1932

Abstract

In cancer, oncogenes can untether themselves from chromosomes onto circular, extrachromosomal DNA (ecDNA) particles. ecDNA are common in many of the most aggressive forms of cancer of women and men and of adults and children, and they contribute to treatment resistance and shorter survival for patients. Hiding in plain sight and missing from cancer genome maps, ecDNA was not, until recently, widely recognized to be an important feature of cancer pathogenesis. However, extensive new data demonstrate that ecDNA is a frequent and potent driver of aggressive cancer growth and treatment failure that can arise early or late in the course of the disease. The non-Mendelian genetics of ecDNA lies at the heart of the problem. By untethering themselves from chromosomes, ecDNA are randomly distributed to daughter cells during cell division, promoting high oncogene copy number, intratumoral genetic heterogeneity, accelerated tumor evolution, and treatment resistance due to rapid genome change. Further, the circular shape of ecDNA, and its high level of chromatin accessibility, promotes oncogene transcription and generates unique enhancer–promoter interactions in , as well as cooperative regulatory interactions between ecDNA particles in . In this review, we discuss the state of the field and its implications for patients with oncogene-amplified cancers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-070620-092730
2024-06-12
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-070620-092730.html?itemId=/content/journals/10.1146/annurev-cancerbio-070620-092730&mimeType=html&fmt=ahah

Literature Cited

  1. Akagi K, Li J, Broutian TR, Padilla-Nash H, Xiao W, et al. 2014.. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. . Genome Res. 24:(2):18599
    [Crossref] [Google Scholar]
  2. Akagi K, Symer DE, Mahmoud M, Jiang B, Goodwin S, et al. 2023.. Intratumoral heterogeneity and clonal evolution induced by HPV integration. . Cancer Discov. 13:(4):91027
    [Crossref] [Google Scholar]
  3. Alt FW, Kellems RE, Bertino JR, Schimke RT. 1978.. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. . J. Biol. Chem. 253:(5):135770
    [Crossref] [Google Scholar]
  4. Arias-Pulido H, Peyton CL, Joste NE, Vargas H, Wheeler CM. 2006.. Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. . J. Clin. Microbiol. 44:(5):175562
    [Crossref] [Google Scholar]
  5. Bafna V, Mischel PS. 2022.. Extrachromosomal DNA in cancer. . Annu. Rev. Genom. Hum. Genet. 23::2952
    [Crossref] [Google Scholar]
  6. Bahr G, Gilbert F, Balaban G, Engler W. 1983.. Homogeneously staining regions and double minutes in a human cell line: chromatin organization and DNA content. . J. Natl. Cancer Inst. 71:(4):65761
    [Google Scholar]
  7. Bao Y, Liu J, You J, Wu D, Yu Y, et al. 2016.. Met promotes the formation of double minute chromosomes induced by Sei-1 in NIH-3T3 murine fibroblasts. . Oncotarget 7:(35):5666475
    [Crossref] [Google Scholar]
  8. Barker PE, Drwinga HL, Hittelman WN, Maddox AM. 1980.. Double minutes replicate once during S phase of the cell cycle. . Exp. Cell Res. 130:(2):35360
    [Crossref] [Google Scholar]
  9. Baskin F, Rosenberg RN, Dev V. 1981.. Correlation of double-minute chromosomes with unstable multidrug cross-resistance in uptake mutants of neuroblastoma cells. . PNAS 78:(6):365458
    [Crossref] [Google Scholar]
  10. Beverley SM, Coderre JA, Santi DV, Schimke RT. 1984.. Unstable DNA amplifications in methotrexate-resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization. . Cell 38:(2):43139
