1932

Abstract

The last decade has seen a flowering of applications driven by brain–machine interfaces (BMIs), particularly brain-actuated robotic devices designed to restore the independence of people suffering from severe motor disabilities. This review provides an overview of the state of the art of noninvasive BMI-driven devices based on 86 studies published in the last 15 years, with an emphasis on the interactions among the user, the BMI system, and the robot. We found that BMIs are used mostly to drive devices for navigation (e.g., telepresence mobile robots), with BMI paradigms based mainly on exogenous stimulation, and the majority of brain-actuated robots adopt a discrete control strategy. Most critically, in only a few works have disabled people evaluated a brain-actuated robot. The review highlights the most urgent challenges in the field, from the integration between BMI and robotics to the need for a user-centered design to boost the translational impact of BMIs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-012720-093904
2021-05-03
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-012720-093904.html?itemId=/content/journals/10.1146/annurev-control-012720-093904&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH et al. 2000. Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8:164–73
    [Google Scholar]
  2. 2. 
    Millán JDR, Rupp R, Müller-Putz GR, Murray-Smith R, Giugliemma C et al. 2010. Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4:161
    [Google Scholar]
  3. 3. 
    Chaudhary U, Birbaumer N, Ramos-Murguialday A 2016. Brain–computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12:513–25
    [Google Scholar]
  4. 4. 
    Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B et al. 1999. A spelling device for the paralysed. Nature 398:297–98
    [Google Scholar]
  5. 5. 
    Millán JDR. 2003. Adaptive brain interfaces. Commun. ACM 46:74–80
    [Google Scholar]
  6. 6. 
    Sellers EW, Ryan DB, Hauser CK 2014. Noninvasive brain-computer interface enables communication after brainstem stroke. Sci. Transl. Med. 6:257re7
    [Google Scholar]
  7. 7. 
    Vansteensel MJ, Pels EG, Bleichner MG, Branco MP, Denison T et al. 2016. Fully implanted brain-computer interface in a locked-in patient with ALS. N. Engl. J. Med. 375:2060–66
    [Google Scholar]
  8. 8. 
    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM 2002. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113:767–91
    [Google Scholar]
  9. 9. 
    Hiremath SV, Chen W, Wang W, Foldes S, Yang Y et al. 2015. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays. Front. Integr. Neurosci. 9:40
    [Google Scholar]
  10. 10. 
    Merel JS, Fox R, Jebara T, Paninski L 2013. A multi-agent control framework for co-adaptation in brain-computer interfaces. Advances in Neural Information Processing Systems 26 CJC Burges, L Bottou, M Welling, Z Ghahramani, KQ Weinberger 2841–49 Red Hook, NY: Curran
    [Google Scholar]
  11. 11. 
    Mladenović J, Mattout J, Lotte F 2018. A generic framework for adaptive EEG-based BCI training and operation. Brain–Computer Interfaces Handbook: Technological and Theoretical Advances CS Nam, A Nijholt, F Lotte 2841–49 Boca Raton, FL: CRC
    [Google Scholar]
  12. 12. 
    Millán JDR. 2015. Brain-machine interfaces: the perception-action closed loop. IEEE Syst. Man Cybern. Mag. 1:16–8
    [Google Scholar]
  13. 13. 
    Perdikis S, Tonin L, Saeedi S, Schneider C, Millán JDR 2018. The Cybathlon BCI race: successful longitudinal mutual learning with two tetraplegic users. PLOS Biol 16:e2003787
    [Google Scholar]
  14. 14. 
    Wander JD, Blakely T, Miller KJ, Weaver KE, Johnson LA et al. 2013. Distributed cortical adaptation during learning of a brain-computer interface task. PNAS 110:10818–23
    [Google Scholar]
  15. 15. 
    Ganguly K, Carmena JM. 2009. Emergence of a stable cortical map for neuroprosthetic control. PLOS Biol 7:e1000153
    [Google Scholar]
  16. 16. 
    Danig S, Orsborn AL, Moorman HG, Carmena JM 2013. Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces. Neural Comput 25:1693–731
    [Google Scholar]
  17. 17. 
    Orsborn AL, Moorman HG, Overduin SA, Shanechi MM, Dimitrov DF, Carmena JM 2014. Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 82:1380–93
    [Google Scholar]
  18. 18. 
    Waldert S, Pistohl T, Braun C, Ball T, Aertsen A, Mehring C 2009. A review on directional information in neural signals for brain-machine interfaces. J. Physiol. Paris 103:244–54
    [Google Scholar]
  19. 19. 
