolchok JD 2020. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 30:507–19
    [Google Scholar]
  92. Najm FJ, Strand C, Donovan KF, Hegde M, Sanson KR et al. 2018. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36:179–89
    [Google Scholar]
  93. Ngo VN, Davis RE, Lamy L, Yu X, Zhao H et al. 2006. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441:106–10
    [Google Scholar]
  94. Nicolai CJ, Wolf N, Chang IC, Kirn G, Marcus A et al. 2020. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Sci. Immunol. 5:eaaz2738
    [Google Scholar]
  95. Nowicki TS, Hu-Lieskovan S, Ribas A. 2018. Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J 24:47–53
    [Google Scholar]
  96. Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M et al. 2009. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 27:5944–51
    [Google Scholar]
  97. Pan D, Kobayashi A, Jiang P, de Andrade LF, Tay RE et al. 2018. A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing. Science 359:770–75
    [Google Scholar]
  98. Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A et al. 2015. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162:675–86
    [Google Scholar]
  99. Pasqual G, Chudnovskiy A, Tas JMJ, Agudelo M, Schweitzer LD et al. 2018. Monitoring T cell–dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553:496–500
    [Google Scholar]
  100. Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK et al. 2017. Identification of essential genes for cancer immunotherapy. Nature 548:537–42
    [Google Scholar]
  101. Peterson VM, Zhang KX, Kumar N, Wong J, Li L et al. 2017. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35:936–39
    [Google Scholar]
  102. Pickar-Oliver A, Gersbach CA 2019. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20:490–507
    [Google Scholar]
  103. Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T et al. 2016. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44:1255–69
    [Google Scholar]
  104. Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R et al. 2018. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564:439–43
    [Google Scholar]
  105. Ribas A, Wolchok JD. 2018. Cancer immunotherapy using checkpoint blockade. Science 359:1350–55
    [Google Scholar]
  106. Robert C, Ribas A, Schachter J, Arance A, Grob J-J et al. 2019. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol 20:1239–51
    [Google Scholar]
  107. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. 2015. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61
    [Google Scholar]
  108. Rubin AJ, Parker KR, Satpathy AT, Qi Y Wu B et al. 2019. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell 176:361–76.e17
    [Google Scholar]
  109. Sanson KR, Hanna RE, Hegde M, Donovan KF, Strand C et al. 2018. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 9:5416
    [Google Scholar]
  110. Schietinger A, Philip M, Krisnawan VE, Chiu EY, Delrow JJ et al. 2016. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45:389–401
    [Google Scholar]
  111. Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M et al. 2015. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. PNAS 112:10437–42
    [Google Scholar]
  112. Schumann K, Raju SS, Lauber M, Kolb S, Shifrut E et al. 2020. Functional CRISPR dissection of gene networks controlling human regulatory T cell identity. Nat. Immunol. 21:1456–66
    [Google Scholar]
  113. Scott EN, Gocher AM, Workman CJ, Vignali DAA. 2021. Regulatory T cells: barriers of immune infiltration into the tumor microenvironment. Front. Immunol. 12:702726
    [Google Scholar]
  114. Segal NH, Logan TF, Hodi FS, McDermott D, Melero I et al. 2017. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin. Cancer Res. 23:1929–36
    [Google Scholar]
  115. Seki A, Rutz S. 2018. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215:985–97
    [Google Scholar]
  116. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87
    [Google Scholar]
  117. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE et al. 2001. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–11
    [Google Scholar]
  118. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. 2017. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–23
    [Google Scholar]
  119. Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK et al. 2021. The next decade of immune checkpoint therapy. Cancer Discov 11:838–57
    [Google Scholar]
  120. Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM et al. 2018. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175:1958–71.e15
    [Google Scholar]
  121. Silva JM, Marran K, Parker JS, Silva J, Golding M et al. 2008. Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319:617–20
    [Google Scholar]
  122. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL et al. 2020. CRISPR-engineered T cells in patients with refractory cancer. Science 367:eaba7365