    [Crossref] [Google Scholar]
  11. Brothman AR, Cram LS, Brothman LJ, Kraemer PM. 1987.. Cultured Bloom's syndrome substrains: a relationship between growth in low serum and the expression of double minute chromosomes. . Cancer Genet. Cytogenet. 26:(2):28797
    [Crossref] [Google Scholar]
  12. Carroll SM, DeRose ML, Gaudray P, Moore CM, Needham-Vandevanter DR, et al. 1988.. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. . Mol. Cell. Biol. 8:(4):152533
    [Google Scholar]
  13. Carroll SM, Gaudray P, De Rose ML, Emery JF, Meinkoth JL, et al. 1987.. Characterization of an episome produced in hamster cells that amplify a transfected CAD gene at high frequency: functional evidence for a mammalian replication origin. . Mol. Cell. Biol. 7:(5):174050
    [Google Scholar]
  14. Chamorro González R, Conrad T, Stöber MC, Xu R, Giurgiu M, et al. 2023.. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells. . Nat. Genet. 55:(5):88090
    [Crossref] [Google Scholar]
  15. Cox D, Yuncken C, Spriggs AI. 1965.. Minute chromatin bodies in malignant tumours of childhood. . Lancet 286:(7402):5558
    [Crossref] [Google Scholar]
  16. Cremer T, Cremer M. 2010.. Chromosome territories. . Cold Spring Harb. Perspect. Biol. 2:(3):a003889
    [Crossref] [Google Scholar]
  17. Dal Cin P, Wanschura S, Kazmierczak B, Tallini G, Dei Tos A, et al. 1998.. Amplification and expression of the HMGIC gene in a benign endometrial polyp. . Genes Chromosom. Cancer 22:(2):9599
    [Crossref] [Google Scholar]
  18. Deng X, Zhang L, Zhang Y, Yan Y, Xu Z, et al. 2006.. Double minute chromosomes in mouse methotrexate-resistant cells studied by atomic force microscopy. . Biochem. Biophys. Res. Commun. 346:(4):122833
    [Crossref] [Google Scholar]
  19. Deshpande V, Luebeck J, Nguyen N-PD, Bakhtiari M, Turner KM, et al. 2019.. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. . Nat. Commun. 10:(1):392
    [Crossref] [Google Scholar]
  20. Dharanipragada P, Zhang X, Liu S, Lomeli SH, Hong A, et al. 2023.. Blocking genomic instability prevents acquired resistance to MAPK inhibitor therapy in melanoma. . Cancer Discov. 13:(4):880909
    [Crossref] [Google Scholar]
  21. Dixon JR, Gorkin DU, Ren B. 2016.. Chromatin domains: the unit of chromosome organization. . Mol. Cell 62:(5):66880
    [Crossref] [Google Scholar]
  22. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, et al. 2012.. Topological domains in mammalian genomes identified by analysis of chromatin interactions. . Nature 485:(7398):37680
    [Crossref] [Google Scholar]
  23. Dürst M, Kleinheinz A, Hotz M, Gissmann L. 1985.. The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. . J. Gen. Virol. 66:(7):151522
    [Crossref] [Google Scholar]
  24. Fan Y, Mao R, Lv H, Xu J, Yan L, et al. 2011.. Frequency of double minute chromosomes and combined cytogenetic abnormalities and their characteristics. . J. Appl. Genet. 52:(1):5359
    [Crossref] [Google Scholar]
  25. Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V, et al. 2016.. Formation of new chromatin domains determines pathogenicity of genomic duplications. . Nature 538:(7624):26569
    [Crossref] [Google Scholar]
  26. Gibaud A, Vogt N, Hadj-Hamou N-S, Meyniel J-P, Hupé P, et al. 2010.. Extrachromosomal amplification mechanisms in a glioma with amplified sequences from multiple chromosome loci. . Hum. Mol. Genet. 19:(7):127685
    [Crossref] [Google Scholar]