    Schalk G, Kubánek J, Miller KJ, Anderson NR, Leuthardt EC et al. 2007. Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J. Neural Eng. 4:264–75
    [Google Scholar]
  20. 20. 
    Maynard EM, Nordhausen CT, Normann RA 1997. The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102:228–39
    [Google Scholar]
  21. 21. 
    Polikov VS, Tresco PA, Reichert WM 2005. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148:1–18
    [Google Scholar]
  22. 22. 
    Weiskopf N, Mathiak K, Bock W, Scharnowski F, Veit R et al. 2004. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 51:966–70
    [Google Scholar]
  23. 23. 
    Coyle SM, Ward TE, Markham CM 2007. Brain-computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4:219–26
    [Google Scholar]
  24. 24. 
    Baillet S, Mosher J, Leahy R 2001. Electromagnetic brain mapping. IEEE Signal Process. Mag. 18:614–30
    [Google Scholar]
  25. 25. 
    Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W et al. 2007. An MEG-based brain-computer interface (BCI). NeuroImage 36:581–93
    [Google Scholar]
  26. 26. 
    Hwang HJ, Kim S, Choi S, Im CH 2013. EEG-based brain-computer interfaces: a thorough literature survey. Int. J. Hum.-Comput. Interact. 29:814–26
    [Google Scholar]
  27. 27. 
    McFarland DJ, McCane LM, David SV, Wolpaw JR 1997. Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103:386–94
    [Google Scholar]
  28. 28. 
    Boye AT, Kristiansen UQ, Billinger M, do Nascimento OF, Farina D 2008. Identification of movement-related cortical potentials with optimized spatial filtering and principal component analysis. Biomed. Signal Process. Control 3:300–4
    [Google Scholar]
  29. 29. 
    Chiappa S, Barber D. 2006. EEG classification using generative independent component analysis. Neurocomputing 69:769–77
    [Google Scholar]
  30. 30. 
    Herbert R, Johannes MG, Gert P 2000. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 99:441–46
    [Google Scholar]
  31. 31. 
    Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller K 2008. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25:141–56
    [Google Scholar]
  32. 32. 
    Ang KK, Chin ZY, Zhang H, Guan C 2008. Filter Bank Common Spatial Pattern (FBCSP) in brain-computer interface. Proceedings of the 2008 IEEE International Joint Conference on Neural Networks2390–97 Piscataway, NJ: IEEE
    [Google Scholar]
  33. 33. 
    Millán JDR, Franzé M, Mouriño J, Cincotti F, Babiloni F 2002. Relevant EEG features for the classification of spontaneous motor-related tasks. Biol. Cybernet. 86:89–95
    [Google Scholar]
  34. 34. 
    Galán F, Ferrez PW, Oliva F, Guàrdia J, Millán JDR 2007. Feature extraction for multi-class BCI using canonical variates analysis. Proceedings of the 2007 IEEE International Symposium on Intelligent Signal Processing Piscataway, NJ: IEEE https://doi.org/10.1109/WISP.2007.4447615
    [Crossref] [Google Scholar]
  35. 35. 
    Martinez-Leon JA, Cano-Izquierdo JM, Ibarrola J 2015. Feature selection applying statistical and neurofuzzy methods to EEG-based BCI. Comput. Intell. Neurosci. 2015:781207
    [Google Scholar]
  36. 36. 
    Nicolas-Alonso LF, Gomez-Gil J. 2012. Brain computer interfaces, a review. Sensors 12:1211–79
    [Google Scholar]
  37. 37. 
    Krauledat M, Tangermann M, Blankertz B, Müller KR 2008. Towards zero training for brain-computer interfacing. PLOS ONE 3:e2967
    [Google Scholar]
  38. 38. 
    Hübner D, Verhoeven T, Tangermann M, Dambre J, Kindermans PJ, Müller KR 2017. Improving zero-training brain-computer interfaces by mixing model estimators. J. Neural Eng. 14:036021
    [Google Scholar]
  39. 39. 
    Middendorf M, McMillan G, Calhoun G, Jones KS 2000. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehabil. Eng. 8:211–4
    [Google Scholar]
  40. 40. 
    Cheng M, Gao X, Gao S, Xu D 2002. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 49:1181–86
    [Google Scholar]
  41. 41. 