    [Google Scholar]
  123. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK et al. 2017. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14:865–68
    [Google Scholar]
  124. Sutton RE, Reitsma MJ, Uchida N, Brown PO. 1999. Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J. Virol. 73:3649–60
    [Google Scholar]
  125. Szekely B, Bossuyt V, Li X, Wali VB, Patwardhan GA et al. 2018. Immunological differences between primary and metastatic breast cancer. Ann. Oncol. 29:2232–39
    [Google Scholar]
  126. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J et al. 2000. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte–associated antigen 4. J. Exp. Med. 192:303–10
    [Google Scholar]
  127. Tang J, Pearce L, O'Donnell-Tormey J, Hubbard-Lucey VM 2018. Trends in the global immuno-oncology landscape. Nat. Rev. Drug Discov. 17:783–84
    [Google Scholar]
  128. Tay RE, Richardson EK, Toh HC. 2021. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther 28:5–17
    [Google Scholar]
  129. Theisen DJ, Davidson JT 4th, Briseno CG, Gargaro M, Lauron EJ et al. 2018. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362:694–99
    [Google Scholar]
  130. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC et al. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl. J. Med. 366:2443–54
    [Google Scholar]
  131. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ et al. 2014. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–71
    [Google Scholar]
  132. Unutmaz D, KewalRamani VN, Marmon S, Littman DR 1999. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med. 7:1735–46
    [Google Scholar]
  133. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB 2020. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers 12:738
    [Google Scholar]
  134. Vredevoogd DW, Kuilman T, Ligtenberg MA, Boshuizen J, Stecker KE et al. 2019. Augmenting immunotherapy impact by lowering tumor TNF cytotoxicity threshold. Cell 178:585–99.e15
    [Google Scholar]
  135. Wang H, La Russa M, Qi LS 2016. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85:227–64
    [Google Scholar]
  136. Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84
    [Google Scholar]
  137. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. 2020. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20:7–24
    [Google Scholar]
  138. Wei J, Long L, Zheng W, Dhungana Y, Lim SA et al. 2019. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576:471–76
    [Google Scholar]
  139. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC et al. 2005. A genetic screen for candidate tumor suppressors identifies REST. Cell 121:837–48
    [Google Scholar]
  140. Wong P, Pamer EG. 2003. CD8 T cell responses to infectious pathogens. Annu. Rev. Immunol. 21:29–70
    [Google Scholar]
  141. Yap TA, Burris HA, Kummar S, Falchook GS, Pachynski RK et al. 2018. ICONIC: biologic and clinical activity of first in class ICOS agonist antibody JTX-2011 +/− nivolumab (nivo) in patients (pts) with advanced cancers. J. Clin. Oncol. 36:3000
    [Google Scholar]
  142. Ye L, Park JJ, Dong MB, Yang Q, Chow RD et al. 2019. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37:1302–13
    [Google Scholar]
  143. Yun S, Vincelette ND, Green MR, Wahner Hendrickson AE, Abraham I 2016. Targeting immune checkpoints in unresectable metastatic cutaneous melanoma: a systematic review and meta-analysis of anti-CTLA-4 and anti-PD-1 agents trials. Cancer Med 5:1481–91
    [Google Scholar]
  144. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W et al. 2016. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375:819–29
    [Google Scholar]
  145. Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J et al. 2017. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35:31–34
    [Google Scholar]
  146. Zhao X, Li L, Starr TK, Subramanian S 2017. Tumor location impacts immune response in mouse models of colon cancer. Oncotarget 8:54775–87
    [Google Scholar]
  147. Zhou P, Shaffer DR, Alvarez Arias DA, Nakazaki Y, Pos W et al. 2014. In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 506:52–57
    [Google Scholar]
  148. Zhou T, Damsky W, Weizman OE, McGeary MK, Hartmann KP et al. 2020. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583:609–14
    [Google Scholar]
  149. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M et al. 2009. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10:1000–7
    [Google Scholar]
  150. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL et al. 2014. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74:5057–69
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-070120-094725
Loading
/content/journals/10.1146/annurev-cancerbio-070120-094725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error