  27. Haber DA, Schimke RT. 1981.. Unstable amplification of an altered dihydrofolate reductase gene associated with double-minute chromosomes. . Cell 26:(3 Part 1):35562
    [Crossref] [Google Scholar]
  28. Hamkalo BA, Farnham PJ, Johnston R, Schimke RT. 1985.. Ultrastructural features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line. . PNAS 82:(4):112630
    [Crossref] [Google Scholar]
  29. Helmsauer K, Valieva ME, Ali S, Chamorro González R, Schöpflin R, et al. 2020.. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. . Nat. Commun. 11:(1):5823
    [Crossref] [Google Scholar]
  30. Holla S, Dhakshnamoorthy J, Folco HD, Balachandran V, Xiao H, et al. 2020.. Positioning heterochromatin at the nuclear periphery suppresses histone turnover to promote epigenetic inheritance. . Cell 180:(1):15064.e15
    [Crossref] [Google Scholar]
  31. Hotta Y, Bassel A. 1965.. Molecular size and circularity of DNA in cells of mammals and higher plants. . PNAS 53:(2):35662
    [Crossref] [Google Scholar]
  32. Hung KL, Luebeck J, Dehkordi SR, Colón CI, Li R, et al. 2022a.. Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. . Nat. Genet. 54:(11):174654
    [Crossref] [Google Scholar]
  33. Hung KL, Mischel PS, Chang HY. 2022b.. Gene regulation on extrachromosomal DNA. . Nat. Struct. Mol. Biol. 29:(8):73644
    [Crossref] [Google Scholar]
  34. Hung KL, Yost KE, Xie L, Shi Q, Helmsauer K, et al. 2021.. ecDNA hubs drive cooperative intermolecular oncogene expression. . Nature 600:(7890):73136
    [Crossref] [Google Scholar]
  35. Itoh N, Shimizu N. 1998.. DNA replication-dependent intranuclear relocation of double minute chromatin. . J. Cell Sci. 111:(22):327585
    [Crossref] [Google Scholar]
  36. Kanda T, Otter M, Wahl GM. 2001.. Mitotic segregation of viral and cellular acentric extrachromosomal molecules by chromosome tethering. . J. Cell Sci. 114:(Part 1):4958
    [Crossref] [Google Scholar]
  37. Kanda T, Sullivan KF, Wahl GM. 1998.. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. . Curr. Biol. 8:(7):37785
    [Crossref] [Google Scholar]
  38. Kaufman RJ, Brown PC, Schimke RT. 1979.. Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. . PNAS 76:(11):566973
    [Crossref] [Google Scholar]
  39. Kaufman RJ, Brown PC, Schimke RT. 1981.. Loss and stabilization of amplified dihydrofolate reductase genes in mouse sarcoma S-180 cell lines. . Mol. Cell. Biol. 1:(12):108493
    [Google Scholar]
  40. Kim H, Nguyen N-P, Turner K, Wu S, Gujar AD, et al. 2020.. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. . Nat. Genet. 52:(9):89197
    [Crossref] [Google Scholar]
  41. Koche RP, Rodriguez-Fos E, Helmsauer K, Burkert M, MacArthur IC, et al. 2020.. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. . Nat. Genet. 52:(1):2934
    [Crossref] [Google Scholar]
  42. Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, et al. 1983.. Transposition and amplification of oncogene-related sequences in human neuroblastomas. . Cell 35:(2 Part 1):35967
    [Crossref] [Google Scholar]
  43. Kumar P, Kiran S, Saha S, Su Z, Paulsen T, et al. 2020.. ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. . Sci. Adv. 6:(20):eaba2489
    [Crossref] [Google Scholar]
  44. L'Abbate A, Macchia G, D'Addabbo P, Lonoce A, Tolomeo D, et al. 2014.. Genomic organization and evolution of double minutes/homogeneously staining regions with MYC amplification in human cancer. . Nucleic Acids Res. 42:(14):913145
    [Crossref] [Google Scholar]