    Lalor EC, Kelly SP, Finucane C, Burke R, Smith R et al. 2005. Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. J. Adv. Signal Process. 2005:3156–64
    [Google Scholar]
  42. 42. 
    Sutter EE. 1992. The brain response interface: communication through visually-induced electrical brain responses. J. Microcomput. Appl. 15:31–45
    [Google Scholar]
  43. 43. 
    Wang Y, Zhang Z, Gao X, Gao S 2005. Lead selection for SSVEP-based brain-computer interface. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 44507–10 Piscataway, NJ: IEEE
    [Google Scholar]
  44. 44. 
    Müller-Putz GR, Pfurtscheller G. 2008. Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55:361–4
    [Google Scholar]
  45. 45. 
    Tidoni E, Gergondet P, Kheddar A, Aglioti SM 2014. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot. Front. Neurorobot. 8:20
    [Google Scholar]
  46. 46. 
    Stawicki P, Gembler F, Volosyak I 2016. Driving a semiautonomous mobile robotic car controlled by an SSVEP-based BCI. Comput. Intell. Neurosci. 2016:4909685
    [Google Scholar]
  47. 47. 
    Kim KT, Suk HI, Lee SW 2018. Commanding a brain-controlled wheelchair using steady-state somatosensory evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 26:654–65
    [Google Scholar]
  48. 48. 
    Kwak NS, Müller KR, Lee SW 2015. A lower limb exoskeleton control system based on steady state visual evoked potentials. J. Neural Eng. 12:056009
    [Google Scholar]
  49. 49. 
    Sutton S, Braren M, Zubin J, John ER 1965. Evoked-potential correlates of stimulus uncertainty. Science 150:1187–88
    [Google Scholar]
  50. 50. 
    Farwell LA, Donchin E. 1988. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70:510–23
    [Google Scholar]
  51. 51. 
    McCarthy G, Donchin E. 1981. A metric for thought: a comparison of P300 latency and reaction time. Science 211:77–80
    [Google Scholar]
  52. 52. 
    Iturrate I, Antelis JM, Kubler A, Minguez J 2009. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 25:614–27
    [Google Scholar]
  53. 53. 
    Rebsamen B, Burdet E, Guan C, Zhang H, Teo C et al. 2007. Controlling a wheelchair indoors using thought. IEEE Intell. Syst. 22:18–24
    [Google Scholar]
  54. 54. 
    Palankar M, De Laurentis K, Alqasemi R, Veras E, Dubey R et al. 2009. Control of a 9-DoF wheelchair-mounted robotic arm system using a P300 brain computer interface: initial experiments. Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics348–53 Piscataway, NJ: IEEE
    [Google Scholar]
  55. 55. 
    Falkenstein M, Hoormann J, Christ S, Hohnsbein J 2000. ERP components on reaction errors and their functional significance: a tutorial. Biol. Psychol. 51:87–107
    [Google Scholar]
  56. 56. 
    Ullsperger M, Fischer AG, Nigbur R, Endrass T 2014. Neural mechanisms and temporal dynamics of performance monitoring. Trends Cogn. Sci. 18:259–67
    [Google Scholar]
  57. 57. 
    Chavarriaga R, Sobolewski A, Millán JDR 2014. Errare machinale est: the use of error-related potentials in brain-machine interfaces. Front. Neurosci. 8:208
    [Google Scholar]
  58. 58. 
    Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G 2000. EEG-based communication: presence of an error potential. Clin. Neurophysiol. 111:2138–44
    [Google Scholar]
  59. 59. 
    Ferrez PW, Millán JDR. 2008. Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans. Biomed. Eng. 55:923–9
    [Google Scholar]
  60. 60. 
    Ferrez PW, Millán JDR. 2008. Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy. Proceedings of the 4th Brain-Computer Interface Workshop and Training Course197–202 Graz, Austria: Verlag Tech. Univ. Graz
    [Google Scholar]
  61. 61. 
    Dal Seno B, Matteucci M, Mainardi L 2010. Online detection of P300 and error potentials in a BCI speller. Comput. Intell. Neurosci. 2010:307254
    [Google Scholar]
  62. 62. 
    Chavarriaga R, Iturrate I, Millán JDR 2016. Robust, accurate spelling based on error-related potentials. Proceedings of the 6th International Brain-Computer Interface Meeting G Müller-Patz, J Huggins, D Steyrl 9–10 Graz, Austria: Verlag Tech. Univ. Graz
    [Google Scholar]
  63. 63. 