  45. L'Abbate A, Tolomeo D, Cifola I, Severgnini M, Turchiano A, et al. 2018.. MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences. . Leukemia 32:(10):215266
    [Crossref] [Google Scholar]
  46. Lange JT, Rose JC, Chen CY, Pichugin Y, Xie L, et al. 2022.. The evolutionary dynamics of extrachromosomal DNA in human cancers. . Nat. Genet. 54:(10):152733
    [Crossref] [Google Scholar]
  47. Lee JJ-K, Jung YL, Cheong T-C, Espejo Valle-Inclan J, Chu C, et al. 2023.. ERα-associated translocations underlie oncogene amplifications in breast cancer. . Nature 618:(7967):102432
    [Crossref] [Google Scholar]
  48. Levan A, Levan G. 1978.. Have double minutes functioning centromeres?. Hereditas 88:(1):8192
    [Crossref] [Google Scholar]
  49. Lin MS, Jo S-Y, Luebeck J, Chang HY, Wu S, et al. 2023.. Transcriptional immune suppression and upregulation of double stranded DNA damage and repair repertoires in ecDNA-containing tumors. . bioRxiv 2023.04.24.537925. https://doi.org/10.1101/2023.04.24.537925
  50. Lubs HA, Salmon JH. 1965.. The chromosomal complement of human solid tumors. II. Karyotypes of glial tumors. . J. Neurosurg. 22:(2):16068
    [Crossref] [Google Scholar]
  51. Lubs HA Jr., Salmon JH, Flanigan S. 1966.. Studies of a glial tumor with multiple minute chromosomes. . Cancer 19:(4):59199
    [Crossref] [Google Scholar]
  52. Luebeck J, Coruh C, Dehkordi SR, Lange JT, Turner KM, et al. 2020.. AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. . Nat. Commun. 11:(1):4374
    [Crossref] [Google Scholar]
  53. Luebeck J, Ng AWT, Galipeau PC, Li X, Sanchez CA, et al. 2023.. Extrachromosomal DNA in the cancerous transformation of Barrett's oesophagus. . Nature 616:(7958):798805
    [Crossref] [Google Scholar]
  54. Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, et al. 2015.. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. . Cell 161:(5):101225
    [Crossref] [Google Scholar]
  55. Ly P, Brunner SF, Shoshani O, Kim DH, Lan W, et al. 2019.. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. . Nat. Genet. 51:(4):70515
    [Crossref] [Google Scholar]
  56. Maass PG, Barutcu AR, Rinn JL. 2018.. Interchromosomal interactions: a genomic love story of kissing chromosomes. . J. Cell Biol. 218:(1):2738
    [Crossref] [Google Scholar]
  57. Madhavi R, Guntur M, Ghosh R, Ghosh PK. 1990.. Double minute chromosomes in the leukocytes of a young girl with breast carcinoma. . Cancer Genet. Cytogenet. 44:(2):2037
    [Crossref] [Google Scholar]
  58. McClintock B. 1932.. A correlation of ring-shaped chromosomes with variegation in Zea mays. . PNAS 18:(12):67781
    [Crossref] [Google Scholar]
  59. McClintock B. 1938.. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. . Genetics 23:(4):31576
    [Crossref] [Google Scholar]
  60. McClintock B. 1939.. The behavior in successive nuclear divisions of a chromosome broken at meiosis. . PNAS 25:(8):40516
    [Crossref] [Google Scholar]
  61. Meng X, Qi X, Guo H, Cai M, Li C, et al. 2015.. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. . J. Med. Genet. 52:(2):13544
    [Crossref] [Google Scholar]
  62. Mitra AB, Murty VV, Luthra UK. 1983.. Double-minute chromosomes in the leukocytes of a patient with a previous history of cervical carcinoma. . Cancer Genet. Cytogenet. 8:(2):11722
    [Crossref] [Google Scholar]
  63. Møller HD, Lin L, Xiang X, Petersen TS, Huang J, et al. 2018a.. CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. . Nucleic Acids Res. 46:(22):e131
    [Google Scholar]