    Perrin X, Chavarriaga R, Colas F, Siegwart R, Millán JDR 2010. Brain-coupled interaction for semi-autonomous navigation of an assistive robot. Robot. Auton. Syst. 58:1246–55
    [Google Scholar]
  64. 64. 
    Iturrate I, Chavarriaga R, Montesano L, Minguez J, Millán JDR 2015. Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control. Sci. Rep. 5:13893
    [Google Scholar]
  65. 65. 
    Iwane F, Halvagal MS, Iturrate I, Batzianoulis I, Chavarriaga R et al. 2019. Inferring subjective preferences on robot trajectories using EEG signals. Proceedings of the 9th International IEEE/EMBS Conference on Neural Engineering255–58 Piscataway, NJ: IEEE
    [Google Scholar]
  66. 66. 
    Pfurtscheller G, Lopes da Silva FH 1999. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110:1842–57
    [Google Scholar]
  67. 67. 
    Pfurtscheller G, Neuper C. 2001. Motor imagery and direct brain-computer communication. Proc. IEEE 89:1123–34
    [Google Scholar]
  68. 68. 
    Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH 2006. μ rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31:153–9
    [Google Scholar]
  69. 69. 
    Leeb R, Perdikis S, Tonin L, Biasiucci A, Tavella M et al. 2013. Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users. Artif. Intell. Med. 59:121–32
    [Google Scholar]
  70. 70. 
    Leeb R, Tonin L, Rohm M, Desideri L, Carlson T, Millán JDR 2015. Towards independence: a BCI telepresence robot for people with severe motor disabilities. Proc. IEEE 103:969–82
    [Google Scholar]
  71. 71. 
    Thomas E, Dyson M, Clerc M 2013. An analysis of performance evaluation for motor-imagery based BCI. J. Neural Eng. 10:031001
    [Google Scholar]
  72. 72. 
    Doud AJ, Lucas JP, Pisansky MT, He B 2011. Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLOS ONE 6:e26322
    [Google Scholar]
  73. 73. 
    LaFleur K, Cassady K, Doud A, Shades K, Rogin E, He B 2013. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 10:046003
    [Google Scholar]
  74. 74. 
    Meng J, Zhang S, Bekyo A, Olsoe J, Baxter B, He B 2016. Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci. Rep. 6:38565
    [Google Scholar]
  75. 75. 
    Satti A, Coyle D, Prasad G 2009. Continuous EEG classification for a self-paced BCI. Proceedings of the 4th International IEEE/EMBS Conference on Neural Engineering315–18 Piscataway, NJ: IEEE
    [Google Scholar]
  76. 76. 
    Coyle D, Garcia J, Satti AR, McGinnity TM 2011. EEG-based continuous control of a game using a 3 channel motor imagery BCI: BCI game. Proceedings of the IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain Piscataway, NJ: IEEE https://doi.org/10.1109/CCMB.2011.5952128
    [Crossref] [Google Scholar]
  77. 77. 
    Tonin L, Bauer F, Millán JDR 2020. The role of the control framework for continuous tele-operation of a BMI driven mobile robot. IEEE Trans. Robot. 36:78–91
    [Google Scholar]
  78. 78. 
    Bakardjian H, Tanaka T, Cichocki A 2010. Optimization of SSVEP brain responses with application to eight-command brain-computer interface. Neurosci. Lett. 469:34–38
    [Google Scholar]
  79. 79. 
    Rebsamen B, Guan C, Zhang H, Wang C, Teo C et al. 2010. A brain controlled wheelchair to navigate in familiar environments. IEEE Trans. Neural Syst. Rehabil. Eng. 18:590–98
    [Google Scholar]
  80. 80. 
    Kuhner D, Fiederer LDJ, Aldinger J, Burget F, Völker M 2019. A service assistant combining autonomous robotics, flexible goal formulation, and deep-learning-based brain-computer interfacing. Robot. Auton. Syst. J. 116:98–113
    [Google Scholar]
  81. 81. 
    Vanacker G, Millán JDR, Lew E, Ferrez PW, Galán F et al. 2007. Context-based filtering for assisted brain-actuated wheelchair driving. Comput. Intell. Neurosci. 2007:25130
    [Google Scholar]
  82. 82. 
    Galán F, Nuttin M, Lew E, Ferrez PW, Vanacker G et al. 2008. A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin. Neurophysiol. 119:2159–69
    [Google Scholar]
  83. 83. 
    Philips J, Millán JDR, Vanacker G, Lew E, Galán F et al. 2007. Adaptive shared control of a brain-actuated simulated wheelchair. Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics408–14 Piscataway, NJ: IEEE
    [Google Scholar]
  84. 84. 
    Flemisch F, Adams C, Conway S, Goodrich K, Palmer M, Schutte P 2003. The H-metaphor as a guideline for vehicle automation and interaction Tech. Rep. 2003-212672 Langley Res. Cent., NASA Hampton, VA:
    [Google Scholar]
  85. 85. 
    Goodrich K, Schutte P, Flemisch F, Williams R 2006. Application of the H-mode, a design and interaction concept for highly automated vehicles, to aircraft. Proceedings of 2006 IEEE/AIAA 25th Digital Avionics Systems Conference Piscataway, NJ: IEEE https://doi.org/10.1109/DASC.2006.313781
    [Crossref] [Google Scholar]
  86. 86. 
    Tonin L, Leeb R, Tavella M, Perdikis S, Millán JDR 2010. The role of shared-control in BCI-based telepresence. Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics1462–66 Piscataway, NJ: IEEE
    [Google Scholar]
  87. 87. 
    Chavarriaga R, Millán JDR. 2010. Learning from EEG error-related potentials in noninvasive brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 18:381–88
    [Google Scholar]
  88. 88. 
    DelPreto J, Salazar-Gomez AF, Gil S, Hasani RM, Guenther FH, Rus D 2018. Plug-and-play supervisory control using muscle and brain signals for real-time gesture and error detection. Robotics: Science and Systems XIV H Kress-Gazit, S Srinivasa, T Howard, N Atanasov, pap. 63. N.p Robot. Sci. Syst. Found.
    [Google Scholar]
  89. 89. 
    Millán JDR, Renkens F, Mouriño J, Gerstner W 2004. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51:1026–33
    [Google Scholar]
  90. 90. 
    Rebsamen B, Burdet E, Guan C, Zhang H, Teo CL et al. 2006. A brain-controlled wheelchair based on P300 and path guidance. Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics1101–6 Piscataway, NJ: IEEE
    [Google Scholar]
  91. 91. 
    Cheeín FAA, Carelli R, Celeste WC, Bastos TF, di Sciascio F 2007. Maps managing interface design for a mobile robot navigation governed by a BCI. J. Phys. Conf. Ser. 90:012088
    [Google Scholar]
  92. 92. 
    Leeb R, Friedman D, Müller-Putz GR, Scherer R, Slater M, Pfurtscheller G 2007. Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 2007:79642
    [Google Scholar]
  93. 93. 
    Valbuena D, Cyriacks M, Friman O, Volosyak I, Graser A 2007. Brain-computer interface for high-level control of rehabilitation robotic systems. Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics619–25 Piscataway, NJ: IEEE
    [Google Scholar]
  94. 94. 
    Bell CJ, Shenoy P, Chalodhorn R, Rao RPN 2008. Control of a humanoid robot by a noninvasive brain–computer interface in humans. J. Neural Eng. 5:214–20
    [Google Scholar]
  95. 95. 
    Pires G, Castelo-Branco M, Nunes U 2008. Visual P300-based BCI to steer a wheelchair: a Bayesian approach. Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society658–61 Piscataway, NJ: IEEE
    [Google Scholar]
  96. 96. 
    Millán JDR, Galán F, Vanhooydonck D, Lew E, Philips J, Nuttin M 2009. Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society3361–64 Piscataway, NJ: IEEE
    [Google Scholar]
  97. 97. 
    Chella A, Pagello E, Menegatti E, Sorbello R, Anzalone SM et al. 2009. A BCI teleoperated museum robotic guide. Proceedings of the 2009 International Conference on Complex, Intelligent and Software Intensive Systems783–88 Piscataway, NJ: IEEE
    [Google Scholar]
  98. 98. 
    Barbosa AOG, Achanccaray DR, Meggiolaro MA 2010. Activation of a mobile robot through a brain computer interface. Proceedings of the 2010 IEEE International Conference on Robotics and Automation4815–21 Piscataway, NJ: IEEE
    [Google Scholar]
  99. 99. 
    Iáñez E, Azorín JM, Úbeda A, Ferrández JM, Fernández E 2010. Mental tasks-based brainrobot interface. Robot. Auton. Syst. 58:1238–45
    [Google Scholar]
  100. 100. 