  64. Møller HD, Mohiyuddin M, Prada-Luengo I, Sailani MR, Halling JF, et al. 2018b.. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. . Nat. Commun. 9:(1):1069
    [Crossref] [Google Scholar]
  65. Morton AR, Dogan-Artun N, Faber ZJ, MacLeod G, Bartels CF, et al. 2019.. Functional enhancers shape extrachromosomal oncogene amplifications. . Cell 179:(6):133041.e13
    [Crossref] [Google Scholar]
  66. Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, et al. 2014.. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. . Science 343:(6166):7276
    [Crossref] [Google Scholar]
  67. Nones K, Waddell N, Wayte N, Patch A-M, Bailey P, et al. 2014.. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. . Nat. Commun. 5:(1):5224
    [Crossref] [Google Scholar]
  68. Nulton TJ, Olex AL, Dozmorov M, Morgan IM, Windle B. 2017.. Analysis of The Cancer Genome Atlas sequencing data reveals novel properties of the human papillomavirus 16 genome in head and neck squamous cell carcinoma. . Oncotarget 8:(11):1768499
    [Crossref] [Google Scholar]
  69. Oobatake Y, Shimizu N. 2020.. Double-strand breakage in the extrachromosomal double minutes triggers their aggregation in the nucleus, micronucleation, and morphological transformation. . Genes Chromosom. Cancer 59:(3):13343
    [Crossref] [Google Scholar]
  70. Pandita A, Aldape KD, Zadeh G, Guha A, James CD. 2004.. Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. . Genes Chromosom. Cancer 39:(1):2936
    [Crossref] [Google Scholar]
  71. Pang J, Nguyen N, Luebeck J, Ball L, Finegersh A, et al. 2021.. Extrachromosomal DNA in HPV mediated oropharyngeal cancer drives diverse oncogene transcription. . Clin. Cancer Res. 27:(24):677286
    [Crossref] [Google Scholar]
  72. Pauletti G, Lai E, Attardi G. 1990.. Early appearance and long-term persistence of the submicroscopic extrachromosomal elements (amplisomes) containing the amplified DHFR genes in human cell lines. . PNAS 87:(8):295559
    [Crossref] [Google Scholar]
  73. Pongor LS, Schultz CW, Rinaldi L, Wangsa D, Redon CE, et al. 2023.. Extrachromosomal DNA amplification contributes to small cell lung cancer heterogeneity and is associated with worse outcomes. . Cancer Discov. 13:(4):92849
    [Crossref] [Google Scholar]
  74. Rattner JB, Lin CC. 1984.. Ultrastructural organization of double minute chromosomes and HSR regions in human colon carcinoma cells. . Cytogenet. Cell Genet. 38:(3):17681
    [Crossref] [Google Scholar]
  75. Rausch T, Jones DTW, Zapatka M, Stütz AM, Zichner T, et al. 2012.. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. . Cell 148:(1–2):5971
    [Crossref] [Google Scholar]
  76. Raymond E, Faivre S, Weiss G, McGill J, Davidson K, et al. 2001.. Effects of hydroxyurea on extrachromosomal DNA in patients with advanced ovarian carcinomas. . Clin. Cancer Res. 7:(5):117180
    [Google Scholar]
  77. Rosswog C, Bartenhagen C, Welte A, Kahlert Y, Hemstedt N, et al. 2021.. Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. . Nat. Genet. 53:(12):167385
    [Crossref] [Google Scholar]
  78. Rose JC, Wong IT-L, Daniel B, Jones MG, Yost KE, et al. 2023.. Disparate pathways for extrachromosomal DNA biogenesis and genomic DNA repair. . bioRxiv 2023.10.22.563489. https://doi.org/10.1101/2023.10.22.563489
  79. Schimke RT. 1984.. Gene amplification in cultured animal cells. . Cell 37:(3):70513
    [Crossref] [Google Scholar]
  80. Schimke RT, Alt FW, Kellems RE, Kaufman RJ, Bertino JR. 1978.. Amplification of dihydrofolate reductase genes in methotrexate-resistant cultured mouse cells. . Cold Spring Harb. Symp. Quant. Biol. 42:(Part 2):64957