    Escolano C, Murguialday AR, Matuz T, Birbaumer N, Minguez J 2010. A telepresence robotic system operated with a P300-based brain-computer interface: initial tests with ALS patients. Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology4476–80 Piscataway, NJ: IEEE
    [Google Scholar]
  101. 101. 
    Müller SMT, Celeste WC, Bastos-Filho TF, Sarcinelli-Filho M 2010. Brain-computer interface based on visual evoked potentials to command autonomous robotic wheelchair. J. Med. Biol. Eng. 30:407–16
    [Google Scholar]
  102. 102. 
    Ortner R, Guger C, Prueckl R, Grünbacher E, Edlinger G 2010. SSVEP based brain-computer interface for robot control. Computers Helping People with Special Needs K Miesenberger, J Klaus, W Zagler, A Karshmer 85–90 Berlin: Springer
    [Google Scholar]
  103. 103. 
    Tonin L, Carlson T, Leeb R, Millán JDR 2011. Brain-controlled telepresence robot by motor-disabled people. Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society4227–30 Piscataway, NJ: IEEE
    [Google Scholar]
  104. 104. 
    Finke A, Knoblauch A, Koesling H, Ritter H 2011. A hybrid brain interface for a humanoid robot assistant. Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society7421–24 Piscataway, NJ: IEEE
    [Google Scholar]
  105. 105. 
    Bastos TF, Müller SMT, Benevides AB, Sarcinelli-Filho M 2011. Robotic wheelchair commanded by SSVEP, motor imagery and word generation. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society4753–56 Piscataway, NJ: IEEE
    [Google Scholar]
  106. 106. 
    Bryan M, Green J, Chung M, Chang L, Scherer R et al. 2011. An adaptive brain-computer interface for humanoid robot control. Proceedings of the 11th IEEE-RAS International Conference on Humanoid Robots199–204 Piscataway, NJ: IEEE
    [Google Scholar]
  107. 107. 
    Gergondet P, Druon S, Kheddar A, Hintermuller C, Guger C, Slater M 2011. Using brain-computer interface to steer a humanoid robot. Proceedings of the IEEE International Conference on Robotics and Biomimetics192–97 Piscataway, NJ: IEEE
    [Google Scholar]
  108. 108. 
    Müller SMT, Bastos-Filho TF, Sarcinelli-Filho M 2011. Using a SSVEP-BCI to command a robotic wheelchair. Proceedings of the IEEE International Symposium on Industrial Electronics957–62 Piscataway, NJ: IEEE
    [Google Scholar]
  109. 109. 
    Ortner R, Allison BZ, Korisek G, Gaggl H, Pfurtscheller G 2011. An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 19:1–5
    [Google Scholar]
  110. 110. 
    Chae Y, Jeong J, Jo S 2012. Toward brain-actuated humanoid robots: asynchronous direct control using an EEG-based BCI. IEEE Trans. Robot. 28:1131–44
    [Google Scholar]
  111. 111. 
    Huang D, Qian K, Fei DY, Jia W, Chen X, Bai O 2012. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Trans. Neural Syst. Rehabil. Eng. 20:379–88
    [Google Scholar]
  112. 112. 
    Li W, Jaramillo C, Li Y 2012. Development of mind control system for humanoid robot through a brain computer interface. Proceedings of the Second International Conference on Intelligent System Design and Engineering Application679–82 Piscataway, NJ: IEEE
    [Google Scholar]
  113. 113. 
    Escolano C, Antelis JM, Minguez J 2012. A telepresence mobile robot controlled with a noninvasive brain-computer interface. IEEE Trans. Syst. Man Cybernet. B 42:793–804
    [Google Scholar]
  114. 114. 
    Grigorescu SM, Lüth T, Fragkopoulos C, Cyriacks M, Gräser A 2012. A BCI-controlled robotic assistant for quadriplegic people in domestic and professional life. Robotica 30:419–31
    [Google Scholar]
  115. 115. 
    Zhang C, Kimura Y, Higashi H, Tanaka T 2012. A simple platform of brain-controlled mobile robot and its implementation by SSVEP. Proceedings of the 2012 International Joint Conference on Neural Networks Piscataway, NJ: IEEE https://doi.org/10.1109/IJCNN.2012.6252579
    [Crossref] [Google Scholar]
  116. 116. 
    Carlson T, Tonin L, Perdikis S, Leeb R, Millán JDR 2013. A hybrid BCI for enhanced control of a telepresence robot. Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society3097–100 Piscataway, NJ: IEEE
    [Google Scholar]
  117. 117. 