    [Crossref] [Google Scholar]
  81. Schoenlein PV, Barrett JT, Kulharya A, Dohn MR, Sanchez A, et al. 2003.. Radiation therapy depletes extrachromosomally amplified drug resistance genes and oncogenes from tumor cells via micronuclear capture of episomes and double minute chromosomes. . Int. J. Radiat. Oncol. Biol. Phys. 55:(4):105165
    [Crossref] [Google Scholar]
  82. Schoenlein PV, Barrett JT, Welter D. 1999.. The degradation profile of extrachromosomal circular DNA during cisplatin-induced apoptosis is consistent with preferential cleavage at matrix attachment regions. . Chromosoma 108:(2):12131
    [Crossref] [Google Scholar]
  83. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, et al. 1983.. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. . Nature 305:(5931):24548
    [Crossref] [Google Scholar]
  84. Schwab M, Klempnauer KH, Alitalo K, Varmus H, Bishop M. 1986.. Rearrangement at the 5′ end of amplified c-myc in human COLO 320 cells is associated with abnormal transcription. . Mol. Cell. Biol. 6:(7):275255
    [Google Scholar]
  85. Shimizu N, Misaka N, Utani K. 2007.. Nonselective DNA damage induced by a replication inhibitor results in the selective elimination of extrachromosomal double minutes from human cancer cells. . Genes Chromosom. Cancer 46:(10):86574
    [Crossref] [Google Scholar]
  86. Shoshani O, Brunner SF, Yaeger R, Ly P, Nechemia-Arbely Y, et al. 2021.. Chromothripsis drives the evolution of gene amplification in cancer. . Nature 591:(7848):13741
    [Crossref] [Google Scholar]
  87. Smith G, Taylor-Kashton C, Dushnicky L, Symons S, Wright J, Mai S. 2003.. c-Myc-induced extrachromosomal elements carry active chromatin. . Neoplasia 5:(2):11020
    [Crossref] [Google Scholar]
  88. Smolen GA, Muir B, Mohapatra G, Barmettler A, Kim WJ, et al. 2006.. Frequent Met oncogene amplification in a Brca1/Trp53 mouse model of mammary tumorigenesis. . Cancer Res. 66:(7):345255
    [Crossref] [Google Scholar]
  89. Snapka RM, Varshavsky A. 1983.. Loss of unstably amplified dihydrofolate reductase genes from mouse cells is greatly accelerated by hydroxyurea. . PNAS 80:(24):753337
    [Crossref] [Google Scholar]
  90. Spain L, Coulton A, Lobon I, Rowan A, Schnidrig D, et al. 2023.. Late-stage metastatic melanoma emerges through a diversity of evolutionary pathways. . Cancer Discov. 13:(6):136485
    [Crossref] [Google Scholar]
  91. Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA. 2005.. Interchromosomal associations between alternatively expressed loci. . Nature 435:(7042):63745
    [Crossref] [Google Scholar]
  92. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, et al. 2011.. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. . Cell 144:(1):2740
    [Crossref] [Google Scholar]
  93. Storlazzi CT, Fioretos T, Surace C, Lonoce A, Mastrorilli A, et al. 2006.. MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene. . Hum. Mol. Genet. 15:(6):93342
    [Crossref] [Google Scholar]
  94. Takayama S, Uwaike Y. 1988.. Analysis of the replication mode of double minutes using the PCC technique combined with BrdUrd labeling. . Chromosoma 97:(3):198203
    [Crossref] [Google Scholar]
  95. Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, et al. 2017.. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. . Nature 543:(7643):12225
    [Crossref] [Google Scholar]