    Carlson T, Millán JDR. 2013. Brain-controlled wheelchairs: a robotic architecture. IEEE Robot. Autom. Mag. 20:165–73
    [Google Scholar]
  118. 118. 
    Do AH, Wang PT, King CE, Chun SN, Nenadic Z 2013. Brain-computer interface controlled robotic gait orthosis. J. NeuroEng. Rehabil. 10:111
    [Google Scholar]
  119. 119. 
    Kilicarslan A, Prasad S, Grossman RG, Contreras-Vidal JL 2013. High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton. Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society5606–9 Piscataway, NJ: IEEE
    [Google Scholar]
  120. 120. 
    Úbeda A, Iáñez E, Azorín JM 2013. Shared control architecture based on RFID to control a robot arm using a spontaneous brain-machine interface. Robot. Auton. Syst. 61:768–74
    [Google Scholar]
  121. 121. 
    Choi B, Jo S. 2013. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition. PLOS ONE 8:e74583
    [Google Scholar]
  122. 122. 
    Yun SJ, Lee MC, Cho SB 2013. P300 BCI based planning behavior selection network for humanoid robot control. Proceedings of the Ninth International Conference on Natural Computation354–58 Piscataway, NJ: IEEE
    [Google Scholar]
  123. 123. 
    Li Y, Pan J, Wang F, Yu Z 2013. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng. 60:3156–66
    [Google Scholar]
  124. 124. 
    Guneysu A, Akin HL. 2013. An SSVEP based BCI to control a humanoid robot by using portable EEG device. Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society6905–8 Piscataway, NJ: IEEE
    [Google Scholar]
  125. 125. 
    Kapeller C, Hintermuller C, Abu-Alqumsan M, Pruckl R, Peer A, Guger C 2013. A BCI using VEP for continuous control of a mobile robot. Proceedings of 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society5254–57 Piscataway, NJ: IEEE
    [Google Scholar]
  126. 126. 
    Sakurada T, Kawase T, Takano K, Komatsu T, Kansaku K 2013. A BMI-based occupational therapy assist suit: asynchronous control by SSVEP. Front. Neurosci. 7:172
    [Google Scholar]
  127. 127. 
    Gandhi V, Prasad G, Coyle D, Behera L, McGinnity TM 2014. EEG-based mobile robot control through an adaptive brain-robot interface. IEEE Trans. Syst. Man Cybernet. Syst. 44:1278–85
    [Google Scholar]
  128. 128. 
    Hortal E, Úbeda A, Iáñez E, Azorín JM 2014. Control of a 2 DoF robot using a brain-machine interface. Comput. Methods Programs Biomed. 116:169–76
    [Google Scholar]
  129. 129. 
    Looned R, Webb J, Xiao Z, Menon C 2014. Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. J. Neuroeng. Rehabil. 11:51
    [Google Scholar]
  130. 130. 
    Bi L, Fan XA, Jie K, Teng T, Ding H, Liu Y 2014. Using a head-up display-based steady-state visually evoked potential brain-computer interface to control a simulated vehicle. IEEE Trans. Intell. Transp. Syst. 15:959–66
    [Google Scholar]
  131. 131. 
    Diez PF, Mut VA, Laciar E, Perona EM 2014. Mobile robot navigation with a self-paced brain-computer interface based on high-frequency SSVEP. Robotica 32:695–709
    [Google Scholar]
  132. 132. 
    Zhao J, Meng Q, Li W, Li M, Chen G 2014. SSVEP-based hierarchical architecture for control of a humanoid robot with mind. Proceedings of the 11th World Congress on Intelligent Control and Automation2401–6 Piscataway, NJ: IEEE
    [Google Scholar]
  133. 133. 
    Hortal E, Planelles D, Costa A, Iáñez E, Úbeda A et al. 2015. SVM-based brain-machine interface for controlling a robot arm through four mental tasks. Neurocomputing 151:116–21
    [Google Scholar]
  134. 134. 
    Shi T, Wang H, Zhang C 2015. Brain computer interface system based on indoor semi-autonomous navigation and motor imagery for unmanned aerial vehicle control. Expert Syst. Appl. 42:4196–206
    [Google Scholar]
  135. 135. 
    Hortal E, Iáñez E, Úbeda A, Perez-Vidal C, Azorín JM 2015. Combining a brain-machine interface and an electrooculography interface to perform pick and place tasks with a robotic arm. Robot. Auton. Syst. 72:181–88
    [Google Scholar]
  136. 136. 
    Zhao J, Li W, Li M 2015. Comparative study of SSVEP- and P300-based models for the telepresence control of humanoid robots. PLOS ONE 10:e0142168
    [Google Scholar]
  137. 137. 
    Bhagat NA, Venkatakrishnan A, Abibullaev B, Artz EJ, Yozbatiran N et al. 2016. Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front. Neurosci. 10:122
    [Google Scholar]
  138. 138. 
    Bhattacharyya S, Shimoda S, Hayashibe M 2016. A synergetic brain-machine interfacing paradigm for multi-DOF robot control. IEEE Trans. Syst. Man Cybernet. Syst. 46:957–68
    [Google Scholar]
  139. 139. 
    Soekadar SR, Witkowski M, Gómez C, Opisso E, Medina J et al. 2016. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci. Robot. 1:eaag3296
    [Google Scholar]
  140. 140. 
    López-Larraz E, Trincado-Alonso F, Rajasekaran V, Pérez-Nombela S, Del-Ama AJ et al. 2016. Control of an ambulatory exoskeleton with a brain-machine interface for spinal cord injury gait rehabilitation. Front. Neurosci. 10:359
    [Google Scholar]
  141. 141. 
    Zhang R, Li Y, Yan Y, Zhang H, Wu S et al. 2016. Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation. IEEE Trans. Neural Syst. Rehabil. Eng. 24:128–39
    [Google Scholar]
  142. 142. 
    Lee K, Liu D, Perroud L, Chavarriaga R, Millán JDR 2017. A brain-controlled exoskeleton with cascaded event-related desynchronization classifiers. Robot. Auton. Syst. 90:15–23
    [Google Scholar]
  143. 143. 
    Liu D, Chen W, Lee K, Chavarriaga R, Bouri M et al. 2017. Brain-actuated gait trainer with visual and proprioceptive feedback. J. Neural Eng. 14:056017
    [Google Scholar]
  144. 144. 
    Spataro R, Sorbello R, Tramonte S, Tumminello G, Giardina M et al. 2017. Reaching and grasping a glass of water by locked-in ALS patients through a BCI-controlled humanoid robot. Front. Hum. Neurosci. 11:68
    [Google Scholar]
  145. 145. 
    Sheng S, Song P, Xie L, Luo Z, Chang W et al. 2017. Design of an SSVEP-based BCI system with visual servo module for a service robot to execute multiple tasks. Proceedings of the 2017 IEEE International Conference on Robotics and Automation2267–72 Piscataway, NJ: IEEE
    [Google Scholar]
  146. 146. 
    Tidoni E, Gergondet P, Fusco G, Kheddar A, Aglioti SM 2017. The role of audio-visual feedback in a thought-based control of a humanoid robot: a BCI study in healthy and spinal cord injured people. IEEE Trans. Neural Syst. Rehabil. Eng. 25:772–81
    [Google Scholar]
  147. 147. 
    Zhang W, Sun F, Liu C, Su W, Tan C, Liu S 2017. A hybrid EEG-based BCI for robot grasp controlling. Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics3278–83 Piscataway, NJ: IEEE
    [Google Scholar]
  148. 148. 
    Zhao J, Li W, Mao X, Hu H, Niu L, Chen G 2017. Behavior-based SSVEP hierarchical architecture for telepresence control of humanoid robot to achieve full-body movement. IEEE Trans. Cogn. Dev. Syst. 9:197–209
    [Google Scholar]
  149. 149. 
    Liu D, Chen W, Lee K, Chavarriaga R, Iwane F et al. 2018. EEG-based lower-limb movement onset decoding: continuous classification and asynchronous detection. IEEE Trans. Neural Syst. Rehabil. Eng. 26:1626–35
    [Google Scholar]
  150. 150. 
    Edelman BJ, Meng J, Suma D, Zurn C, Nagarajan E et al. 2019. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Sci. Robot. 4:eaaw6844
    [Google Scholar]
  151. 151. 
    Amiri S, Rabbi A, Azinfar L, Fazel-Rezai R 2013. A review of P300, SSVEP, and hybrid P300/SSVEP brain-computer interface systems. Brain-Computer Interface Systems: Recent Progress and Future Prospects R Fazel-Rezai 195–213 London: IntechOpen
    [Google Scholar]
/content/journals/10.1146/annurev-control-012720-093904
Loading
/content/journals/10.1146/annurev-control-012720-093904
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error