  96. Vogt N, Gibaud A, Lemoine F, de la Grange P, Debatisse M, Malfoy B. 2014.. Amplicon rearrangements during the extrachromosomal and intrachromosomal amplification process in a glioma. . Nucleic Acids Res. 42:(21):13194205
    [Crossref] [Google Scholar]
  97. Vogt N, Lefèvre S-H, Apiou F, Dutrillaux A-M, Cör A, et al. 2004.. Molecular structure of double-minute chromosomes bearing amplified copies of the epidermal growth factor receptor gene in gliomas. . PNAS 101:(31):1136873
    [Crossref] [Google Scholar]
  98. Von Hoff DD, McGill JR, Forseth BJ, Davidson KK, Bradley TP, et al. 1992.. Elimination of extrachromosomally amplified MYC genes from human tumor cells reduces their tumorigenicity. . PNAS 89:(17):816569
    [Crossref] [Google Scholar]
  99. Von Hoff DD, Needham-VanDevanter DR, Yucel J, Windle BE, Wahl GM. 1988.. Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. . PNAS 85:(13):48048
    [Crossref] [Google Scholar]
  100. Wang Y, Wang M, Djekidel MN, Chen H, Liu D, et al. 2021.. eccDNAs are apoptotic products with high innate immunostimulatory activity. . Nature 599:(7884):30814
    [Crossref] [Google Scholar]
  101. Watanabe T, Marotta M, Suzuki R, Diede SJ, Tapscott SJ, et al. 2017.. Impediment of replication forks by long non-coding RNA provokes chromosomal rearrangements by error-prone restart. . Cell Rep. 21:(8):222335
    [Crossref] [Google Scholar]
  102. Weitzman MD, Fradet-Turcotte A. 2018.. Virus DNA replication and the host DNA damage response. . Annu. Rev. Virol. 5::14164
    [Crossref] [Google Scholar]
  103. Windle BE, Wahl GM. 1992.. Molecular dissection of mammalian gene amplification: new mechanistic insights revealed by analyses of very early events. . Mutat. Res. 276:(3):199224
    [Crossref] [Google Scholar]
  104. Wosen J. 2023.. Boundless Bio tests a cancer drug targeting once-mysterious DNA loops. . STAT, May 16. https://www.statnews.com/2023/05/16/boundless-bio-extrachromosomal-dna-cancer/
    [Google Scholar]
  105. Wu S, Turner KM, Nguyen N, Raviram R, Erb M, et al. 2019.. Circular ecDNA promotes accessible chromatin and high oncogene expression. . Nature 575:(7784):699703
    [Crossref] [Google Scholar]
  106. Wu T, Wu C, Zhao X, Wang G, Ning W, et al. 2022.. Extrachromosomal DNA formation enables tumor immune escape potentially through regulating antigen presentation gene expression. . Sci. Rep. 12:(1):3590
    [Crossref] [Google Scholar]
  107. Xu K, Ding L, Chang T-C, Shao Y, Chiang J, et al. 2019.. Structure and evolution of double minutes in diagnosis and relapse brain tumors. . Acta Neuropathol. 137:(1):12337
    [Crossref] [Google Scholar]
  108. Xue Y, Martelotto L, Baslan T, Vides A, Solomon M, et al. 2017.. An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer. . Nat. Med. 23:(8):92937
    [Crossref] [Google Scholar]
  109. Yi E, Gujar AD, Guthrie M, Kim H, Zhao D, et al. 2022.. Live-cell imaging shows uneven segregation of extrachromosomal DNA elements and transcriptionally active extrachromosomal DNA hubs in cancer. . Cancer Discov. 12:(2):46883
    [Crossref] [Google Scholar]
  110. Yu M, Ren B. 2017.. The three-dimensional organization of mammalian genomes. . Annu. Rev. Cell Dev. Biol. 33::26589
    [Crossref] [Google Scholar]
  111. Zhu Y, Gujar AD, Wong C-H, Tjong H, Ngan CY, et al. 2021.. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. . Cancer Cell 39:(5):694707.e7
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-070620-092730
Loading
/content/journals/10.1146/annurev-cancerbio-070620-092730
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error